Search results for: Hjorth Time Domain (HTD).
6908 Detection of Breast Cancer in the JPEG2000 Domain
Authors: Fayez M. Idris, Nehal I. AlZubaidi
Abstract:
Breast cancer detection techniques have been reported to aid radiologists in analyzing mammograms. We note that most techniques are performed on uncompressed digital mammograms. Mammogram images are huge in size necessitating the use of compression to reduce storage/transmission requirements. In this paper, we present an algorithm for the detection of microcalcifications in the JPEG2000 domain. The algorithm is based on the statistical properties of the wavelet transform that the JPEG2000 coder employs. Simulation results were carried out at different compression ratios. The sensitivity of this algorithm ranges from 92% with a false positive rate of 4.7 down to 66% with a false positive rate of 2.1 using lossless compression and lossy compression at a compression ratio of 100:1, respectively.Keywords: Breast cancer, JPEG2000, mammography, microcalcifications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15776907 Ontology-based Query System for UNITEN Postgraduate Students
Authors: Zaihisma C. Cob, Alicia Y.C. Tang, Sharifah J. Syed Aziz
Abstract:
This paper proposes a new model to support user queries on postgraduate research information at Universiti Tenaga Nasional. The ontology to be developed will contribute towards shareable and reusable domain knowledge that makes knowledge assets intelligently accessible to both people and software. This work adapts a methodology for ontology development based on the framework proposed by Uschold and King. The concepts and relations in this domain are represented in a class diagram using the Protégé software. The ontology will be used to support a menudriven query system for assisting students in searching for information related to postgraduate research at the university.Keywords: Ontology, Protégé, postgraduate program, query system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16816906 X-ray Crystallographic Analysis of MinC N-Terminal Domain from Escherichia coli
Authors: Jun Yop An, Kyoung Ryoung Park, Jung-Gyu Lee, Hyung-Seop Youn, Jung-Yeon Kang, Gil Bu Kang, Soo Hyun Eom
Abstract:
MinC plays an important role in bacterial cell division system by inhibiting FtsZ assembly. However, the molecular mechanism of the action is poorly understood. E. coli MinC Nterminus domain was purified and crystallized using 1.4 M sodium citrate pH 6.5 as a precipitant. X-ray diffraction data was collected and processed to 2.3 Å from a native crystal. The crystal belonged to space group P212121, with the unit cell parameters a = 52.7, b = 54.0, c = 64.7 Å. Assuming the presence of two molecules in the asymmetric unit, the Matthews coefficient value is 1.94 Å3 Da-1, which corresponds to a solvent content of 36.5%. The overall structure of MinCN is observed as a dimer form through anti-parallel ß-strand interaction.Keywords: MinC, Cell division, Crystallization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14206905 Effect of Heat Treatment on the Portevin-Le Chatelier Effect of Al-2.5%Mg Alloy
Authors: A. Chatterjee, A. Sarkar, N. Gayathri, P. Mukherjee, P. Barat
Abstract:
An experimental study is presented on the effect of microstructural change on the Portevin-Le Chatelier effect behaviour of Al-2.5%Mg alloy. Tensile tests are performed on the as received and heat treated (at 400 ºC for 16 hours) samples for a wide range of strain rates. The serrations observed in the stress-time curve are investigated from statistical analysis point of view. Microstructures of the samples are characterized by optical metallography and X-ray diffraction. It is found that the excess vacancy generated due to heat treatment leads to decrease in the strain rate sensitivity and the increase in the number of stress drop occurrences per unit time during the PLC effect. The microstructural parameters like domain size, dislocation density have no appreciable effect on the PLC effect as far as the statistical behavior of the serrations is considered.Keywords: Dynamic strain ageing, Heat treatment, Portevin-LeChatelier effect
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22336904 Is Management Science doing Enough to Improve Healthcare?
Authors: Lalit Garg, Sally McClean, Maria Barton
Abstract:
Healthcare issues continue to pose huge problems and incur massive costs. As a result there are many challenging problems still unresolved. In this paper, we will carry out an extensive scientific survey of different areas of management and planning in an attempt to identify where there has already been a substantial contribution from management science methods to healthcare problems and where there is a clear potential for more work to be done. The focus will be on the read-across to the healthcare domain from such approaches applied generally to management and planning and how the methods can be used to improvement patient care. We conclude that, since the healthcare domain significantly differs from traditional areas of management and planning, in some cases there is a need to modify the approaches so as to incorporate the complexities of healthcare, and fully exploit the potential for improvement.
