Search results for: biomarker discovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 249

Search results for: biomarker discovery

39 Protein Profiling in Alanine Aminotransferase Induced Patient cohort using Acetaminophen

Authors: Gry M, Bergström J, Lengquist J, Lindberg J, Drobin K, Schwenk J, Nilsson P, Schuppe-Koistinen I.

Abstract:

Sensitive and predictive DILI (Drug Induced Liver Injury) biomarkers are needed in drug R&D to improve early detection of hepatotoxicity. The discovery of DILI biomarkers that demonstrate the predictive power to identify individuals at risk to DILI would represent a major advance in the development of personalized healthcare approaches. In this healthy volunteer acetaminophen study (4g/day for 7 days, with 3 monitored nontreatment days before and 4 after), 450 serum samples from 32 subjects were analyzed using protein profiling by antibody suspension bead arrays. Multiparallel protein profiles were generated using a DILI target protein array with 300 antibodies, where the antibodies were selected based on previous literature findings of putative DILI biomarkers and a screening process using pre dose samples from the same cohort. Of the 32 subjects, 16 were found to develop an elevated ALT value (2Xbaseline, responders). Using the plasma profiling approach together with multivariate statistical analysis some novel findings linked to lipid metabolism were found and more important, endogenous protein profiles in baseline samples (prior to treatment) with predictive power for ALT elevations were identified.

Keywords: DILI, Plasma profiling, PLSDA, Randomforest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318
38 Clustering Categorical Data Using the K-Means Algorithm and the Attribute’s Relative Frequency

Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami

Abstract:

Clustering is a well known data mining technique used in pattern recognition and information retrieval. The initial dataset to be clustered can either contain categorical or numeric data. Each type of data has its own specific clustering algorithm. In this context, two algorithms are proposed: the k-means for clustering numeric datasets and the k-modes for categorical datasets. The main encountered problem in data mining applications is clustering categorical dataset so relevant in the datasets. One main issue to achieve the clustering process on categorical values is to transform the categorical attributes into numeric measures and directly apply the k-means algorithm instead the k-modes. In this paper, it is proposed to experiment an approach based on the previous issue by transforming the categorical values into numeric ones using the relative frequency of each modality in the attributes. The proposed approach is compared with a previously method based on transforming the categorical datasets into binary values. The scalability and accuracy of the two methods are experimented. The obtained results show that our proposed method outperforms the binary method in all cases.

Keywords: Clustering, k-means, categorical datasets, pattern recognition, unsupervised learning, knowledge discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3546
37 Malicious Route Defending Reliable-Data Transmission Scheme for Multi Path Routing in Wireless Network

Authors: S. Raja Ratna, R. Ravi

Abstract:

Securing the confidential data transferred via wireless network remains a challenging problem. It is paramount to ensure that data are accessible only by the legitimate users rather than by the attackers. One of the most serious threats to organization is jamming, which disrupts the communication between any two pairs of nodes. Therefore, designing an attack-defending scheme without any packet loss in data transmission is an important challenge. In this paper, Dependence based Malicious Route Defending DMRD Scheme has been proposed in multi path routing environment to prevent jamming attack. The key idea is to defend the malicious route to ensure perspicuous transmission. This scheme develops a two layered architecture and it operates in two different steps. In the first step, possible routes are captured and their agent dependence values are marked using triple agents. In the second step, the dependence values are compared by performing comparator filtering to detect malicious route as well as to identify a reliable route for secured data transmission. By simulation studies, it is observed that the proposed scheme significantly identifies malicious route by attaining lower delay time and route discovery time; it also achieves higher throughput.

Keywords: Attacker, Dependence, Jamming, Malicious.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753
36 Viewers of Advertisements in Television and Cinema in the Shadow of Visuality

Authors: Mete Kazaz

Abstract:

Despite the internet, which is one of the mass media that has become quite common in recent years, the relationship of Advertisement with Television and Cinema, which have always drawn attention of researchers as basic media and where visual use is in the foreground, have also become the subject of various studies. Based on the assumption that the known fundamental effects of advertisements on consumers are closely related to the creative process of advertisements as well as the nature and characteristics of the medium where they are used, these basic mass media (Television and Cinema) and the consumer motivations of the advertisements they broadcast have become a focus of study. Given that the viewers of the mass media in question have shifted from a passive position to a more active one especially in recent years and approach contents of advertisements, as they do all contents, in a more critical and “pitiless" manner, it is possible to say that individuals make more use of advertisements than in the past and combine their individual goals with the goals of the advertisements. This study, which aims at finding out what the goals of these new individual advertisement use are, how they are shaped by the distinct characteristics of Television and Cinema, where visuality takes precedence as basic mass media, and what kind of places they occupy in the minds of consumers, has determined consumers- motivations as: “Entertainment", “Escapism", “Play", “Monitoring/Discovery", “Opposite Sex" and “Aspirations and Role Models". This study intends to reveal the differences or similarities among the needs and hence the gratifications of viewers who consume advertisements on Television or at the Cinema, which are two basic media where visuality is prioritized.

