Search results for: Gradient Temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2803

Search results for: Gradient Temperature

2593 Error-Robust Nature of Genome Profiling Applied for Clustering of Species Demonstrated by Computer Simulation

Authors: Shamim Ahmed Koichi Nishigaki

Abstract:

Genome profiling (GP), a genotype based technology, which exploits random PCR and temperature gradient gel electrophoresis, has been successful in identification/classification of organisms. In this technology, spiddos (Species identification dots) and PaSS (Pattern similarity score) were employed for measuring the closeness (or distance) between genomes. Based on the closeness (PaSS), we can buildup phylogenetic trees of the organisms. We noticed that the topology of the tree is rather robust against the experimental fluctuation conveyed by spiddos. This fact was confirmed quantitatively in this study by computer-simulation, providing the limit of the reliability of this highly powerful methodology. As a result, we could demonstrate the effectiveness of the GP approach for identification/classification of organisms.

Keywords: Fluctuation, Genome profiling (GP), Pattern similarity score (PaSS), Robustness, Spiddos-shift.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
2592 The Response Relation between Climate Change and NDVI over the Qinghai-Tibet plateau

Authors: Shen Weishou, Ji Di, Zhang Hui, Yan Shouguang, Li Haidong, Lin Naifeng

Abstract:

Based on a long-term vegetation index dataset of NDVI and meteorological data from 68 meteorological stations in the Qinghai-Tibet plateau and their relations with major climate factors were analyzed. The results show the following: 1) The linear trends of temperature in the Qinghai-Tibet plateau indicate that the temperature in the plateau generally increased, but it rose faster in the last 20 years. 2) The most significant NDVI increase occurred in the eastern and southern plateau. However, the western and northern plateau demonstrate a decreasing trend. 3) There is a significant positive linear correlation between NDVI and temperature and a negative correlation between NDVI and mean wind speed. However, no significant statistical relationship was found between NDVI and relative humidity, precipitation or sunshine duration.4) The changes in NDVI for the plateau are driven by temperature-precipitation, but for the desert and forest areas, the relation changes to precipitation-temperature-wind velocity and wind velocity-temperature-precipitation.

Keywords: Qinghai-Tibet plateau, NDVI, climate warming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
2591 Mathematical Modeling of a Sub-Wet Bulb Temperature Evaporative Cooling Using Porous Ceramic Materials

Authors: Meryem Kanzari, Rabah Boukhanouf, Hatem G. Ibrahim

Abstract:

Indirect Evaporative Cooling process has the advantage of supplying cool air at constant moisture content. However, such system can only supply air at temperatures above wet bulb temperature. This paper presents a mathematical model for a Sub-wet bulb temperature indirect evaporative cooling arrangement that can overcome this limitation and supply cool air at temperatures approaching dew point and without increasing its moisture content. In addition, the use of porous ceramics as wet media materials offers the advantage of integration into building elements. Results of the computer show the proposed design is capable of cooling air to temperatures lower than the ambient wet bulb temperature and achieving wet bulb effectiveness of about 1.17.

Keywords: Indirect evaporative cooling, porous ceramic, sub-wet bulb temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4507
2590 Study of Temperature Difference and Current Distribution in Parallel-Connected Cells at Low Temperature

Authors: Sara Kamalisiahroudi, Jun Huang, Zhe Li, Jianbo Zhang

Abstract:

Two types of commercial cylindrical lithium ion batteries (Panasonic 3.4 Ah NCR-18650B and Samsung 2.9 Ah INR-18650), were investigated experimentally. The capacities of these samples were individually measured using constant current-constant voltage (CC-CV) method at different ambient temperatures (-10°C, 0°C, 25°C). Their internal resistance was determined by electrochemical impedance spectroscopy (EIS) and pulse discharge methods. The cells with different configurations of parallel connection NCR-NCR, INR-INR and NCR-INR were charged/discharged at the aforementioned ambient temperatures. The results showed that the difference of internal resistance between cells much more evident at low temperatures. Furthermore, the parallel connection of NCR-NCR exhibits the most uniform temperature distribution in cells at -10°C, this feature is quite favorable for the safety of the battery pack.