Keywords: Management science, management and planning, transforming services, healthcare.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14756903 A Hybrid Mesh Free Local RBF- Cartesian FD Scheme for Incompressible Flow around Solid Bodies
Authors: A. Javed, K. Djidjeli, J. T. Xing, S. J. Cox
Abstract:
A method for simulating flow around the solid bodies has been presented using hybrid meshfree and mesh-based schemes. The presented scheme optimizes the computational efficiency by combining the advantages of both meshfree and mesh-based methods. In this approach, a cloud of meshfree nodes has been used in the domain around the solid body. These meshfree nodes have the ability to efficiently adapt to complex geometrical shapes. In the rest of the domain, conventional Cartesian grid has been used beyond the meshfree cloud. Complex geometrical shapes can therefore be dealt efficiently by using meshfree nodal cloud and computational efficiency is maintained through the use of conventional mesh-based scheme on Cartesian grid in the larger part of the domain. Spatial discretization of meshfree nodes has been achieved through local radial basis functions in finite difference mode (RBF-FD). Conventional finite difference scheme has been used in the Cartesian ‘meshed’ domain. Accuracy tests of the hybrid scheme have been conducted to establish the order of accuracy. Numerical tests have been performed by simulating two dimensional steady and unsteady incompressible flows around cylindrical object. Steady flow cases have been run at Reynolds numbers of 10, 20 and 40 and unsteady flow problems have been studied at Reynolds numbers of 100 and 200. Flow Parameters including lift, drag, vortex shedding, and vorticity contours are calculated. Numerical results have been found to be in good agreement with computational and experimental results available in the literature.
Keywords: CFD, Meshfree particle methods, Hybrid grid, Incompressible Navier Strokes equations, RBF-FD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29056902 Extraction of Significant Phrases from Text
Authors: Yuan J. Lui
Abstract:
Prospective readers can quickly determine whether a document is relevant to their information need if the significant phrases (or keyphrases) in this document are provided. Although keyphrases are useful, not many documents have keyphrases assigned to them, and manually assigning keyphrases to existing documents is costly. Therefore, there is a need for automatic keyphrase extraction. This paper introduces a new domain independent keyphrase extraction algorithm. The algorithm approaches the problem of keyphrase extraction as a classification task, and uses a combination of statistical and computational linguistics techniques, a new set of attributes, and a new machine learning method to distinguish keyphrases from non-keyphrases. The experiments indicate that this algorithm performs better than other keyphrase extraction tools and that it significantly outperforms Microsoft Word 2000-s AutoSummarize feature. The domain independence of this algorithm has also been confirmed in our experiments.
Keywords: classification, keyphrase extraction, machine learning, summarization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20516901 DHT-LMS Algorithm for Sensorineural Loss Patients
Authors: Sunitha S. L., V. Udayashankara
Abstract:
Hearing impairment is the number one chronic disability affecting many people in the world. Background noise is particularly damaging to speech intelligibility for people with hearing loss especially for sensorineural loss patients. Several investigations on speech intelligibility have demonstrated sensorineural loss patients need 5-15 dB higher SNR than the normal hearing subjects. This paper describes Discrete Hartley Transform Power Normalized Least Mean Square algorithm (DHT-LMS) to improve the SNR and to reduce the convergence rate of the Least Means Square (LMS) for sensorineural loss patients. The DHT transforms n real numbers to n real numbers, and has the convenient property of being its own inverse. It can be effectively used for noise cancellation with less convergence time. The simulated result shows the superior characteristics by improving the SNR at least 9 dB for input SNR with zero dB and faster convergence rate (eigenvalue ratio 12) compare to time domain method and DFT-LMS.Keywords: Hearing Impairment, DHT-LMS, Convergence rate, SNR improvement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17256900 Integrating Fast Karnough Map and Modular Neural Networks for Simplification and Realization of Complex Boolean Functions
Authors: Hazem M. El-Bakry
Abstract:
In this paper a new fast simplification method is presented. Such method realizes Karnough map with large number of variables. In order to accelerate the operation of the proposed method, a new approach for fast detection of group of ones is presented. Such approach implemented in the frequency domain. The search operation relies on performing cross correlation in the frequency domain rather than time one. It is proved mathematically and practically that the number of computation steps required for the presented method is less than that needed by conventional cross correlation. Simulation results using MATLAB confirm the theoretical computations. Furthermore, a powerful solution for realization of complex functions is given. The simplified functions are implemented by using a new desigen for neural networks. Neural networks are used because they are fault tolerance and as a result they can recognize signals even with