Keywords: Cinema, Television, Viewers of Advertisements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387
35 CompPSA: A Component-Based Pairwise RNA Secondary Structure Alignment Algorithm

Authors: Ghada Badr, Arwa Alturki

Abstract:

The biological function of an RNA molecule depends on its structure. The objective of the alignment is finding the homology between two or more RNA secondary structures. Knowing the common functionalities between two RNA structures allows a better understanding and a discovery of other relationships between them. Besides, identifying non-coding RNAs -that is not translated into a protein- is a popular application in which RNA structural alignment is the first step A few methods for RNA structure-to-structure alignment have been developed. Most of these methods are partial structure-to-structure, sequence-to-structure, or structure-to-sequence alignment. Less attention is given in the literature to the use of efficient RNA structure representation and the structure-to-structure alignment methods are lacking. In this paper, we introduce an O(N2) Component-based Pairwise RNA Structure Alignment (CompPSA) algorithm, where structures are given as a component-based representation and where N is the maximum number of components in the two structures. The proposed algorithm compares the two RNA secondary structures based on their weighted component features rather than on their base-pair details. Extensive experiments are conducted illustrating the efficiency of the CompPSA algorithm when compared to other approaches and on different real and simulated datasets. The CompPSA algorithm shows an accurate similarity measure between components. The algorithm gives the flexibility for the user to align the two RNA structures based on their weighted features (position, full length, and/or stem length). Moreover, the algorithm proves scalability and efficiency in time and memory performance.

Keywords: Alignment, RNA secondary structure, pairwise, component-based, data mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974
34 Genetic Polymorphism of Main Lactoproteins of Romanian Grey Steppe Breed in Preservation

Authors: Şt. Creangâ, V. Maciuc, A.V. Bâlteanu, S.S. Chelmu

Abstract:

The paper presents a part of the results obtained in a complex research project on Romanian Grey Steppe breed, owner of some remarkable qualities such as hardiness, longevity, adaptability, special resistance to ban weather and diseases and included in the genetic fund (G.D. no. 822/2008.) from Romania. Following the researches effectuated, we identified alleles of six loci, codifying the six types of major milk proteins: alpha-casein S1 (α S1-cz); beta-casein (β-cz); kappa-casein (K-cz); beta-lactoglobulin (β-lg); alpha-lactalbumin (α-la) and alpha-casein S2 (α S2-cz). In system αS1-cz allele αs1-Cn B has the highest frequency (0.700), in system β-cz allele β-Cn A2 ( 0.550 ), in system K-cz allele k-CnA2 ( 0.583 ) and heterozygote genotype AB ( 0.416 ) and BB (0.375), in system β-lg allele β-lgA1 has the highest frequency (0.542 ) and heterozygote genotype AB ( 0.500 ), in system α-la there is monomorphism for allele α-la B and similarly in system αS2-cz for allele αs2-Cn A. The milk analysis by the isoelectric focalization technique (I.E.F.) allowed the identification of a new allele for locus αS1-casein, for two of the individuals under analysis, namely allele called αS1-casein IRV. When experiments were repeated, we noticed that this is not a proteolysis band and it really was a new allele that has not been registered in the specialized literature so far. We identified two heterozygote individuals, carriers of this allele, namely: BIRV and CIRV. This discovery is extremely important if focus is laid on the national genetic patrimony.

Keywords: allele, breed, genetic preservation, lactoproteins, Romanian Grey Steppe

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
33 An Ant-based Clustering System for Knowledge Discovery in DNA Chip Analysis Data

Authors: Minsoo Lee, Yun-mi Kim, Yearn Jeong Kim, Yoon-kyung Lee, Hyejung Yoon

Abstract:

Biological data has several characteristics that strongly differentiate it from typical business data. It is much more complex, usually large in size, and continuously changes. Until recently business data has been the main target for discovering trends, patterns or future expectations. However, with the recent rise in biotechnology, the powerful technology that was used for analyzing business data is now being applied to biological data. With the advanced technology at hand, the main trend in biological research is rapidly changing from structural DNA analysis to understanding cellular functions of the DNA sequences. DNA chips are now being used to perform experiments and DNA analysis processes are being used by researchers. Clustering is one of the important processes used for grouping together similar entities. There are many clustering algorithms such as hierarchical clustering, self-organizing maps, K-means clustering and so on. In this paper, we propose a clustering algorithm that imitates the ecosystem taking into account the features of biological data. We implemented the system using an Ant-Colony clustering algorithm. The system decides the number of clusters automatically. The system processes the input biological data, runs the Ant-Colony algorithm, draws the Topic Map, assigns clusters to the genes and displays the output. We tested the algorithm with a test data of 100 to1000 genes and 24 samples and show promising results for applying this algorithm to clustering DNA chip data.

Keywords: Ant colony system, biological data, clustering, DNA chip.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
32 How Does Psychoanalysis Help in Reconstructing Political Thought? An Exercise of Interpretation

Authors: Subramaniam Chandran

Abstract:

The significance of psychology in studying politics is embedded in philosophical issues as well as behavioural pursuits. For the former is often associated with Sigmund Freud and his followers. The latter is inspired by the writings of Harold Lasswell. Political psychology or psychopolitics has its own impression on political thought ever since it deciphers the concept of human nature and political propaganda. More importantly, psychoanalysis views political thought as a textual content which needs to explore the latent from the manifest content. In other words, it reads the text symptomatically and interprets the hidden truth. This paper explains the paradigm of dream interpretation applied by Freud. The dream work is a process which has four successive activities: condensation, displacement, representation and secondary revision. The texts dealing with political though can also be interpreted on these principles. Freud's method of dream interpretation draws its source after the hermeneutic model of philological research. It provides theoretical perspective and technical rules for the interpretation of symbolic structures. The task of interpretation remains a discovery of equivalence of symbols and actions through perpetual analogies. Psychoanalysis can help in studying political thought in two ways: to study the text distortion, Freud's dream interpretation is used as a paradigm exploring the latent text from its manifest text; and to apply Freud's psychoanalytic concepts and theories ranging from individual mind to civilization, religion, war and politics.