Keywords: Batteries in parallel connection, internal resistance, low temperature, temperature difference, current distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3215
2589 A Pull-out Fiber/Matrix Interface Characterization of Vegetal Fibers Reinforced Thermoplastic Polymer Composites: The Influence of the Processing Temperature

Authors: Duy Cuong Nguyen, Ali Makke, Guillaume Montay

Abstract:

This work presents an improved single fiber pull-out test for fiber/matrix interface characterization. This test has been used to study the Inter-Facial Shear Strength ‘IFSS’ of hemp fibers reinforced polypropylene (PP). For this aim, the fiber diameter has been carefully measured using a tomography inspired method. The fiber section contour can then be approximated by a circle or a polygon. The results show that the IFSS is overestimated if the circular approximation is used. The Influence of the molding temperature on the IFSS has also been studied. We find that a molding temperature of 183◦C leads to better interfacial properties. Above or below this temperature the interface strength is reduced.

Keywords: Interface, pull-out, processing, temperature, hemp, polypropylene, composite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097
2588 Effects of pH, Temperature, Enzyme and Substrate Concentration on Xylooligosaccharides Production

Authors: M. D. S. Siti-Normah, S. Sabiha-Hanim, A. Noraishah

Abstract:

Agricultural residue such as oil palm fronds (OPF) is cheap, widespread and available throughout the year. Hemicelluloses extracted from OPF can be hydrolyzed to their monomers and used in production of xylooligosaccharides (XOs). The objective of the present study was to optimize the enzymatic hydrolysis process of OPF hemicellulose by varying pH, temperature, enzyme and substrate concentration for production of XOs. Hemicelluloses was extracted from OPF by using 3 M potassium hydroxide (KOH) at temperature of 40°C for 4 hrs and stirred at 400 rpm. The hemicellulose was then hydrolyzed using Trichoderma longibrachiatum xylanase at different pH, temperature, enzyme and substrate concentration. XOs were characterized based on reducing sugar determination. The optimum conditions to produced XOs from OPF hemicellulose was obtained at pH 4.6, temperature of 40°C , enzyme concentration of 2 U/mL and 2% substrate concentration. The results established the suitability of oil palm fronds as raw material for production of XOs.

Keywords: Hemicellulose, oil palm fronds, Trichoderma longibrachiatum, xylooligosaccharides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3197
2587 New Device for Enhancement of Liposomal Magnetofection Efficiency of Cancer Cells

Authors: M. Baryshev, D.Vainauska, S. Kozireva, A.Karpovs

Abstract:

Liposomal magnetofection is the most powerful nonviral method for the nucleic acid delivery into the cultured cancer cells and widely used for in vitro applications. Use of the static magnetic field condition may result in non-uniform distribution of aggregate complexes on the surface of cultured cells. To prevent this, we developed the new device which allows to concentrate aggregate complexes under dynamic magnetic field, assisting more contact of these complexes with cellular membrane and, possibly, stimulating endocytosis. Newly developed device for magnetofection under dynamic gradient magnetic field, “DynaFECTOR", was used to compare transfection efficiency of human liver hepatocellular carcinoma cell line HepG2 with that obtained by lipofection and magnetofection. The effect of two parameters on transfection efficiency, incubation time under dynamic magnetic field and rotation frequency of magnet, was estimated. Liposomal magnetofection under dynamic gradient magnetic field showed the highest transfection efficiency for HepG2 cells.

Keywords: Dynamic magnetic field, Lipofection, Magnetofection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
2586 Influence of Internal Heat Source on Thermal Instability in a Horizontal Porous Layer with Mass Flow and Inclined Temperature Gradient

Authors: Anjanna Matta, P. A. L. Narayana

Abstract:

An investigation has been presented to analyze the effect of internal heat source on the onset of Hadley-Prats flow in a horizontal fluid saturated porous medium. We examine a better understanding of the combined influence of the heat source and mass flow effect by using linear stability analysis. The resultant eigenvalue problem is solved by using shooting and Runga-Kutta methods for evaluate critical thermal Rayleigh number with respect to various flow governing parameters. It is identified that the flow is switch from stabilizing to destabilizing as the horizontal thermal Rayleigh number is enhanced. The heat source and mass flow increases resulting a stronger destabilizing effect.