noise or distortion. This is very useful for logic functions used in data and computer communications. Moreover, the implemented functions are realized with minimum amount of components. This is done by using modular neural nets (MNNs) that divide the input space into several homogenous regions. Such approach is applied to implement XOR function, 16 logic functions on one bit level, and 2-bit digital multiplier. Compared to previous non- modular designs, a clear reduction in the order of computations and hardware requirements is achieved.Keywords: Boolean Functions, Simplification, KarnoughMap, Implementation of Logic Functions, Modular NeuralNetworks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18146899 Integrating Fast Karnough Map and Modular Neural Networks for Simplification and Realization of Complex Boolean Functions
Authors: Hazem M. El-Bakry
Abstract:
In this paper a new fast simplification method is presented. Such method realizes Karnough map with large number of variables. In order to accelerate the operation of the proposed method, a new approach for fast detection of group of ones is presented. Such approach implemented in the frequency domain. The search operation relies on performing cross correlation in the frequency domain rather than time one. It is proved mathematically and practically that the number of computation steps required for the presented method is less than that needed by conventional cross correlation. Simulation results using MATLAB confirm the theoretical computations. Furthermore, a powerful solution for realization of complex functions is given. The simplified functions are implemented by using a new desigen for neural networks. Neural networks are used because they are fault tolerance and as a result they can recognize signals even with noise or distortion. This is very useful for logic functions used in data and computer communications. Moreover, the implemented functions are realized with minimum amount of components. This is done by using modular neural nets (MNNs) that divide the input space into several homogenous regions. Such approach is applied to implement XOR function, 16 logic functions on one bit level, and 2-bit digital multiplier. Compared to previous non- modular designs, a clear reduction in the order of computations and hardware requirements is achieved.
Keywords: Boolean functions, simplification, Karnough map, implementation of logic functions, modular neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20706898 Simulation of Lightning Surge Propagation in Transmission Lines Using the FDTD Method
Authors: Kokiat Aodsup, Thanatchai Kulworawanichpong
Abstract:
This paper describes a finite-difference time-domainFDTD) method to analyze lightning surge propagation in electric transmission lines. Numerical computation of solving the Telegraphist-s equations is determined and investigated its effectiveness. A source of lightning surge wave on power transmission lines is modeled by using Heidler-s surge model. The proposed method was tested against medium-voltage power transmission lines in comparison with the solution obtained by using lattice diagram. As a result, the calculation showed that the method is one of accurate methods to analyze transient lightning wave in power transmission lines.Keywords: Traveling wave, Lightning surge, Bewley lattice diagram, Telegraphist's equations, Finite-difference time-domain (FDTD) method,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 53306897 Integral Domains and Their Algebras: Topological Aspects
Authors: Shai Sarussi
Abstract:
Let S be an integral domain with field of fractions F and let A be an F-algebra. An S-subalgebra R of A is called S-nice if R∩F = S and the localization of R with respect to S \{0} is A. Denoting by W the set of all S-nice subalgebras of A, and defining a notion of open sets on W, one can view W as a T0-Alexandroff space. Thus, the algebraic structure of W can be viewed from the point of view of topology. It is shown that every nonempty open subset of W has a maximal element in it, which is also a maximal element of W. Moreover, a supremum of an irreducible subset of W always exists. As a notable connection with valuation theory, one considers the case in which S is a valuation domain and A is an algebraic field extension of F; if S is indecomposed in A, then W is an irreducible topological space, and W contains a greatest element.Keywords: Algebras over integral domains, Alexandroff topology, valuation domains, integral domains.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5076896 Random Access in IoT Using Naïve Bayes Classification
Authors: Alhusein Almahjoub, Dongyu Qiu
Abstract:
This paper deals with the random access procedure in next-generation networks and presents the solution to reduce total service time (TST) which is one of the most important performance metrics in current and future internet of things (IoT) based networks. The proposed solution focuses on the calculation of optimal transmission probability which maximizes the success probability and reduces TST. It uses the information of several idle preambles in every time slot, and based on it, it estimates the number of backlogged IoT devices using Naïve Bayes estimation which is a type of supervised learning in the machine learning domain. The estimation of backlogged devices is necessary since optimal transmission probability depends on it and the eNodeB does not have information about it. The simulations are carried out in MATLAB which verify that the proposed solution gives excellent performance.