Keywords: Psychoanalysis, political thought, dreaminterpretation, latent content, manifest content

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
31 Characterization of Penicillin V Acid and Its Related Compounds by HPLC

Authors: Bahdja Guerfi, N. Hadhoum, I. Azouz, M. Bendoumia, S. Bouafia, F. Z. Hadjadj Aoul

Abstract:

Background: 'Penicillin V' is a narrow, bactericidal antibiotic of the beta-lactam family of the naturally occurring penicillin group. It is limited to infections due to the germs defined as sensitive. The objective of this work was to identify and to characterize Penicillin V acid and its related compounds by High-performance liquid chromatography (HPLC). Methods: Firstly phenoxymethylpenicillin was identified by an infrared absorption. The organoleptic characteristics, pH, and determination of water content were also studied. The dosage of Penicillin V acid active substance and the determination of its related compounds were carried on waters HPLC, equipped with a UV detector at 254 nm and Discovery HS C18 column (250 mm X 4.6 mm X 5 µm) which is maintained at room temperature. The flow rate was about 1 ml per min. A mixture of water, acetonitrile and acetic acid (65:35:01) was used as mobile phase for phenoxyacetic acid ‘impurity B' and a mixture of water, acetonitrile and acetic acid (650:150:5.75) for the assay and 4-hydroxypenicillin V 'impurity D'. Results: The identification of Penicillin V acid active substance and the evaluation of its chemical quality showed conformity with USP 35th edition. The Penicillin V acid content in the raw material is equal to 1692.22 UI/mg. The percentage content of phenoxyacetic acid and 4-hydroxypenicillin V was respectively: 0.035% and 0.323%. Conclusion: Through these results, we can conclude that the Penicillin V acid active substance tested is of good physicochemical quality.

Keywords: Penicillin V acid, characterization, related substances, HPLC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1045
30 Didactical and Semiotic Affordance of GeoGebra in a Productive Mathematical Discourse

Authors: I. Benning

Abstract:

Using technology to expand the learning space is critical for a productive mathematical discourse. This is a case study of two teachers who developed and enacted GeoGebra-based mathematics lessons following their engagement in a two-year professional development. The didactical and semiotic affordance of GeoGebra in widening the learning space for a productive mathematical discourse was explored. The approach of thematic analysis was used for lesson artefact, lesson observation, and interview data. The results indicated that constructing tools in GeoGebra provided a didactical milieu where students used them to explore mathematical concepts with little or no support from their teacher. The prompt feedback from the GeoGebra motivated students to practice mathematical concepts repeatedly in which they privately rethink their solutions before comparing their answers with that of their colleagues. The constructing tools enhanced self-discovery, team spirit, and dialogue among students. With regards to the semiotic construct, the tools widened the physical and psychological atmosphere of the classroom by providing animations that served as virtual concrete to enhance the recording, manipulation, testing of a mathematical idea, construction, and interpretation of geometric objects. These findings advance the discussion of widening the classroom for a productive mathematical discourse within the context of the mathematics curriculum of Ghana and similar sub-Saharan African countries.

Keywords: GeoGebra, theory of didactical situation, semiotic mediation, mathematics laboratory, mathematical discussion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 403
29 Extracting Therapeutic Grade Essential Oils from the Lamiaceae Plant Family in the United Arab Emirates (UAE): Highlights on Great Possibilities and Sever Difficulties

Authors: Suzan M. Shahin, Mohammed A. Salem

Abstract:

Essential oils are expensive phytochemicals produced and extracted from specific species belonging to particular families in the plant kingdom. In the United Arab Emirates country (UAE), is located in the arid region of the world, nine species, from the Lamiaceae family, having the capability to produce therapeutic grade essential oils. These species include; Mentha spicata, Ocimum forskolei, Salvia macrosiphon, Salvia aegyptiaca, Salvia macilenta, Salvia spinosa, Teucrium polium, Teucrium stocksianum and Zataria multiflora. Although, such potential species are indigenous to the UAE, however, there are almost no studies available to investigate the chemical composition and the quality of the extracted essential oils under the UAE climatological conditions. Therefore, great attention has to be given to such valuable natural resources, through conducting highly supported research projects, tailored to the UAE conditions, and investigating different extraction techniques, including the application of the latest available technologies, such as superficial fluid CO2. This is crucially needed; in order to accomplish the greatest possibilities in the medicinal field, specifically in the discovery of new therapeutic chemotypes, as well as, to achieve the sustainability of this natural resource in the country.

