Search results for: Planar monopole antenna
96 Modeling and Simulations of Surface Plasmon Waveguide Structures
Authors: Moussa Hamdan, Abdulati Abdullah
Abstract:
This paper presents an investigation of the fabrication of the optical devices in terms of their characteristics based on the use of the electromagnetic waves. Planar waveguides are used to examine the field modes (bound modes) and the parameters required for this structure. The modifications are conducted on surface plasmons based waveguides. Simple symmetric dielectric slab structure is used and analyzed in terms of transverse electric mode (TE-Mode) and transverse magnetic mode (TM-Mode. The paper presents mathematical and numerical solutions for solving simple symmetric plasmons and provides simulations of surface plasmons for field confinement. Asymmetric TM-mode calculations for dielectric surface plasmons are also provided.Keywords: Surface plasmons, optical waveguides, semiconductor lasers, refractive index, slab dialectical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166195 Parametric Analysis of Solid Oxide Fuel Cell Using Lattice Boltzmann Method
Authors: Abir Yahya, Hacen Dhahri, Khalifa Slimi
Abstract:
The present paper deals with a numerical simulation of temperature field inside a solid oxide fuel cell (SOFC) components. The temperature distribution is investigated using a co-flow planar SOFC comprising the air and fuel channel and two-ceramic electrodes, anode and cathode, separated by a dense ceramic electrolyte. The Lattice Boltzmann method (LBM) is used for the numerical simulation of the physical problem. The effects of inlet temperature, anode thermal conductivity and current density on temperature distribution are discussed. It was found that temperature distribution is very sensitive to the inlet temperature and the current density.
Keywords: Solid oxide fuel cell, Heat sources, temperature, Lattice Boltzmann method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 88894 Theory of Nanowire Radial p-n-Junction
Authors: Stepan Petrosyan, Ashkhen Yesayan, Suren Nersesyan
Abstract:
We have developed an analytic model for the radial pn-junction in a nanowire (NW) core-shell structure utilizing as a new building block in different semiconductor devices. The potential distribution through the p-n-junction is calculated and the analytical expressions are derived to compute the depletion region widths. We show that the widths of space charge layers, surrounding the core, are the functions of core radius, which is the manifestation of so called classical size effect. The relationship between the depletion layer width and the built-in potential in the asymptotes of infinitely large core radius transforms to square-root dependence specific for conventional planar p-n-junctions. The explicit equation is derived to compute the capacitance of radial p-n-junction. The current-voltage behavior is also carefully determined taking into account the “short base" effects.Keywords: Snanowire, p-n- junction, barrier capacitance, high injection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 278893 Numerical Simulation of Minimum Distance Jet Impingement Heat Transfer
Authors: Aman Agarwal, Georg Klepp
Abstract:
Impinging jets are used in various industrial areas as a cooling and drying technique. The current research is concerned with the means of improving the heat transfer for configurations with a minimum distance of the nozzle to the impingement surface. The impingement heat transfer is described using numerical methods over a wide range of parameters for an array of planar jets. These parameters include varying jet flow speed, width of nozzle, distance of nozzle, angle of the jet flow, velocity and geometry of the impingement surface. Normal pressure and shear stress are computed as additional parameters. Using dimensionless characteristic numbers the parameters and the results are correlated to gain generalized equations. The results demonstrate the effect of the investigated parameters on the flow.Keywords: Heat Transfer Coefficient, Minimum distance jet impingement, Numerical simulation, Dimensionless coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 235692 Capacity Enhancement in Wireless Networks using Directional Antennas
Authors: Sedat Atmaca, Celal Ceken, Ismail Erturk
Abstract:
One of the biggest drawbacks of the wireless environment is the limited bandwidth. However, the users sharing this limited bandwidth have been increasing considerably. SDMA technique which entails using directional antennas allows to increase the capacity of a wireless network by separating users in the medium. In this paper, it has been presented how the capacity can be enhanced while the mean delay is reduced by using directional antennas in wireless networks employing TDMA/FDD MAC. Computer modeling and simulation of the wireless system studied are realized using OPNET Modeler. Preliminary simulation results are presented and the performance of the model using directional antennas is evaluated and compared consistently with the one using omnidirectional antennas.Keywords: Directional Antenna, TDMA, SDMA,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 228591 Gimbal Structure for the Design of 3D Flywheel System