Keywords: Linear stability analysis, heat source, porous medium, mass flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720
2585 Combining Molecular Statics with Heat Transfer Finite Difference Method for Analysis of Nanoscale Orthogonal Cutting of Single-Crystal Silicon Temperature Field

Authors: Zone-Ching Lin, Meng-Hua Lin, Ying-Chih Hsu

Abstract:

This paper uses quasi-steady molecular statics model and diamond tool to carry out simulation temperature rise of nanoscale orthogonal cutting single-crystal silicon. It further qualitatively analyzes temperature field of silicon workpiece without considering heat transfer and considering heat transfer. This paper supposes that the temperature rise of workpiece is mainly caused by two heat sources: plastic deformation heat and friction heat. Then, this paper develops a theoretical model about production of the plastic deformation heat and friction heat during nanoscale orthogonal cutting. After the increased temperature produced by these two heat sources are added up, the acquired total temperature rise at each atom of the workpiece is substituted in heat transfer finite difference equation to carry out heat transfer and calculates the temperature field in each step and makes related analysis.

Keywords: Quasi-steady molecular statics, Nanoscale orthogonal cutting, Finite difference, Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934
2584 Loudspeaker Parameters Inverse Problem for Improving Sound Frequency Response Simulation

Authors: Y. T. Tsai, Jin H. Huang

Abstract:

The sound pressure level (SPL) of the moving-coil loudspeaker (MCL) is often simulated and analyzed using the lumped parameter model. However, the SPL of a MCL cannot be simulated precisely in the high frequency region, because the value of cone effective area is changed due to the geometry variation in different mode shapes, it is also related to affect the acoustic radiation mass and resistance. Herein, the paper presents the inverse method which has a high ability to measure the value of cone effective area in various frequency points, also can estimate the MCL electroacoustic parameters simultaneously. The proposed inverse method comprises the direct problem, adjoint problem, and sensitivity problem in collaboration with nonlinear conjugate gradient method. Estimated values from the inverse method are validated experimentally which compared with the measured SPL curve result. Results presented in this paper not only improve the accuracy of lumped parameter model but also provide the valuable information on loudspeaker cone design.

Keywords: Inverse problem, cone effective area, loudspeaker, nonlinear conjugate gradient method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2554
2583 Measurement of Temperature, Humidity and Strain Variation Using Bragg Sensor

Authors: Amira Zrelli, Tahar Ezzeddine

Abstract:

Measurement and monitoring of temperature, humidity and strain variation are very requested in great fields and areas such as structural health monitoring (SHM) systems. Currently, the use of fiber Bragg grating sensors (FBGS) is very recommended in SHM systems due to the specifications of these sensors. In this paper, we present the theory of Bragg sensor, therefore we try to measure the efficient variation of strain, temperature and humidity (SV, ST, SH) using Bragg sensor. Thus, we can deduce the fundamental relation between these parameters and the wavelength of Bragg sensor.

Keywords: Optical fiber, strain, temperature, humidity, measurement, Bragg sensor, SHM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1140
2582 Exploiting Global Self Similarity for Head-Shoulder Detection

Authors: Lae-Jeong Park, Jung-Ho Moon

Abstract:

People detection from images has a variety of applications such as video surveillance and driver assistance system, but is still a challenging task and more difficult in crowded environments such as shopping malls in which occlusion of lower parts of human body often occurs. Lack of the full-body information requires more effective features than common features such as HOG. In this paper, new features are introduced that exploits global self-symmetry (GSS) characteristic in head-shoulder patterns. The features encode the similarity or difference of color histograms and oriented gradient histograms between two vertically symmetric blocks. The domain-specific features are rapid to compute from the integral images in Viola-Jones cascade-of-rejecters framework. The proposed features are evaluated with our own head-shoulder dataset that, in part, consists of a well-known INRIA pedestrian dataset. Experimental results show that the GSS features are effective in reduction of false alarmsmarginally and the gradient GSS features are preferred more often than the color GSS ones in the feature selection.

Keywords: Pedestrian detection, cascade of rejecters, feature extraction, self-symmetry, HOG.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2400
2581 Effect of Band Contact on the Temperature Distribution for Dry Friction Clutch

Authors: Oday I. Abdullah, J. Schlattmann

Abstract:

In this study, the two dimensional heat conduction problem for the dry friction clutch disc is modeled mathematically analysis and is solved numerically using finite element method, to determine the temperature field when band contacts occurs between the rubbing surfaces during the operation of an automotive clutch. Temperature calculation have been made for contact area of different band width and the results obtained compared with these attained when complete contact occurs. Furthermore, the effects of slipping time and sliding velocity function are investigated as well. Both single and repeated engagements made at regular interval are considered.