Keywords: Random access, LTE/LTE-A, 5G, machine learning, Naïve Bayes estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4486895 PSS with Multiple FACTS Controllers Coordinated Design and Real-Time Implementation Using Advanced Adaptive PSO
Authors: Rajendraprasad Narne, P. C. Panda
Abstract:
In this article, coordinated tuning of power system stabilizer (PSS) with static var compensator (SVC) and thyristor controlled series capacitor (TCSC) in multi-machine power system is proposed. The design of proposed coordinated damping controller is formulated as an optimization problem and the controller gains are optimized instantaneously using advanced adaptive particle swarm optimization (AAPSO). The objective function is framed with the inter-area speed deviations of the generators and it is minimized using AAPSO to improve the dynamic stability of power system under severe disturbance. The proposed coordinated controller performance is evaluated under a wide range of system operating conditions with three-phase fault disturbance. Using time domain simulations the damping characteristics of proposed controller is compared with individually tuned PSS, SVC and TCSC controllers. Finally, the real-time simulations are carried out in Opal-RT hardware simulator to synchronize the proposed controller performance in the real world.
Keywords: Advanced adaptive particle swarm optimization, Coordinated design, Power system stabilizer, Real-time implementation, static var compensator, Thyristor controlled series capacitor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25916894 Partial Derivatives and Optimization Problem on Time Scales
Authors: Francisco Miranda
Abstract:
The optimization problem using time scales is studied. Time scale is a model of time. The language of time scales seems to be an ideal tool to unify the continuous-time and the discrete-time theories. In this work we present necessary conditions for a solution of an optimization problem on time scales. To obtain that result we use properties and results of the partial diamond-alpha derivatives for continuous-multivariable functions. These results are also presented here.Keywords: Lagrange multipliers, mathematical programming, optimization problem, time scales.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17256893 Analytical Cutting Forces Model of Helical Milling Operations
Authors: Changyi Liu, Gui Wang, Matthew Dargusch
Abstract:
Helical milling operations are used to generate or enlarge boreholes by means of a milling tool. The bore diameter can be adjusted through the diameter of the helical path. The kinematics of helical milling on a three axis machine tool is analysed firstly. The relationships between processing parameters, cutting tool geometry characters with machined hole feature are formulated. The feed motion of the cutting tool has been decomposed to plane circular feed and axial linear motion. In this paper, the time varying cutting forces acted on the side cutting edges and end cutting edges of the flat end cylinder miller is analysed using a discrete method separately. These two components then are combined to produce the cutting force model considering the complicated interaction between the cutters and workpiece. The time varying cutting force model describes the instantaneous cutting force during processing. This model could be used to predict cutting force, calculate statics deflection of cutter and workpiece, and also could be the foundation of dynamics model and predicting chatter limitation of the helical milling operations.Keywords: Helical milling, Hole machining, Cutting force, Analytical model, Time domain
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31486892 An Investigation on Electric Field Distribution around 380 kV Transmission Line for Various Pylon Models
Authors: C. F. Kumru, C. Kocatepe, O. Arikan
Abstract:
In this study, electric field distribution analyses for three pylon models are carried out by a Finite Element Method (FEM) based software. Analyses are performed in both stationary and time domains to observe instantaneous values along with the effective ones. Considering the results of the study, different line geometries is considerably affecting the magnitude and distribution of electric field although the line voltages are the same. Furthermore, it is observed that maximum values of instantaneous electric field obtained in time domain analysis are quite higher than the effective ones in stationary mode. In consequence, electric field distribution analyses should be individually made for each different line model and the limit exposure values or distances to residential buildings should be defined according to the results obtained.Keywords: Electric field, energy transmission line, finite element method, pylon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27156891 A Methodology for Creating a Conceptual Model Under Uncertainty
Authors: Bogdan Walek, Jiri Bartos, Cyril Klimes
Abstract:
This article deals with the conceptual modeling under uncertainty. First, the division of information systems with their definition will be described, focusing on those where the construction of a conceptual model is suitable for the design of future information system database. Furthermore, the disadvantages of the traditional approach in creating a conceptual model and database design will be analyzed. A comprehensive methodology for the creation of a conceptual model based on analysis of client requirements and the selection of a suitable domain model is proposed here. This article presents the expert system used for the construction of a conceptual model and is a suitable tool for database designers to create a conceptual model.