Authors: Cheng-En Tsai, Chung-Chun Hsiao, Fu-Yuan Chang, Liang-Lun Lan, Jia-Ying Tu
Abstract:
New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design.Keywords: Gimbal, spherical robot, gyroscope, Lagrangian formulation, flyball.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 305690 Gimbal Structure for the Design of 3D Flywheel System
Authors: Cheng-En Tsai, Chung-Chun Hsiao, Fu-Yuan Chang, Liang-Lun Lan, Jia-Ying Tu
Abstract:
New design of three dimensional (3D) flywheel system based on gimbal and gyro mechanics is proposed. The 3D flywheel device utilizes the rotational motion of three spherical shells and the conservation of angular momentum to achieve planar locomotion. Actuators mounted to the ring-shape frames are installed within the system to drive the spherical shells to rotate, for the purpose of steering and stabilization. Similar to the design of 2D flywheel system, it is expected that the spherical shells may function like a “flyball” to store and supply mechanical energy; additionally, in comparison with typical single-wheel and spherical robots, the 3D flywheel can be used for developing omnidirectional robotic systems with better mobility. The Lagrangian method is applied to derive the equation of motion of the 3D flywheel system, and simulation studies are presented to verify the proposed design.Keywords: Gimbal, spherical robot, gyroscope, Lagrangian formulation, flyball.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 207989 Generation of Numerical Data for the Facilitation of the Personalized Hyperthermic Treatment of Cancer with An Interstital Antenna Array Using the Method of Symmetrical Components
Authors: Prodromos E. Atlamazoglou
Abstract:
The method of moments combined with the method of symmetrical components is used for the analysis of interstitial hyperthermia applicators. The basis and testing functions are both piecewise sinusoids, qualifying our technique as a Galerkin one. The dielectric coatings are modeled by equivalent volume polarization currents, which are simply related to the conduction current distribution, avoiding in that way the introduction of additional unknowns or numerical integrations. The results of our method for a four dipole circular array, are in agreement with those already published in literature for a same hyperthermia configuration. Apart from being accurate, our approach is more general, more computationally efficient and takes into account the coupling between the antennas.Keywords: Hyperthermia, integral equations, insulated antennas, method of symmetrical components.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 69788 Time-Domain Analysis of Pulse Parameters Effects on Crosstalk (In High Speed Circuits)
Authors: L. Tani, N. El Ouzzani
Abstract:
Crosstalk among interconnects and printed-circuit board (PCB) traces is a major limiting factor of signal quality in highspeed digital and communication equipments especially when fast data buses are involved. Such a bus is considered as a planar multiconductor transmission line. This paper will demonstrate how the finite difference time domain (FDTD) method provides an exact solution of the transmission-line equations to analyze the near end and the far end crosstalk. In addition, this study makes it possible to analyze the rise time effect on the near and far end voltages of the victim conductor. The paper also discusses a statistical analysis, based upon a set of several simulations. Such analysis leads to a better understanding of the phenomenon and yields useful information.Keywords: Multiconductor transmission line, Crosstalk, Finite difference time domain (FDTD), printed-circuit board (PCB), Rise time, Statistical analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177487 An Approach for Modeling CMOS Gates
Authors: Spyridon Nikolaidis
Abstract:
A modeling approach for CMOS gates is presented based on the use of the equivalent inverter. A new model for the inverter has been developed using a simplified transistor current model which incorporates the nanoscale effects for the planar technology. Parametric expressions for the output voltage are provided as well as the values of the output and supply current to be compatible with the CCS technology. The model is parametric according the input signal slew, output load, transistor widths, supply voltage, temperature and process. The transistor widths of the equivalent inverter are determined by HSPICE simulations and parametric expressions are developed for that using a fitting procedure. Results for the NAND gate shows that the proposed approach offers sufficient accuracy with an average error in propagation delay about 5%.