Keywords: Essential oils, extraction techniques, Lamiaceae, traditional medicine, United Arab Emirates (UAE).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552
28 Learning Classifier Systems Approach for Automated Discovery of Crisp and Fuzzy Hierarchical Production Rules

Authors: Suraiya Jabin, Kamal K. Bharadwaj

Abstract:

This research presents a system for post processing of data that takes mined flat rules as input and discovers crisp as well as fuzzy hierarchical structures using Learning Classifier System approach. Learning Classifier System (LCS) is basically a machine learning technique that combines evolutionary computing, reinforcement learning, supervised or unsupervised learning and heuristics to produce adaptive systems. A LCS learns by interacting with an environment from which it receives feedback in the form of numerical reward. Learning is achieved by trying to maximize the amount of reward received. Crisp description for a concept usually cannot represent human knowledge completely and practically. In the proposed Learning Classifier System initial population is constructed as a random collection of HPR–trees (related production rules) and crisp / fuzzy hierarchies are evolved. A fuzzy subsumption relation is suggested for the proposed system and based on Subsumption Matrix (SM), a suitable fitness function is proposed. Suitable genetic operators are proposed for the chosen chromosome representation method. For implementing reinforcement a suitable reward and punishment scheme is also proposed. Experimental results are presented to demonstrate the performance of the proposed system.

Keywords: Hierarchical Production Rule, Data Mining, Learning Classifier System, Fuzzy Subsumption Relation, Subsumption matrix, Reinforcement Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
27 A Text Mining Technique Using Association Rules Extraction

Authors: Hany Mahgoub, Dietmar Rösner, Nabil Ismail, Fawzy Torkey

Abstract:

This paper describes text mining technique for automatically extracting association rules from collections of textual documents. The technique called, Extracting Association Rules from Text (EART). It depends on keyword features for discover association rules amongst keywords labeling the documents. In this work, the EART system ignores the order in which the words occur, but instead focusing on the words and their statistical distributions in documents. The main contributions of the technique are that it integrates XML technology with Information Retrieval scheme (TFIDF) (for keyword/feature selection that automatically selects the most discriminative keywords for use in association rules generation) and use Data Mining technique for association rules discovery. It consists of three phases: Text Preprocessing phase (transformation, filtration, stemming and indexing of the documents), Association Rule Mining (ARM) phase (applying our designed algorithm for Generating Association Rules based on Weighting scheme GARW) and Visualization phase (visualization of results). Experiments applied on WebPages news documents related to the outbreak of the bird flu disease. The extracted association rules contain important features and describe the informative news included in the documents collection. The performance of the EART system compared with another system that uses the Apriori algorithm throughout the execution time and evaluating extracted association rules.

Keywords: Text mining, data mining, association rule mining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4441
26 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: Artificial Neural Network, Data Mining, Electroencephalogram, Epilepsy, Feature Extraction, Seizure Detection, Signal Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318
25 Web–Based Tools and Databases for Micro-RNA Analysis: A Review

Authors: Sitansu Kumar Verma, Soni Yadav, Jitendra Singh, Shraddha, Ajay Kumar

Abstract:

MicroRNAs (miRNAs), a class of approximately 22 nucleotide long non coding RNAs which play critical role in different biological processes. The mature microRNA is usually 19–27 nucleotides long and is derived from a bigger precursor that folds into a flawed stem-loop structure. Mature micro RNAs are involved in many cellular processes that encompass development, proliferation, stress response, apoptosis, and fat metabolism by gene regulation. Resent finding reveals that certain viruses encode their own miRNA that processed by cellular RNAi machinery. In recent research indicate that cellular microRNA can target the genetic material of invading viruses. Cellular microRNA can be used in the virus life cycle; either to up regulate or down regulate viral gene expression Computational tools use in miRNA target prediction has been changing drastically in recent years. Many of the methods have been made available on the web and can be used by experimental researcher and scientist without expert knowledge of bioinformatics. With the development and ease of use of genomic technologies and computational tools in the field of microRNA biology has superior tremendously over the previous decade. This review attempts to give an overview over the genome wide approaches that have allow for the discovery of new miRNAs and development of new miRNA target prediction tools and databases.

Keywords: MicroRNAs, computational tools, gene regulation, databases, RNAi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3184
24 Turbo-Coded Mobile Terrestrial Communication Systems in Urban and Suburban Areas for Wireless Multimedia Applications

Authors: F. Mehran

Abstract:

With the rapid popularization of internet services, it is apparent that the next generation terrestrial communication systems must be capable of supporting various applications like voice, video, and data. This paper presents the performance evaluation of turbo- coded mobile terrestrial communication systems, which are capable of providing high quality services for delay sensitive (voice or video) and delay tolerant (text transmission) multimedia applications in urban and suburban areas. Different types of multimedia information require different service qualities, which are generally expressed in terms of a maximum acceptable bit-error-rate (BER) and maximum tolerable latency. The breakthrough discovery of turbo codes allows us to significantly reduce the probability of bit errors with feasible latency. In a turbo-coded system, a trade-off between latency and BER results from the choice of convolutional component codes, interleaver type and size, decoding algorithm, and the number of decoding iterations. This trade-off can be exploited for multimedia applications by using optimal and suboptimal performance parameter amalgamations to achieve different service qualities. The results are therefore proposing an adaptive framework for turbo-coded wireless multimedia communications which incorporate a set of performance parameters that achieve an appropriate set of service qualities, depending on the application's requirements.

Keywords: Mobile communications, Turbo codes, wireless multimedia communication systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
23 Fault Tolerant (n, k)-Star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems

Authors: Ning Gong, Michael Korostelev, Qiangguo Ren, Li Bai, Saroj Biswas, Frank Ferrese

Abstract:

This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery.