Keywords: Conceptual model, conceptual modeling, database, methodology, uncertainty, information system, entity, attribute, relationship, conceptual domain model, fuzzy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15846890 Performance Comparison between Sliding Mode Control (SMC) and PD-PID Controllers for a Nonlinear Inverted Pendulum System
Authors: A. N. K. Nasir, R. M. T. Raja Ismail, M. A. Ahmad
Abstract:
The objective of this paper is to compare the time specification performance between conventional controller PID and modern controller SMC for an inverted pendulum system. The goal is to determine which control strategy delivers better performance with respect to pendulum-s angle and cart-s position. The inverted pendulum represents a challenging control problem, which continually moves toward an uncontrolled state. Two controllers are presented such as Sliding Mode Control (SMC) and Proportional- Integral-Derivatives (PID) controllers for controlling the highly nonlinear system of inverted pendulum model. Simulation study has been done in Matlab Mfile and simulink environment shows that both controllers are capable to control multi output inverted pendulum system successfully. The result shows that Sliding Mode Control (SMC) produced better response compared to PID control strategies and the responses are presented in time domain with the details analysis.Keywords: SMC, PID, Inverted Pendulum System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47986889 Night-Time Traffic Light Detection Based On SVM with Geometric Moment Features
Authors: Hyun-Koo Kim, Young-Nam Shin, Sa-gong Kuk, Ju H. Park, Ho-Youl Jung
Abstract:
This paper presents an effective traffic lights detection method at the night-time. First, candidate blobs of traffic lights are extracted from RGB color image. Input image is represented on the dominant color domain by using color transform proposed by Ruta, then red and green color dominant regions are selected as candidates. After candidate blob selection, we carry out shape filter for noise reduction using information of blobs such as length, area, area of boundary box, etc. A multi-class classifier based on SVM (Support Vector Machine) applies into the candidates. Three kinds of features are used. We use basic features such as blob width, height, center coordinate, area, area of blob. Bright based stochastic features are also used. In particular, geometric based moment-s values between candidate region and adjacent region are proposed and used to improve the detection performance. The proposed system is implemented on Intel Core CPU with 2.80 GHz and 4 GB RAM and tested with the urban and rural road videos. Through the test, we show that the proposed method using PF, BMF, and GMF reaches up to 93 % of detection rate with computation time of in average 15 ms/frame.Keywords: Night-time traffic light detection, multi-class classification, driving assistance system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38856888 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus
Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo
Abstract:
The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.
Keywords: Anomaly detection, digital twin, Generalised Additive Model, Power Consumption Model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5016887 Despeckling of Synthetic Aperture Radar Images Using Inner Product Spaces in Undecimated Wavelet Domain
Authors: Syed Musharaf Ali, Muhammad Younus Javed, Naveed Sarfraz Khattak, Athar Mohsin, UmarFarooq
Abstract:
This paper introduces the effective speckle reduction of synthetic aperture radar (SAR) images using inner product spaces in undecimated wavelet domain. There are two major areas in projection onto span algorithm where improvement can be made. First is the use of undecimated wavelet transformation instead of discrete wavelet transformation. And second area is the use of smoothing filter namely directional smoothing filter which is an additional step. Proposed method does not need any noise estimation and thresholding technique. More over proposed method gives good results on both single polarimetric and fully polarimetric SAR images.Keywords: Directional Smoothing, Inner product, Length ofvector, Undecimated wavelet transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16116886 Assisted Prediction of Hypertension Based on Heart Rate Variability and Improved Residual Networks
Authors: Yong Zhao, Jian He, Cheng Zhang
Abstract:
Cardiovascular disease resulting from hypertension poses a significant threat to human health, and early detection of hypertension can potentially save numerous lives. Traditional methods for detecting hypertension require specialized equipment and are often incapable of capturing continuous blood pressure fluctuations. To address this issue, this study starts by analyzing the principle of heart rate variability (HRV) and introduces the utilization of sliding window and power spectral density (PSD) techniques to analyze both temporal and frequency domain features of HRV. Subsequently, a hypertension prediction network that relies on HRV is proposed, combining Resnet, attention mechanisms, and a multi-layer perceptron. The network leverages a modified ResNet18 to extract frequency domain features, while employing an attention mechanism to integrate temporal domain features, thus enabling auxiliary hypertension prediction through the multi-layer perceptron. The proposed network is trained and tested using the publicly available SHAREE dataset from PhysioNet. The results demonstrate that the network achieves a high prediction accuracy of 92.06% for hypertension, surpassing traditional models such as K Near Neighbor (KNN), Bayes, Logistic regression, and traditional Convolutional Neural Network (CNN).