Keywords: CMOS gate modeling, Inverter modeling, transistor current model, timing model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202786 An Eigen-Approach for Estimating the Direction-of Arrival of Unknown Number of Signals
Authors: Dia I. Abu-Al-Nadi, M. J. Mismar, T. H. Ismail
Abstract:
A technique for estimating the direction-of-arrival (DOA) of unknown number of source signals is presented using the eigen-approach. The eigenvector corresponding to the minimum eigenvalue of the autocorrelation matrix yields the minimum output power of the array. Also, the array polynomial with this eigenvector possesses roots on the unit circle. Therefore, the pseudo-spectrum is found by perturbing the phases of the roots one by one and calculating the corresponding array output power. The results indicate that the DOAs and the number of source signals are estimated accurately in the presence of a wide range of input noise levels.
Keywords: Array signal processing, direction-of-arrival, antenna arrays, eigenvalues, eigenvectors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138285 Second-Order Slip Flow and Heat Transfer in a Long Isothermal Microchannel
Authors: Huei Chu Weng, Chien-Hung Liu
Abstract:
This paper presents a study on the effect of second-order slip and jump on forced convection through a long isothermally heated or cooled planar microchannel. The fully developed solutions of thermal flow fields are analytically obtained on the basis of the second-order Maxwell-Burnett slip and Smoluchowski jump boundary conditions. Results reveal that the second-order term in the Karniadakis slip boundary condition is found to contribute a negative velocity slip and then to lead to a higher pressure drop as well as a higher fluid temperature for the heated-wall case or to a lower fluid temperature for the cooled-wall case. These findings are contrary to predictions made by the Deissler model. In addition, the role of second-order slip becomes more significant when the Knudsen number increases.Keywords: Microfluidics, forced convection, gas rarefaction, second-order boundary conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 208084 Lateral Torsional Buckling of Steel Thin-Walled Beams with Lateral Restraints
Authors: Ivan Balázs, Jindřich Melcher
Abstract:
Metal thin-walled members have been widely used in building industry. Usually they are utilized as purlins, girts or ceiling beams. Due to slenderness of thin-walled cross-sections these structural members are prone to stability problems (e.g. flexural buckling, lateral torsional buckling). If buckling is not constructionally prevented their resistance is limited by buckling strength. In practice planar members of roof or wall cladding can be attached to thin-walled members. These elements reduce displacement of thin-walled members and therefore increase their buckling strength. If this effect is taken into static assessment more economical sections of thin-walled members might be utilized and certain savings of material might be achieved. This paper focuses on problem of determination of critical load of steel thin-walled beams with lateral continuous restraint which is crucial for lateral torsional buckling assessment.Keywords: Beam, buckling, numerical analysis, stability, steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 291583 The Principle Probabilities of Space-Distance Resolution for a Monostatic Radar and Realization in Cylindrical Array
Authors: Anatoly D. Pluzhnikov, Elena N. Pribludova, Alexander G. Ryndyk
Abstract:
In conjunction with the problem of the target selection on a clutter background, the analysis of the scanning rate influence on the spatial-temporal signal structure, the generalized multivariate correlation function and the quality of the resolution with the increase pulse repetition frequency is made. The possibility of the object space-distance resolution, which is conditioned by the range-to-angle conversion with an increased scanning rate, is substantiated. The calculations for the real cylindrical array at high scanning rate are presented. The high scanning rate let to get the signal to noise improvement of the order of 10 dB for the space-time signal processing.Keywords: Antenna pattern, array, signal processing, spatial resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 107882 Scanning Device for Sampling the Spatial Distribution of the E-field