Keywords: (n, k)-star Topology, Fault Tolerance, Conditional Diagnosability, Multi-Agent System, Automated Power System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450
22 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars, and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: Remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
21 Web Content Mining: A Solution to Consumer's Product Hunt

Authors: Syed Salman Ahmed, Zahid Halim, Rauf Baig, Shariq Bashir

Abstract:

With the rapid growth in business size, today's businesses orient towards electronic technologies. Amazon.com and e-bay.com are some of the major stakeholders in this regard. Unfortunately the enormous size and hugely unstructured data on the web, even for a single commodity, has become a cause of ambiguity for consumers. Extracting valuable information from such an everincreasing data is an extremely tedious task and is fast becoming critical towards the success of businesses. Web content mining can play a major role in solving these issues. It involves using efficient algorithmic techniques to search and retrieve the desired information from a seemingly impossible to search unstructured data on the Internet. Application of web content mining can be very encouraging in the areas of Customer Relations Modeling, billing records, logistics investigations, product cataloguing and quality management. In this paper we present a review of some very interesting, efficient yet implementable techniques from the field of web content mining and study their impact in the area specific to business user needs focusing both on the customer as well as the producer. The techniques we would be reviewing include, mining by developing a knowledge-base repository of the domain, iterative refinement of user queries for personalized search, using a graphbased approach for the development of a web-crawler and filtering information for personalized search using website captions. These techniques have been analyzed and compared on the basis of their execution time and relevance of the result they produced against a particular search.

Keywords: Data mining, web mining, search engines, knowledge discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2054
20 Association of Zinc with New Generation Cardiovascular Risk Markers in Childhood Obesity

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Zinc (Zn) is a vital element required for growth and development particularly in children. It exhibits some protective effects against cardiovascular diseases (CVDs). Zn may be a potential biomarker of cardiovascular health. High sensitive cardiac troponin T (hs-cTnT) and cardiac myosin binding protein C (cMyBP-C) are new generation markers used for prediagnosis, diagnosis and prognosis of CVDs. The aim of this study is to determine Zn as well as new generation cardiac markers’ profiles in children with normal body mass index (N-BMI), obese (OB), morbid obese (MO) children and children with metabolic syndrome (MetS) findings. The association among them will also be investigated. Four study groups were constituted. The study protocol was approved by the institutional Ethics Committee of Tekirdag Namik Kemal University. Parents of the participants filled informed consent forms to participate in the study. Group 1 is composed of 44 children with N-BMI. Group 2 and Group 3 comprised 43 OB and 45 MO children, respectively. 45 MO children with MetS findings were included in Group 4. World Health Organization age- and sex-adjusted BMI percentile tables were used to constitute groups. These values were 15-85, 95-99 and above 99 for N-BMI, OB and MO, respectively. Criteria for MetS findings were determined. Routine biochemical analyses including Zn were performed. hs-cTnT and cMyBP-C concentrations were measured by enzyme-linked immunosorbent assay. Data were analyzed by using SPSS software. p < 0.05 was accepted as significant. Four groups were matched for age and gender. Decreased Zn concentrations were measured in Groups 2, 3 and 4 compared to Group 1. Groups did not differ from one another in terms of hs-cTnT. There were statistically significant differences between cMyBP-C levels of MetS group and N-BMI as well as OB groups. There was an increasing trend going from N-BMI group to MetS group. There were statistically significant negative correlations between Zn and hs-cTnT as well as cMyBP-C concentrations in MetS group. In conclusion, inverse correlations detected between Zn and new generation cardiac markers (hs-TnT and cMyBP-C) have pointed out that decreased levels of Zn accompany increased levels of hs-cTnT as well as cMyBP-C in children with MetS. This finding emphasizes that both Zn and these new generation cardiac markers may be evaluated as biomarkers of cardiovascular health during severe childhood obesity precipitated with MetS findings and also suggested as the messengers of the future risk in the adulthood periods of children with MetS.

Keywords: Cardiac myosin binding protein-C, cardiovascular diseases, children, high sensitive cardiac troponin T, obesity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 531
19 Induction Melting as a Fabrication Route for Aluminum-Carbon Nanotubes Nanocomposite

Authors: Muhammad Shahid, Muhammad Mansoor

Abstract:

Increasing demands of contemporary applications for high strength and lightweight materials prompted the development of metal-matrix composites (MMCs). After the discovery of carbon nanotubes (CNTs) in 1991 (revealing an excellent set of mechanical properties) became one of the most promising strengthening materials for MMC applications. Additionally, the relatively low density of the nanotubes imparted high specific strengths, making them perfect strengthening material to reinforce MMCs. In the present study, aluminum-multiwalled carbon nanotubes (Al-MWCNTs) composite was prepared in an air induction furnace. The dispersion of the nanotubes in molten aluminum was assisted by inherent string action of induction heating at 790°C. During the fabrication process, multifunctional fluxes were used to avoid oxidation of the nanotubes and molten aluminum. Subsequently, the melt was cast in to a copper mold and cold rolled to 0.5 mm thickness. During metallographic examination using a scanning electron microscope, it was observed that the nanotubes were effectively dispersed in the matrix. The mechanical properties of the composite were significantly increased as compared to pure aluminum specimen i.e. the yield strength from 65 to 115 MPa, the tensile strength from 82 to 125 MPa and hardness from 27 to 30 HV for pure aluminum and Al-CNTs composite, respectively. To recognize the associated strengthening mechanisms in the nanocomposites, three foremost strengthening models i.e. shear lag model, Orowan looping and Hall-Petch have been critically analyzed; experimental data were found to be closely satisfying the shear lag model.