Keywords: Feature extraction, heart rate variability, hypertension, residual networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956885 A Study on Multi-Agent Behavior in a Soccer Game Domain
Authors: S. R. Mohd Shukri, M. K. Mohd Shaukhi
Abstract:
There have been many games developing simulation of soccer games. Many of these games have been designed with highly realistic features to attract more users. Many have also incorporated better artificial intelligent (AI) similar to that in a real soccer game. One of the challenging issues in a soccer game is the cooperation, coordination and negotiation among distributed agents in a multi-agent system. This paper focuses on the incorporation of multi-agent technique in a soccer game domain. The better the cooperation of a multi-agent team, the more intelligent the game will be. Thus, past studies were done on the robotic soccer game because of the better multi-agent system implementation. From this study, a better approach and technique of multi-agent behavior could be select to improve the author-s 2D online soccer game.Keywords: Multi-Agent, Robotic Intelligent, Role Assignment, Formation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19406884 A Comparative Study of Regional Climate Models and Global Coupled Models over Uttarakhand
Authors: Sudip Kumar Kundu, Charu Singh
Abstract:
As a great physiographic divide, the Himalayas affecting a large system of water and air circulation which helps to determine the climatic condition in the Indian subcontinent to the south and mid-Asian highlands to the north. It creates obstacles by defending chill continental air from north side into India in winter and also defends rain-bearing southwesterly monsoon to give up maximum precipitation in that area in monsoon season. Nowadays extreme weather conditions such as heavy precipitation, cloudburst, flash flood, landslide and extreme avalanches are the regular happening incidents in the region of North Western Himalayan (NWH). The present study has been planned to investigate the suitable model(s) to find out the rainfall pattern over that region. For this investigation, selected models from Coordinated Regional Climate Downscaling Experiment (CORDEX) and Coupled Model Intercomparison Project Phase 5 (CMIP5) has been utilized in a consistent framework for the period of 1976 to 2000 (historical). The ability of these driving models from CORDEX domain and CMIP5 has been examined according to their capability of the spatial distribution as well as time series plot of rainfall over NWH in the rainy season and compared with the ground-based Indian Meteorological Department (IMD) gridded rainfall data set. It is noted from the analysis that the models like MIROC5 and MPI-ESM-LR from the both CORDEX and CMIP5 provide the best spatial distribution of rainfall over NWH region. But the driving models from CORDEX underestimates the daily rainfall amount as compared to CMIP5 driving models as it is unable to capture daily rainfall data properly when it has been plotted for time series (TS) individually for the state of Uttarakhand (UK) and Himachal Pradesh (HP). So finally it can be said that the driving models from CMIP5 are better than CORDEX domain models to investigate the rainfall pattern over NWH region.
Keywords: Global warming, rainfall, CMIP5, CORDEX, North Western Himalayan region.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10936883 Solitons and Universes with Acceleration Driven by Bulk Particles
Authors: A. C. Amaro de Faria Jr, A. M. Canone
Abstract:
Considering a scenario where our universe is taken as a 3d domain wall embedded in a 5d dimensional Minkowski space-time, we explore the existence of a richer class of solitonic solutions and their consequences for accelerating universes driven by collisions of bulk particle excitations with the walls. In particular it is shown that some of these solutions should play a fundamental role at the beginning of the expansion process. We present some of these solutions in cosmological scenarios that can be applied to models that describe the inflationary period of the Universe.Keywords: Solitons, topological defects, Branes, kinks, accelerating universes in Brane scenarios.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7916882 Lexicon-Based Sentiment Analysis for Stock Movement Prediction
Authors: Zane Turner, Kevin Labille, Susan Gauch
Abstract:
Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We present a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.