Authors: Juan Blas, Alfonso Bahillo, Santiago Mazuelas, David Bullido, Patricia Fernandez, Ruben M. Lorenzo, Evaristo J. Abril
Abstract:
This paper presents a low cost automatic system for sampling the electric field in a limited area. The scanning area is a flat surface parallel to the ground at a selected height. We discuss in detail the hardware, software and all the arrangements involved in the system operation. In order to show the system performance we include a campaign of narrow band measurements with 6017 sample points in the surroundings of a cellular base station. A commercial isotropic antenna with three orthogonal axes was used as sampling device. The results are analyzed in terms of its space average, standard deviation and statistical distribution.Keywords: measurement device, propagation, spatial sampling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 138681 Cooperative CDD Scheme Based on Hierarchical Modulation in OFDM System
Authors: Seung-Jun Yu, Yeong-Seop Ahn, Young-Min Ko, Hyoung-Kyu Song
Abstract:
In order to achieve high data rate and increase the spectral efficiency, multiple input multiple output (MIMO) system has been proposed. However, multiple antennas are limited by size and cost. Therefore, recently developed cooperative diversity scheme, which profits the transmit diversity only with the existing hardware by constituting a virtual antenna array, can be a solution. However, most of the introduced cooperative techniques have a common fault of decreased transmission rate because the destination should receive the decodable compositions of symbols from the source and the relay. In this paper, we propose a cooperative cyclic delay diversity (CDD) scheme that use hierarchical modulation. This scheme is free from the rate loss and allows seamless cooperative communication.Keywords: MIMO, Cooperative communication, CDD, Hierarchical modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 219880 A Cross-Layer Approach for Cooperative MIMO Multi-hop Wireless Sensor Networks
Authors: Jain-Shing Liu
Abstract:
In this work, we study the problem of determining the minimum scheduling length that can satisfy end-to-end (ETE) traffic demand in scheduling-based multihop WSNs with cooperative multiple-input multiple-output (MIMO) transmission scheme. Specifically, we present a cross-layer formulation for the joint routing, scheduling and stream control problem by incorporating various power and rate adaptation schemes, and taking into account an antenna beam pattern model and the signal-to-interference-and-noise (SINR) constraint at the receiver. In the context, we also propose column generation (CG) solutions to get rid of the complexity requiring the enumeration of all possible sets of scheduling links.Keywords: Wireless Sensor Networks, Cross-Layer Design, CooperativeMIMO System, Column Generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165179 Silicon-based Low-Power Reconfigurable Optical Add-Drop Multiplexer (ROADM)
Authors: Junfeng Song, Xianshu Luo, Qing Fang, Lianxi Jia, Xiaoguang Tu, Tsung-Yang Liow, Mingbin Yu, Guo-Qiang Lo
Abstract:
We demonstrate a 1×4 coarse wavelength division-multiplexing (CWDM) planar concave grating multiplexer/demultiplexer and its application in re-configurable optical add/drop multiplexer (ROADM) system in silicon-on-insulator substrate. The wavelengths of the demonstrated concave grating multiplexer align well with the ITU-T standard. We demonstrate a prototype of ROADM comprising two such concave gratings and four wide-band thermo-optical MZI switches. Undercut technology which removes the underneath silicon substrate is adopted in optical switches in order to minimize the operation power. For all the thermal heaters, the operation voltage is smaller than 1.5 V, and the switch power is ~2.4 mW. High throughput pseudorandom binary sequence (PRBS) data transmission with up to 100 Gb/s is demonstrated, showing the high-performance ROADM functionality.Keywords: ROADM, Optical switch, low power consumption, Integrated devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222878 Planar Tracking Control of an Underactuated Autonomous Underwater Vehicle
Authors: Santhakumar M., Asokan T.