Keywords: Carbon nanotubes, induction melting, nanocomposite, strengthening mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
18 Using Data Mining in Automotive Safety

Authors: Carine Cridelich, Pablo Juesas Cano, Emmanuel Ramasso, Noureddine Zerhouni, Bernd Weiler

Abstract:

Safety is one of the most important considerations when buying a new car. While active safety aims at avoiding accidents, passive safety systems such as airbags and seat belts protect the occupant in case of an accident. In addition to legal regulations, organizations like Euro NCAP provide consumers with an independent assessment of the safety performance of cars and drive the development of safety systems in automobile industry. Those ratings are mainly based on injury assessment reference values derived from physical parameters measured in dummies during a car crash test. The components and sub-systems of a safety system are designed to achieve the required restraint performance. Sled tests and other types of tests are then carried out by car makers and their suppliers to confirm the protection level of the safety system. A Knowledge Discovery in Databases (KDD) process is proposed in order to minimize the number of tests. The KDD process is based on the data emerging from sled tests according to Euro NCAP specifications. About 30 parameters of the passive safety systems from different data sources (crash data, dummy protocol) are first analysed together with experts opinions. A procedure is proposed to manage missing data and validated on real data sets. Finally, a procedure is developed to estimate a set of rough initial parameters of the passive system before testing aiming at reducing the number of tests.

Keywords: KDD process, passive safety systems, sled test, dummy injury assessment reference values, frontal impact

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2844
17 Applying p-Balanced Energy Technique to Solve Liouville-Type Problems in Calculus

Authors: Lina Wu, Ye Li, Jia Liu

Abstract:

We are interested in solving Liouville-type problems to explore constancy properties for maps or differential forms on Riemannian manifolds. Geometric structures on manifolds, the existence of constancy properties for maps or differential forms, and energy growth for maps or differential forms are intertwined. In this article, we concentrate on discovery of solutions to Liouville-type problems where manifolds are Euclidean spaces (i.e. flat Riemannian manifolds) and maps become real-valued functions. Liouville-type results of vanishing properties for functions are obtained. The original work in our research findings is to extend the q-energy for a function from finite in Lq space to infinite in non-Lq space by applying p-balanced technique where q = p = 2. Calculation skills such as Hölder's Inequality and Tests for Series have been used to evaluate limits and integrations for function energy. Calculation ideas and computational techniques for solving Liouville-type problems shown in this article, which are utilized in Euclidean spaces, can be universalized as a successful algorithm, which works for both maps and differential forms on Riemannian manifolds. This innovative algorithm has a far-reaching impact on research work of solving Liouville-type problems in the general settings involved with infinite energy. The p-balanced technique in this algorithm provides a clue to success on the road of q-energy extension from finite to infinite.

Keywords: Differential Forms, Hölder Inequality, Liouville-type problems, p-balanced growth, p-harmonic maps, q-energy growth, tests for series.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 831
16 The Use of Mobile Phone as Enhancement to Mark Multiple Choice Objectives English Grammar and Literature Examination: An Exploratory Case Study of Preliminary National Diploma Students, Abdu Gusau Polytechnic, Talata Mafara, Zamfara State, Nigeria

Authors: T. Abdulkadir

Abstract:

Most often, marking and assessment of multiple choice kinds of examinations have been opined by many as a cumbersome and herculean task to accomplished manually in Nigeria. Usually this may be in obvious nexus to the fact that mass numbers of candidates were known to take the same examination simultaneously. Eventually, marking such a mammoth number of booklets dared and dread even the fastest paid examiners who often undertake the job with the resulting consequences of stress and boredom. This paper explores the evolution, as well as the set aim to envision and transcend marking the Multiple Choice Objectives- type examination into a thing of creative recreation, or perhaps a more relaxing activity via the use of the mobile phone. A more “pragmatic” dimension method was employed to achieve this work, rather than the formal “in-depth research” based approach due to the “novelty” of the mobile-smartphone e-Marking Scheme discovery. Moreover, being an evolutionary scheme, no recent academic work shares a direct same topic concept with the ‘use of cell phone as an e-marking technique’ was found online; thus, the dearth of even miscellaneous citations in this work. Additional future advancements are what steered the anticipatory motive of this paper which laid the fundamental proposition. However, the paper introduces for the first time the concept of mobile-smart phone e-marking, the steps to achieve it, as well as the merits and demerits of the technique all spelt out in the subsequent pages.