Keywords: Band contact, dry friction clutch, frictional heating, temperature field, 2D FEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3629
2580 Study of Heat Transfer in the Absorber Plates of a Flat-Plate Solar Collector Using Dual-Phase-Lag Model

Authors: Yu-Ching Yang, Haw-Long Lee, Win-Jin Chang

Abstract:

The present work numerically analyzes the transient heat transfer in the absorber plates of a flat-plate solar collector based on the dual-phase-lag (DPL) heat conduction model. An efficient numerical scheme involving the hybrid application of the Laplace transform and control volume methods is used to solve the linear hyperbolic heat conduction equation. This work also examines the effect of different medium parameters on the behavior of heat transfer. Results show that, while the heat-flux phase lag induces thermal waves in the medium, the temperature-gradient phase lag smoothens the thermal waves by promoting non-Fourier diffusion-like conduction into the medium.

Keywords: Absorber plates, dual-phase-lag, non-Fourier, solar collector.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1316
2579 Mass Transfer of Palm Kernel Oil under Supercritical Conditions

Authors: I. Norhuda, A. K. Mohd Omar

Abstract:

The purpose of the study was to determine the amount of Palm Kernel Oil (PKO) extracted from a packed bed of palm kernels in a supercritical fluid extractor using supercritical carbon dioxide (SC-CO2) as an environmental friendly solvent. Further, the study sought to ascertain the values of the overall mass transfer coefficient (K) of PKO evaluation through a mass transfer model, at constant temperature of 50 °C, 60 °C, and 70 °C and pressures range from 27.6 MPa, 34.5 MPa, 41.4 MPa and 48.3 MPa respectively. Finally, the study also seeks to demonstrate the application of the overall mass transfer coefficient values in relation to temperature and pressure. The overall mass transfer coefficient was found to be dependent pressure at each constant temperature of 50 °C, 60 °C and 70 °C. The overall mass transfer coefficient for PKO in a packed bed of palm kernels was found to be in the range of 1.21X 10-4 m min-1 to 1.72 X 10-4 m min-1 for a constant temperature of 50 °C and in the range of 2.02 X 10-4 m min-1 to 2.43 X 10-4 m min-1 for a constant temperature of 60 °C. Similar increasing trend of the overall mass transfer coefficient from 1.77 X 10-4 m min-1 to 3.64 X 10-4 m min-1 was also observed at constant temperature of 70 °C within the same pressure range from 27.6 MPa to 48.3 MPa.

Keywords: Overall Mass Transfer Coefficient (D), Supercritical Carbon Dioxide (SC-CO2), Palm Kernel Oil (PKO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
2578 Thermal Post-buckling of Shape Memory Alloy Composite Plates under Non-uniform Temperature Distribution

Authors: Z.A. Rasid, R. Zahari, A. Ayob, D.L. Majid, A.S.M. Rafie

Abstract:

Aerospace vehicles are subjected to non-uniform thermal loading that may cause thermal buckling. A study was conducted on the thermal post-buckling of shape memory alloy composite plates subjected to the non-uniform tent-like temperature field. The shape memory alloy wires were embedded within the laminated composite plates to add recovery stress to the plates. The non-linear finite element model that considered the recovery stress of the shape memory alloy and temperature dependent properties of the shape memory alloy and composite matrix along with its source codes were developed. It was found that the post-buckling paths of the shape memory alloy composite plates subjected to various tentlike temperature fields were stable within the studied temperature range. The addition of shape memory alloy wires to the composite plates was found to significantly improve the post-buckling behavior of laminated composite plates under non-uniform temperature distribution.

Keywords: Post-buckling, shape memory alloy, temperaturedependent property, tent-like temperature distribution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2016
2577 Modelling Extreme Temperature in Malaysia Using Generalized Extreme Value Distribution

Authors: Husna Hasan, Norfatin Salam, Mohd Bakri Adam

Abstract:

Extreme temperature of several stations in Malaysia is modelled by fitting the monthly maximum to the Generalized Extreme Value (GEV) distribution. The Mann-Kendall (MK) test suggests a non-stationary model. Two models are considered for stations with trend and the Likelihood Ratio test is used to determine the best-fitting model. Results show that half of the stations favour a model which is linear for the location parameters. The return level is the level of events (maximum temperature) which is expected to be exceeded once, on average, in a given number of years, is obtained.