Abstract:
This paper addresses the problem of trajectory tracking control of an underactuated autonomous underwater vehicle (AUV) in the horizontal plane. The underwater vehicle under consideration is not actuated in the sway direction, and the system matrices are not assumed to be diagonal and linear, as often found in the literature. In addition, the effect of constant bias of environmental disturbances is considered. Using backstepping techniques and the tracking error dynamics, the system states are stabilized by forcing the tracking errors to an arbitrarily small neighborhood of zero. The effectiveness of the proposed control method is demonstrated through numerical simulations. Simulations are carried out for an experimental vehicle for smooth, inertial, two dimensional (2D) reference trajectories such as constant velocity trajectory (a circle maneuver – constant yaw rate), and time varying velocity trajectory (a sinusoidal path – sinusoidal yaw rate).Keywords: autonomous underwater vehicle, system matrices, tracking control, time – varying feed back, underactuated control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 214777 Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force
Authors: Gholamreza Ghodrati Amiri, Mojtaba Jafarian Abyaneh, Ali Zare Hosseinzadeh
Abstract:
This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises.Keywords: Frame, grey wolf optimization algorithm, modal residual force, structural damage detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149676 Development of a Three-Dimensional-Flywheel Robotic System
Authors: Chung-Chun Hsiao, Yu-Kai, Ting, Kai-Yuan Liu, Pang-Wei Yen, Jia-Ying Tu
Abstract:
In this paper, a new design of spherical robotic system based on the concepts of gimbal structure and gyro dynamics is presented. Robots equipped with multiple wheels and complex steering mechanics may increase the weight and degrade the energy transmission efficiency. In addition, the wheeled and legged robots are relatively vulnerable to lateral impact and lack of lateral mobility. Therefore, the proposed robotic design uses a spherical shell as the main body for ground locomotion, instead of using wheel devices. Three spherical shells are structured in a similar way to a gimbal device and rotate like a gyro system. The design and mechanism of the proposed robotic system is introduced. In addition, preliminary results of the dynamic model based on the principles of planar rigid body kinematics and Lagrangian equation are included. Simulation results and rig construction are presented to verify the concepts.
Keywords: Gyro, gimbal, Lagrange equation, spherical robots.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206175 Tri-Axis Receiver for Wireless Micro-Power Transmission
Authors: Nan-Chyuan Tsai, Sheng-Liang Hsu
Abstract:
An innovative tri-axes micro-power receiver is proposed. The tri-axes micro-power receiver consists of two sets 3-D micro-solenoids and one set planar micro-coils in which iron core is embedded. The three sets of micro-coils are designed to be orthogonal to each other. Therefore, no matter which direction the flux is present along, the magnetic energy can be harvested and transformed into electric power. Not only dead space of receiving power is mostly reduced, but also transformation efficiency of electromagnetic energy to electric power can be efficiently raised. By employing commercial software, Ansoft Maxwell, the preliminary simulation results verify that the proposed micro-power receiver can efficiently pick up the energy transmitted by magnetic power source. As to the fabrication process, the isotropic etching technique is employed to micro-machine the inverse-trapezoid fillister so that the copper wire can be successfully electroplated. The adhesion between micro-coils and fillister is much enhanced.Keywords: Wireless Power Transmission, Magnetic Flux, Tri-axes Micro-power Receiver
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 135074 All-Silicon Raman Laser with Quasi-Phase-Matched Structures and Resonators
Authors: Isao Tomita
Abstract:
The principle of all-silicon Raman lasers for an output wavelength of 1.3 μm is presented, which employs quasi-phase-matched structures and resonators to enhance the output power. 1.3-μm laser beams for GE-PONs in FTTH systems generated from a silicon device are very important because such a silicon device can be monolithically integrated with the silicon planar lightwave circuits (Si PLCs) used in the GE-PONs. This reduces the device fabrication processes and time and also optical losses at the junctions between optical waveguides of the Si PLCs and Si laser devices when compared with 1.3-μm III-V semiconductor lasers set on the Si PLCs employed at present. We show that the quasi-phase-matched Si Raman laser with resonators can produce about 174 times larger laser power at 1.3 μm (at maximum) than that without resonators for a Si waveguide of Raman gain 20 cm/GW and optical loss 1.2 dB/cm, pumped at power 10 mW, where the length of the waveguide is 3 mm and its cross-section is (1.5 μm)2.Keywords: All-silicon raman laser, FTTH, GE-PON, quasi-phase-matched structure, resonator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 89773 Preliminary Evaluation of Passive UHF-Band RFID for Identifying Floating Objects on the Sea
Authors: Yasuhiro Sato, Kodai Noma, Kenta Sawada, Kazumasa Adachi, Yoshinori Matruura, Saori Iwanaga
Abstract:
RFID system is used to identify objects such as passenger identification in public transportation, instead of linear or 2-dimensional barcodes. Key advantages of RFID system are to identify objects without physical contact, and to write arbitrary information into RFID tag. These advantages may help to improve maritime safety and efficiency of activity on the sea. However, utilization of RFID system for maritime scenes has not been considered. In this paper, we evaluate the availability of a generic RFID system operating on the sea. We measure RSSI between RFID tag floating on the sea and RFID antenna, and check whether a RFID reader can access a tag or not, while the distance between a floating buoy and the ship, and the angle are changed. Finally, we discuss the feasibility and the applicability of RFID system on the sea through the results of our preliminary experiment.
Keywords: RFID, Experimental Evaluation, RSSI, Maritime use.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203972 MRI Compatible Fresnel Zone Plates made of Polylactic Acid
Authors: Daniel Tarrazó-Serrano, Sergio Pérez-López, Sergio Castiñeira-Ibáñez, Pilar Candelas, Constanza Rubio
Abstract:
Zone Plates (ZPs) are used in many areas of physics where planar fabrication is advantageous in comparison with conventional curved lenses. There are several types of ZPs, such as the well-known Fresnel ZPs or the more recent Fractal ZPs and Fibonacci ZPs. The material selection of the lens plays a very important role in the beam modulation control. This work presents a comparison between two Fresnel ZP made from different materials in the ultrasound domain: Polylactic Acid (PLA) and brass. PLA is the most common material used in commercial 3D-printers due to its high design flexibility and low cost. Numerical simulations based on Finite Element Method (FEM) and experimental results are shown, and they prove that the focusing capabilities of brass ZPs and PLA ZPs are similar. For this reason, PLA is proposed as a Magnetic Resonance Imaging (MRI) compatible material with great potential for therapeutic ultrasound focusing applications.Keywords: Fresnel zone plate, magnetic resonance imaging polylactic acid, ultrasound focusing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81971 Fully Printed Strain Gauges: A Comparison of Aerosoljet-Printing and Micropipette-Dispensing
Authors: Benjamin Panreck, Manfred Hild
Abstract:
Strain sensors based on a change in resistance are well established for the measurement of forces, stresses, or material fatigue. Within the scope of this paper, fully additive manufactured strain sensors were produced using an ink of silver nanoparticles. Their behavior was evaluated by periodic tensile tests. Printed strain sensors exhibit two advantages: Their measuring grid is adaptable to the use case and they do not need a carrier-foil, as the measuring structure can be printed directly onto a thin sprayed varnish layer on the aluminum specimen. In order to compare quality characteristics, the sensors have been manufactured using two different technologies, namely aerosoljet-printing and micropipette-dispensing. Both processes produce structures which exhibit continuous features (in contrast to what can be achieved with droplets during inkjet printing). Briefly summarized the results show that aerosoljet-printing is the preferable technology for specimen with non-planar surfaces whereas both technologies are suitable for flat specimen.Keywords: Aerosoljet-printing, micropipette-dispensing, printed electronics, printed sensors, strain gauge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 101070 Peakwise Smoothing of Data Models using Wavelets
Authors: D Sudheer Reddy, N Gopal Reddy, P V Radhadevi, J Saibaba, Geeta Varadan
Abstract:
Smoothing or filtering of data is first preprocessing step for noise suppression in many applications involving data analysis. Moving average is the most popular method of smoothing the data, generalization of this led to the development of Savitzky-Golay filter. Many window smoothing methods were developed by convolving the data with different window functions for different applications; most widely used window functions are Gaussian or Kaiser. Function approximation of the data by polynomial regression or Fourier expansion or wavelet expansion also gives a smoothed data. Wavelets also smooth the data to great extent by thresholding the wavelet coefficients. Almost all smoothing methods destroys the peaks and flatten them when the support of the window is increased. In certain applications it is desirable to retain peaks while smoothing the data as much as possible. In this paper we present a methodology called as peak-wise smoothing that will smooth the data to any desired level without losing the major peak features.Keywords: smoothing, moving average, peakwise smoothing, spatialdensity models, planar shape models, wavelets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175269 Automatically Driven Vector for Guidewire Segmentation in 2D and Biplane Fluoroscopy
Authors: Simon Lessard, Pascal Bigras, Caroline Lau, Daniel Roy, Gilles Soulez, Jacques A. de Guise
Abstract:
The segmentation of endovascular tools in fluoroscopy images can be accurately performed automatically or by minimum user intervention, using known modern techniques. It has been proven in literature, but no clinical implementation exists so far because the computational time requirements of such technology have not yet been met. A classical segmentation scheme is composed of edge enhancement filtering, line detection, and segmentation. A new method is presented that consists of a vector that propagates in the image to track an edge as it advances. The filtering is performed progressively in the projected path of the vector, whose orientation allows for oriented edge detection, and a minimal image area is globally filtered. Such an algorithm is rapidly computed and can be implemented in real-time applications. It was tested on medical fluoroscopy images from an endovascular cerebral intervention. Ex- periments showed that the 2D tracking was limited to guidewires without intersection crosspoints, while the 3D implementation was able to cope with such planar difficulties.
Keywords: Edge detection, Line Enhancement, Segmentation, Fluoroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172868 Performance Analysis of Adaptive OFDM Pre and Post-FTT Beamforming System
Authors: S. Elnobi, Iman El-Zahaby, Amr M. Mahros
Abstract:
In mobile communication systems, performance and capacity are affected by multi-path fading, delay spread and Co-Channel Interference (CCI). For this reason Orthogonal Frequency Division Multiplexing (OFDM) and adaptive antenna array are used is required. The goal of the OFDM is to improve the system performance against Inter-Symbol Interference (ISI). An array of adaptive antennas has been employed to suppress CCI by spatial technique. To suppress CCI in OFDM systems two main schemes the pre-FFT and the post-FFT have been proposed. In this paper, through a system level simulation, the behavior of the pre-FFT and post-FFT beamformers for OFDM system has been investigated based on two algorithms namely, Least Mean Squares (LMS) and Recursive Least Squares (RLS). The performance of the system is also discussed in multipath fading channel system specified by 3GPP Long Term Evolution (LTE).
Keywords: OFDM, Beamforming, Adaptive Antennas Array.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 244167 Electrical Performance of a Solid Oxide Fuel Cell Unit with Non-Uniform Inlet Flow and High Fuel Utilization
Authors: Ping Yuan, Mu-Sheng Chiang, Syu-Fang Liu, Shih-Bin Wang, Ming-Jun Kuo
Abstract:
This study investigates the electrical performance of a planar solid oxide fuel cell unit with cross-flow configuration when the fuel utilization gets higher and the fuel inlet flow are non-uniform. A software package in this study solves two-dimensional, simultaneous, partial differential equations of mass, energy, and electro-chemistry, without considering stack direction variation. The results show that the fuel utilization increases with a decrease in the molar flow rate, and the average current density decreases when the molar flow rate drops. In addition, non-uniform Pattern A will induce more severe happening of non-reaction area in the corner of the fuel exit and the air inlet. This non-reaction area deteriorates the average current density and then deteriorates the electrical performance to –7%.Keywords: Performance, Solid oxide fuel cell, non-uniform, fuelutilization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306