Keywords: Cell phone, e-marking scheme, mobile phone, mobile-smart phone, multiple choice objectives, smartphone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 971
15 Geochemical Study of Natural Bitumen, Condensate and Gas Seeps from Sousse Area, Central Tunisia

Authors: A. Belhaj Mohamed, M. Saidi, N. Boucherb, N. Ourtani, A. Soltani, I. Bouazizi, M. Ben Jrad

Abstract:

Natural hydrocarbon seepage has helped petroleum exploration as a direct indicator of gas and/or oil subsurface accumulations. Surface macro-seeps are generally an indication of a fault in an active Petroleum Seepage System belonging to a Total Petroleum System. This paper describes a case study in which multiple analytical techniques were used to identify and characterize trace petroleum-related hydrocarbons and other volatile organic compounds in groundwater samples collected from Sousse aquifer (Central Tunisia). The analytical techniques used for analyses of water samples included gas chromatography-mass spectrometry (GCMS), capillary GC with flame-ionization detection, Compound Specific Isotope Analysis, Rock Eval Pyrolysis. The objective of the study was to confirm the presence of gasoline and other petroleum products or other volatile organic pollutants in those samples in order to assess the respective implication of each of the potentially responsible parties to the contamination of the aquifer. In addition, the degree of contamination at different depths in the aquifer was also of interest. The oil and gas seeps have been investigated using biomarker and stable carbon isotope analyses to perform oil-oil and oil-source rock correlations. The seepage gases are characterized by high CH4 content, very low δ13CCH4 values (-71,9 ‰) and high C1/C1–5 ratios (0.95–1.0), light deuterium–hydrogen isotope ratios (- 198 ‰) and light δ13CC2 and δ13CCO2 values (-23,8‰ and-23,8‰ respectively) indicating a thermogenic origin with the contribution of the biogenic gas. An organic geochemistry study was carried out on the more ten oil seep samples. This study includes light hydrocarbon and biomarkers analyses (hopanes, steranes, n-alkanes, acyclic isoprenoids, and aromatic steroids) using GC and GC-MS. The studied samples show at least two distinct families, suggesting two different types of crude oil origins: the first oil seeps appears to be highly mature, showing evidence of chemical and/or biological degradation and was derived from a clay-rich source rock deposited in suboxic conditions. It has been sourced mainly by the lower Fahdene (Albian) source rocks. The second oil seeps was derived from a carbonate-rich source rock deposited in anoxic conditions, well correlated with the Bahloul (Cenomanian-Turonian) source rock.

Keywords: Biomarkers, oil and gas seeps, organic geochemistry, source rock.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3453
14 Potential of Henna Leaves as Dye and Its Fastness Properties on Fabric

Authors: Nkem Angela Udeani

Abstract:

Despite the wide spread use of synthetic dyes, natural dyes are still exploited and used to enhance its inherent aesthetic qualities as a major material for beautification of the body. Centuries before the discovery of synthetic dyes, natural dyes were the only source of dye open to mankind. Dyes are extracted from plant - leaves, roots and barks, insect secretions, and minerals. However, research findings have made it clear that of all, plants- leaves, roots, barks or flowers are the most explored and exploited in which henna (Lawsonia innermis L.) is one of those plants. Experiment has also shown that henna is used in body painting in conjunction with an alkaline (Ammonium Sulphate) as a fixing agent. This of course gives a clue that if colour derived from henna is properly investigated, it may not only be used for body decoration but possibly, may have affinity to fiber substrate. This paper investigates the dyeing potentials – dye ability and fastness qualities of henna dye extracts on cotton and linen fibers using mordants like ammonium sulphate and other alkalis (hydrosulphate and caustic soda, potash, common salt, potassium alum). Hot and cold water and ethanol solvent were used in the extraction of the dye to investigate the most effective method, dye ability, and fastness qualities of these extracts under room temperature. The results of the experiment show that cotton have a high rate of dye intake than other fiber. On a similar note, the colours obtained depend most on the solvent used. In conclusion, hot water extraction appears more effective. While the colours obtained from ethanol and both cold hot methods of extraction range from light to dark yellow, light green to army green and to some extent shades of brown hues.

Keywords: Dye, fabrics, henna leaves, potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4114
13 The Nexus between Migration and Human Security: The Case of Ethiopian Female Migration to Sudan

Authors: Anwar Hassen Tsega

Abstract:

International labor migration is an integral part of the modern globalized world. However, the phenomenon has its roots in some earlier periods in human history. This paper discusses the relatively new phenomenon of female migration in Africa. In the past, African women migrants were only spouses or dependent family members. But as modernity swept most African societies, with rising unemployment rates, there is evidence everywhere in Africa that women labor migration is a growing phenomenon that deserves to be understood in the context of human security research. This work explores these issues further, focusing on the experience of Ethiopian women labor migrants to Sudan. The migration of Ethiopian people to Sudan is historical; nevertheless, labor migration mainly started since the discovery and subsequent exploration of oil in the Sudan. While the paper is concerned with the human security aspect of the migrant workers, we need to be certain that the migration process will provide with a decent wage, good working conditions, the necessary social security coverage, and labor protection as a whole. However, migration to Sudan is not always safe and female migrants become subject to violence at the hands of brokers, employers and migration officials. For this matter, the paper argued that identifying the vulnerable stages and major problem facing female migrant workers at various stages of migration is a prerequisite to combat the problem and secure the lives of the migrant workers. The major problems female migrants face include extra degrees of gender-based violence, underpayment, various forms of abuse like verbal, physical and sexual and other forms of torture which include beating and slaps. This peculiar situation could be attributed to the fact that most of these women are irregular migrants and fall under the category of unskilled and/or illiterate migrants.