Keywords: Extreme temperature, extreme value, return level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2835
2576 Temperature Investigations in Two Type of Crimped Connection Using Experimental Determinations

Authors: C. F. Ocoleanu, A. I. Dolan, G. Cividjian, S. Teodorescu

Abstract:

In this paper we make a temperature investigations in two type of superposed crimped connections using experimental determinations. All the samples use 8 copper wire 7.1 x 3 mm2 crimped by two methods: the first method uses one crimp indents and the second is a proposed method with two crimp indents. The ferrule is a parallel one. We study the influence of number and position of crimp indents. The samples are heated in A.C. current at different current values until steady state heating regime. After obtaining of temperature values, we compare them and present the conclusion.

Keywords: Crimped connections, experimental determinations, heat transfer temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
2575 High Temperature Hydrogen Sensors Based On Pd/Ta2O5/SiC MOS Capacitor

Authors: J. H. Choi, S. J. Kim, M. S. Jung, S. J. Kim, S. J. Joo, S. C. Kim

Abstract:

There are a many of needs for the development of SiC-based hydrogen sensor for harsh environment applications. We fabricated and investigated Pd/Ta2O5/SiC-based hydrogen sensors with MOS capacitor structure for high temperature process monitoring and leak detection applications in such automotive, chemical and petroleum industries as well as direct monitoring of combustion processes. In this work, we used silicon carbide (SiC) as a substrate to replace silicon which operating temperatures are limited to below 200°C. Tantalum oxide was investigated as dielectric layer which has high permeability for hydrogen gas and high dielectric permittivity, compared with silicon dioxide or silicon nitride. Then, electrical response properties, such as I-V curve and dependence of capacitance on hydrogen concentrations were analyzed in the temperature ranges of room temperature to 500°C for performance evaluation of the sensor.

Keywords: High temperature, hydrogen sensor, SiC, Ta2O5 dielectric layer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069
2574 Analysis on Spatiotemporal Pattern of Land Surface Temperature in Kunming City, China

Authors: Jinrui Ren, Li Wu

Abstract:

Anthropogenic activities and changes of underlying surface affect the temporal and spatial distribution of surface temperature in Kunming. Taking Kunming city as the research area, the surface temperature in 2000, 2010 and 2020 as the research object, using ENVI 5.3 and ArcGIS 10.8 as auxiliary tools, and based on the spatial autocorrelation method, this paper devoted to exploring the interactions among the changes of surface temperature, urban heat island effect and land use type, so as to provide theoretical basis and scientific basis for mitigating climate change. The results showed that: (1) The heat island effect was obvious in Kunming City, the high temperature area increased from 604 km2 in 2000 to 1269 km2 in 2020, and the sub-high temperature area reached 1099 km2 in 2020; (2) In terms of space, the spatial distribution of LST was significantly different with the change of underlying surface. The high temperature zone extended in three directions: south, north and east. The overall spatial distribution pattern of LST was high in the east and low in the west. (3) The inter-annual fluctuation of land surface temperature (LST) was large, and the growth rate was faster, from 2000 to 2010. The lowest temperature in 2000 was 13.45 ℃, which raised to 19.71 ℃ in 2010, and the temperature difference in 10 years was 6.26 ℃. (4) The land use/land cover type has a strong effect on the change of LST: the man-made land made a great contribution to the increase of LST, followed by grassland and farmland, while forest and water have a significant cooling effect on LST. To sum up, the variation of surface temperature in Kunming is the result of the interactions of human activities and climate change.

Keywords: Surface temperature, urban heat island effect, land use cover type, spatiotemporal variation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187
2573 Simulating Climate Change (Temperature and Soil Moisture) in a Mixed-Deciduous Forest, Ontario, Canada

Authors: David Goldblum, Lesley S. Rigg

Abstract:

To simulate expected climate change, we implemented a two-factor (temperature and soil moisture) field design in a forest in Ontario, Canada. To manipulate moisture input, we erected rain-exclusion structures. Under each structure, plots were watered with one of three treatments and thermally controlled with three heat treatments to simulate changes in air temperature and rainfall based on the climate model (GCM) predictions for the study area. Environmental conditions (including untreated controls) were monitored tracking air temperature, soil temperature, soil moisture, and photosynthetically active radiation. We measured rainfall and relative humidity at the site outside the rain-exclusion structures. Analyses of environmental conditions demonstrates that the temperature manipulation was most effective at maintaining target temperature during the early part of the growing season, but it was more difficult to keep the warmest treatment at 5º C above ambient by late summer. Target moisture regimes were generally achieved however incoming solar radiation was slightly attenuated by the structures.