Keywords: Lexicon, sentiment analysis, stock movement prediction., computational finance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7796881 Lexicon-Based Sentiment Analysis for Stock Movement Prediction
Authors: Zane Turner, Kevin Labille, Susan Gauch
Abstract:
Sentiment analysis is a broad and expanding field that aims to extract and classify opinions from textual data. Lexicon-based approaches are based on the use of a sentiment lexicon, i.e., a list of words each mapped to a sentiment score, to rate the sentiment of a text chunk. Our work focuses on predicting stock price change using a sentiment lexicon built from financial conference call logs. We introduce a method to generate a sentiment lexicon based upon an existing probabilistic approach. By using a domain-specific lexicon, we outperform traditional techniques and demonstrate that domain-specific sentiment lexicons provide higher accuracy than generic sentiment lexicons when predicting stock price change.
Keywords: Computational finance, sentiment analysis, sentiment lexicon, stock movement prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11376880 Relative Radiometric Correction of Cloudy Multitemporal Satellite Imagery
Authors: Seema Biday, Udhav Bhosle
Abstract:
Repeated observation of a given area over time yields potential for many forms of change detection analysis. These repeated observations are confounded in terms of radiometric consistency due to changes in sensor calibration over time, differences in illumination, observation angles and variation in atmospheric effects. This paper demonstrates applicability of an empirical relative radiometric normalization method to a set of multitemporal cloudy images acquired by Resourcesat1 LISS III sensor. Objective of this study is to detect and remove cloud cover and normalize an image radiometrically. Cloud detection is achieved by using Average Brightness Threshold (ABT) algorithm. The detected cloud is removed and replaced with data from another images of the same area. After cloud removal, the proposed normalization method is applied to reduce the radiometric influence caused by non surface factors. This process identifies landscape elements whose reflectance values are nearly constant over time, i.e. the subset of non-changing pixels are identified using frequency based correlation technique. The quality of radiometric normalization is statistically assessed by R2 value and mean square error (MSE) between each pair of analogous band.Keywords: Correlation, Frequency domain, Multitemporal, Relative Radiometric Correction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19816879 Identification of Training Topics for the Improvement of the Relevant Cognitive Skills of Technical Operators in the Railway Domain
Authors: Giulio Nisoli, Jonas Brüngger, Karin Hostettler, Nicole Stoller, Katrin Fischer
Abstract:
Technical operators in the railway domain are experts responsible for the supervisory control of the railway power grid as well as of the railway tunnels. The technical systems used to master these demanding tasks are constantly increasing in their degree of automation. It becomes therefore difficult for technical operators to maintain the control over the technical systems and the processes of their job. In particular, the operators must have the necessary experience and knowledge in dealing with a malfunction situation or unexpected event. For this reason, it is of growing importance that the skills relevant for the execution of the job are maintained and further developed beyond the basic training they receive, where they are educated in respect of technical knowledge and the work with guidelines. Training methods aimed at improving the cognitive skills needed by technical operators are still missing and must be developed. Goals of the present study were to identify which are the relevant cognitive skills of technical operators in the railway domain and to define which topics should be addressed by the training of these skills. Observational interviews were conducted in order to identify the main tasks and the organization of the work of technical operators as well as the technical systems used for the execution of their job. Based on this analysis, the most demanding tasks of technical operators could be identified and described. The cognitive skills involved in the execution of these tasks are those, which need to be trained. In order to identify and analyze these cognitive skills a cognitive task analysis (CTA) was developed. CTA specifically aims at identifying the cognitive skills that employees implement when performing their own tasks. The identified cognitive skills of technical operators were summarized and grouped in training topics. For every training topic, specific goals were defined. The goals regard the three main categories; knowledge, skills and attitude to be trained in every training topic. Based on the results of this study, it is possible to develop specific training methods to train the relevant cognitive skills of the technical operators.
Keywords: Cognitive skills, cognitive task analysis, technical operators in the railway domain, training topics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691