Keywords: Labor migration, human security, trafficking, smuggling, Ethiopia, Sudan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1569
12 Improving 99mTc-tetrofosmin Myocardial Perfusion Images by Time Subtraction Technique

Authors: Yasuyuki Takahashi, Hayato Ishimura, Masao Miyagawa, Teruhito Mochizuki

Abstract:

Quantitative measurement of myocardium perfusion is possible with single photon emission computed tomography (SPECT) using a semiconductor detector. However, accumulation of 99mTc-tetrofosmin in the liver may make it difficult to assess that accurately in the inferior myocardium. Our idea is to reduce the high accumulation in the liver by using dynamic SPECT imaging and a technique called time subtraction. We evaluated the performance of a new SPECT system with a cadmium-zinc-telluride solid-state semi- conductor detector (Discovery NM 530c; GE Healthcare). Our system acquired list-mode raw data over 10 minutes for a typical patient. From the data, ten SPECT images were reconstructed, one for every minute of acquired data. Reconstruction with the semiconductor detector was based on an implementation of a 3-D iterative Bayesian reconstruction algorithm. We studied 20 patients with coronary artery disease (mean age 75.4 ± 12.1 years; range 42-86; 16 males and 4 females). In each subject, 259 MBq of 99mTc-tetrofosmin was injected intravenously. We performed both a phantom and a clinical study using dynamic SPECT. An approximation to a liver-only image is obtained by reconstructing an image from the early projections during which time the liver accumulation dominates (0.5~2.5 minutes SPECT image-5~10 minutes SPECT image). The extracted liver-only image is then subtracted from a later SPECT image that shows both the liver and the myocardial uptake (5~10 minutes SPECT image-liver-only image). The time subtraction of liver was possible in both a phantom and the clinical study. The visualization of the inferior myocardium was improved. In past reports, higher accumulation in the myocardium due to the overlap of the liver is un-diagnosable. Using our time subtraction method, the image quality of the 99mTc-tetorofosmin myocardial SPECT image is considerably improved.

Keywords: 99mTc-tetrofosmin, dynamic SPECT, time subtraction, semiconductor detector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1034
11 A Cumulative Learning Approach to Data Mining Employing Censored Production Rules (CPRs)

Authors: Rekha Kandwal, Kamal K.Bharadwaj

Abstract:

Knowledge is indispensable but voluminous knowledge becomes a bottleneck for efficient processing. A great challenge for data mining activity is the generation of large number of potential rules as a result of mining process. In fact sometimes result size is comparable to the original data. Traditional data mining pruning activities such as support do not sufficiently reduce the huge rule space. Moreover, many practical applications are characterized by continual change of data and knowledge, thereby making knowledge voluminous with each change. The most predominant representation of the discovered knowledge is the standard Production Rules (PRs) in the form If P Then D. Michalski & Winston proposed Censored Production Rules (CPRs), as an extension of production rules, that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: If P Then D Unless C, where C (Censor) is an exception to the rule. Such rules are employed in situations in which the conditional statement 'If P Then D' holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence, are tight or there is simply no information available as to whether it holds or not. Thus the 'If P Then D' part of the CPR expresses important information while the Unless C part acts only as a switch changes the polarity of D to ~D. In this paper a scheme based on Dempster-Shafer Theory (DST) interpretation of a CPR is suggested for discovering CPRs from the discovered flat PRs. The discovery of CPRs from flat rules would result in considerable reduction of the already discovered rules. The proposed scheme incrementally incorporates new knowledge and also reduces the size of knowledge base considerably with each episode. Examples are given to demonstrate the behaviour of the proposed scheme. The suggested cumulative learning scheme would be useful in mining data streams.

Keywords: Censored production rules, cumulative learning, data mining, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
10 Concept for Knowledge out of Sri Lankan Non-State Sector: Performances of Higher Educational Institutes and Successes of Its Sector

Authors: S. Jeyarajan

Abstract:

Concept of knowledge is discovered from conducted study for successive Competition in Sri Lankan Non-State Higher Educational Institutes. The Concept discovered out of collected Knowledge Management Practices from Emerald inside likewise reputed literatures and of Non-State Higher Educational sector. A test is conducted to reveal existences and its reason behind of these collected practices in Sri Lankan Non-State Higher Education Institutes. Further, unavailability of such study and uncertain on number of participants for data collection in the Sri Lankan context contributed selection of research method as qualitative method, which used attributes of Delphi Method to manage those likewise uncertainty. Data are collected under Dramaturgical Method, which contributes efficient usage of the Delphi method. Grounded theory is selected as data analysis techniques, which is conducted in intermixed discourse to manage different perspectives of data that are collected systematically through perspective and modified snowball sampling techniques. Data are then analysed using Grounded Theory Development Techniques in Intermix discourses to manage differences in Data. Consequently, Agreement in the results of Grounded theories and of finding in the Foreign Study is discovered in the analysis whereas present study conducted as Qualitative Research and The Foreign Study conducted as Quantitative Research. As such, the Present study widens the discovery in the Foreign Study. Further, having discovered reason behind of the existences, the Present result shows Concept for Knowledge from Sri Lankan Non-State sector to manage higher educational Institutes in successful manner.

Keywords: Adherence of snowball sampling into perspective sampling, Delphi method in qualitative method, grounded theory development in intermix discourses of analysis, knowledge management for success of higher educational institutes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 775