Keywords: Acer saccharum, climate change, forest, environmental manipulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
2572 HPL-TE Method for Determination of Coatings Relative Total Emissivity Sensitivity Analysis of the Influences of Method Parameters

Authors: Z. Veselý, M. Honner

Abstract:

High power laser – total emissivity method (HPL-TE method) for determination of coatings relative total emissivity dependent on the temperature is introduced. Method principle, experimental and evaluation parts of the method are described. Computer model of HPL-TE method is employed to perform the sensitivity analysis of the effect of method parameters on the sample surface temperature in the positions where the surface temperature and radiation heat flux are measured.

Keywords: High temperature laser testing, measurement ofthermal properties, emissivity, coatings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332
2571 Magnetohydrodynamic Damping of Natural Convection Flows in a Rectangular Enclosure

Authors: M. Battira, R. Bessaih

Abstract:

We numerically study the three-dimensional magnetohydrodynamics (MHD) stability of oscillatory natural convection flow in a rectangular cavity, with free top surface, filled with a liquid metal, having an aspect ratio equal to A=L/H=5, and subjected to a transversal temperature gradient and a uniform magnetic field oriented in x and z directions. The finite volume method was used in order to solve the equations of continuity, momentum, energy, and potential. The stability diagram obtained in this study highlights the dependence of the critical value of the Grashof number Grcrit , with the increase of the Hartmann number Ha for two orientations of the magnetic field. This study confirms the possibility of stabilization of a liquid metal flow in natural convection by application of a magnetic field and shows that the flow stability is more important when the direction of magnetic field is longitudinal than when the direction is transversal.

Keywords: Natural convection, Magnetic field, Oscillatory, Cavity, Liquid metal.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1551
2570 Solar Thermal Aquaculture System Controller Based on Artificial Neural Network

Authors: A. Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah

Abstract:

Temperature is one of the most principle factors affects aquaculture system. It can cause stress and mortality or superior environment for growth and reproduction. This paper presents the control of pond water temperature using artificial intelligence technique. The water temperature is very important parameter for shrimp growth. The required temperature for optimal growth is 34oC, if temperature increase up to 38oC it cause death of the shrimp, so it is important to control water temperature. Solar thermal water heating system is designed to supply an aquaculture pond with the required hot water in Mersa Matruh in Egypt. Neural networks are massively parallel processors that have the ability to learn patterns through a training experience. Because of this feature, they are often well suited for modeling complex and non-linear processes such as those commonly found in the heating system. Artificial neural network is proposed to control water temperature due to Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques. They have been used to solve complicated practical problems. Moreover this paper introduces a complete mathematical modeling and MATLAB SIMULINK model for the aquaculture system. The simulation results indicate that, the control unit success in keeping water temperature constant at the desired temperature by controlling the hot water flow rate.

Keywords: artificial neural networks, aquaculture, forced circulation hot water system,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
2569 The Influence of RHA on the Mechanical Properties of Mortar Heated Up To High Temperature

Authors: Md. Harunur Rashid, S. M. Kamal Uddin, Sobura khatun

Abstract:

The performance of mortar subjected to high temperature and cooled in normal ambient temperature was examined in the laboratory to comply with the situation of burning & cooling of a structure. Four series of cubical (5 X 5 X 5 cm) mortar specimens were made from OPC, and partial replacement (10, 15, 20, 25 & 30%) of OPC by Rice Husk Ash (RHA) produced in the uncontrolled environment. These specimens were heated in electric furnace to 200, 300, 400, 500 and 7000C. The specimens were kept in normal room temperature for cooling. They were then tested for mechanical properties and the results shows that particular 20% RHA mixed mortar shows better fire performance.

Keywords: Fire performance, Rice Husk

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1564
2568 Numerical Simulation and Analysis on Liquid Nitrogen Spray Heat Exchanger

Authors: Wenjing Ding, Weiwei Shan, Zijuan, Wang, Chao He

Abstract:

Liquid spray heat exchanger is the critical equipment of temperature regulating system by gaseous nitrogen which realizes the environment temperature in the range of -180 ℃~+180 ℃. Liquid nitrogen is atomized into smaller liquid drops through liquid nitrogen sprayer and then contacts with gaseous nitrogen to be cooled. By adjusting the pressure of liquid nitrogen and gaseous nitrogen, the flowrate of liquid nitrogen is changed to realize the required outlet temperature of heat exchanger. The temperature accuracy of shrouds is ±1 ℃. Liquid nitrogen spray heat exchanger is simulated by CATIA, and the numerical simulation is performed by FLUENT. The comparison between the tests and numerical simulation is conducted. Moreover, the results help to improve the design of liquid nitrogen spray heat exchanger.

Keywords: Liquid nitrogen spray, temperature regulating system, heat exchanger, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156
2567 One Dimensional Reactor Modeling for Methanol Steam Reforming to Hydrogen

Authors: Hongfang Ma, Mingchuan Zhou, Haitao Zhang, Weiyong Ying

Abstract:

One dimensional pseudo-homogenous modeling has been performed for methanol steam reforming reactor. The results show that the models can well predict the industrial data. The reactor had minimum temperature along axial because of endothermic reaction. Hydrogen productions and temperature profiles along axial were investigated regarding operation conditions such as inlet mass flow rate and mass fraction of methanol, inlet temperature of external thermal oil. Low inlet mass flow rate of methanol, low inlet temperature, and high mass fraction of methanol decreased minimum temperature along axial. Low inlet mass flow rate of methanol, high mass fraction of methanol, and high inlet temperature of thermal oil made cold point forward. Low mass fraction, high mass flow rate, and high inlet temperature of thermal oil increased hydrogen production. One dimensional models can be a guide for industrial operation.

Keywords: Reactor, modeling, methanol, steam reforming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 747
2566 Thermal Analysis of a Sliding Electric Contact System Using Finite Element Method

Authors: Adrian T. Pleșca

Abstract:

In this paper a three dimensional thermal model of a sliding contact system is proposed for both steady-state or transient conditions. The influence of contact force, electric current and ambient temperature on the temperature distribution, has been investigated. A thermal analysis of the different type of the graphite material of fixed electric contact and its influence on contact system temperature rise, has been performed. To validate the three dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.

Keywords: Sliding electric contact, temperature distribution, thermal analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
2565 Holografic Interferometry used for Measurement of Temperature Field in Fluid

Authors: Vít Lédl, Tomáš Vít, Pavel Psota, Roman Doleček

Abstract:

The presented paper shows the possibility of using holographic interferometry for measurement of temperature field in moving fluids. There are a few methods for identification of velocity fields in fluids, such us LDA, PIV, hot wire anemometry. It is very difficult to measure the temperature field in moving fluids. One of the often used methods is Constant Current Anemometry (CCA), which is a point temperature measurement method. Data are possibly acquired at frequencies up to 1000Hz. This frequency should be limiting factor for using of CCA in fluid when fast change of temperature occurs. This shortcoming of CCA measurements should be overcome by using of optical methods such as holographic interferometry. It is necessary to employ a special holographic setup with double sensitivity instead of the commonly used Mach-Zehnder type of holographic interferometer in order to attain the parameters sufficient for the studied case. This setup is not light efficient like the Mach-Zehnder type but has double sensitivity. The special technique of acquiring and phase averaging of results from holographic interferometry is also presented. The results from the holographic interferometry experiments will be compared with the temperature field achieved by methods CCA method.

Keywords: Holographic interferometry, pulsatile flow, temperature measurement, hot-wire anemometry

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598
2564 The Sublimation Energy of Metal versus Temperature and Pressure and its Influence on Blow-off Impulse

Authors: Wenhui Tang, Daorong Wang, Xia Huang, Xianwen Ran

Abstract:

Based on the thermodynamic theory, the dependence of sublimation energy of metal on temperature and pressure is discussed, and the results indicate that the sublimation energy decreases linearly with the increase of temperature and pressure. Combined with this result, the blow-off impulse of aluminum induced by pulsed X-ray is simulated by smoothed particle hydrodynamics (SPH) method. The numerical results show that, while the change of sublimation energy with temperature and pressure is considered, the blow-off impulse of aluminum is larger than the case that the sublimation energy is assumed to be a constant.

Keywords: sublimation energy, blow-off impulse, pulsed X-ray, SPH method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2901