Search results for: Calcium Phosphate Coating
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 460

Search results for: Calcium Phosphate Coating

250 Studies on Physiochemical Properties of Tomato Powder as Affected by Different Dehydration Methods and Pretreatments

Authors: Reihaneh Ahmadzadeh Ghavidel, Mehdi Ghiafeh Davoodi

Abstract:

Tomato powder has good potential as substitute of tomato paste and other tomato products. In order to protect physicochemical properties and nutritional quality of tomato during dehydration process, investigation was carried out using different drying methods and pretreatments. Solar drier and continuous conveyor (tunnel) drier were used for dehydration where as calcium chloride (CaCl2), potassium metabisulphite (KMS), calcium chloride and potassium metabisulphite (CaCl2 +KMS), and sodium chloride (NaCl) selected for treatment.. lycopene content, dehydration ratio, rehydration ratio and non-enzymatic browning in addition to moisture, sugar and titrable acidity were studied. Results show that pre-treatment with CaCl2 and NaCl increased water removal and moisture mobility in tomato slices during drying of tomatoes. Where CaCl2 used along with KMS the NEB was recorded the least compared to other treatments and the best results were obtained while using the two chemicals in combination form. Storage studies in LDPE polymeric and metalized polyesters films showed less changes in the products packed in metallized polyester pouches and even after 6 months lycopene content did not decrease more than 20% as compared to the control sample and provide extension of shelf life in acceptable condition for 6 months. In most of the quality characteristics tunnel drier samples presented better values in comparison to solar drier.

Keywords: Dehydration, Tomato powder, Lycopene, Browning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4026
249 Conceptual Solution and Thermal Analysis of the Final Cooling Process of Biscuits in Factory "Jaffa" at Crvenka, in Serbia

Authors: Duško Salemović, Aleksandar Dedić, Matilda Lazić, Dragan Halas

Abstract:

The paper presents the conceptual solution for the final cooling of the chocolate dressing of biscuit in one confectionary factory in Serbia. The proposed concept solution was derived from the desired technological process of final cooling of biscuit and the required process parameters that were to be achieved, and which were an integral part of the project task. The desired process parameters for achieving proper hardening and coating formation are: the exchanged amount of heat in the time unit between the two media (air and chocolate dressing), speed of air inside the tunnel cooler and the surface of all biscuits in contact with the air. These parameters were calculated in the paper. The final cooling of chocolate dressing on biscuits could be optimized by changing process parameters and dimensions of the tunnel cooler, and looking for the appropriate values for them. The accurate temperature predictions and fluid flow analysis could be conducted by using heat balance and flow balance equations having in mind theory of similarity. Furthermore, some parameters were adopted from previous technology process, such as: inlet temperature of biscuits and input air temperature. A thermal calculation was carried out and it was demonstrated that the percentage error between the contact surface of the air and the chocolate biscuit topping, which is obtained from the heat balance and geometrically 0.67%, which is very good agreement. This enabled quality of the cooling process of chocolate dressing applied on biscuit and hardness of its coating.

Keywords: Air, chocolate dressing, cooling, heat balance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14
248 Jatropha curcas L. Oil Selectivity in Froth Flotation

Authors: André C. Silva, Izabela L. A. Moraes, Elenice M. S. Silva, Carlos M. Silva Filho

Abstract:

In Brazil, most soils are acidic and low in essential nutrients required for the growth and development of plants, making fertilizers essential for agriculture. As the biggest producer of soy in the world and a major producer of coffee, sugar cane and citrus fruits, Brazil is a large consumer of phosphate. Brazilian’s phosphate ores are predominantly from igneous rocks showing a complex mineralogy, associated with carbonites and oxides, typically iron, silicon and barium. The adopted industrial concentration circuit for this type of ore is a mix between magnetic separation (both low and high field) to remove the magnetic fraction and a froth flotation circuit composed by a reverse flotation of apatite (barite’s flotation) followed by direct flotation circuit (rougher, cleaner and scavenger circuit). Since the 70’s fatty acids obtained from vegetable oils are widely used as lower-cost collectors in apatite froth flotation. This is a very effective approach to the apatite family of minerals, being that this type of collector is both selective and efficient (high recovery). This paper presents Jatropha curcas L. oil (JCO) as a renewable and sustainable source of fatty acids with high selectivity in froth flotation of apatite. JCO is considerably rich in fatty acids such as linoleic, oleic and palmitic acid. The experimental campaign involved 216 tests using a modified Hallimond tube and two different minerals (apatite and quartz). In order to be used as a collector, the oil was saponified. The results found were compared with the synthetic collector, Fotigam 5806 produced by Clariant, which is composed mainly by soy oil. JCO showed the highest selectivity for apatite flotation with cold saponification at pH 8 and concentration of 2.5 mg/L. In this case, the mineral recovery was around 95%.

Keywords: Froth flotation, Jatropha curcas L., microflotation, selectivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1145
247 Durability of Slurry Infiltrated Fiber Concrete to Corrosion in Chloride Environment: An Experimental Study, Part I

Authors: M. F. Alrubaie, S. A. Salih, W. A. Abbas

Abstract:

Slurry infiltrated fiber concrete (SIFCON) is considered as a special type of high strength high-performance fiber reinforced concrete, extremely strong, and ductile. The objective of this study is to investigate the durability of SIFCON to corrosion in chloride environments. Six different SIFCON mixes were made in addition to two refinance mixes with 0% and 1.5% steel fiber content. All mixes were exposed to 10% chloride solution for 180 days. Half of the specimens were partially immersed in chloride solution, and the others were exposed to weekly cycles of wetting and drying in 10% chloride solution. The effectiveness of using corrosion inhibitors, mineral admixture, and epoxy protective coating were also evaluated as protective measures to reduce the effect of chloride attack and to improve the corrosion resistance of SIFCON mixes. Corrosion rates, half-cell potential, electrical resistivity, total permeability tests had been monitored monthly. The results indicated a significant improvement in performance for SIFCON mixes exposed to chloride environment, when using corrosion inhibitor or epoxy protective coating, whereas SIFCON mix contained mineral admixture (metakaolin) did not improve the corrosion resistance at the same level. The cyclic wetting and drying exposure were more aggressive to the specimens than the partial immersion in chloride solution although the observed surface corrosion for the later was clearer.

Keywords: Chloride attack, chloride environments, corrosion inhibitor, corrosion resistance, durability, SIFCON, Slurry infiltrated fiber concrete.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726
246 The Contraction Point for Phan-Thien/Tanner Model of Tube-Tooling Wire-Coating Flow

Authors: V. Ngamaramvaranggul, S. Thenissara

Abstract:

The simulation of extrusion process is studied widely in order to both increase products and improve quality, with broad application in wire coating. The annular tube-tooling extrusion was set up by a model that is termed as Navier-Stokes equation in addition to a rheological model of differential form based on singlemode exponential Phan-Thien/Tanner constitutive equation in a twodimensional cylindrical coordinate system for predicting the contraction point of the polymer melt beyond the die. Numerical solutions are sought through semi-implicit Taylor-Galerkin pressurecorrection finite element scheme. The investigation was focused on incompressible creeping flow with long relaxation time in terms of Weissenberg numbers up to 200. The isothermal case was considered with surface tension effect on free surface in extrudate flow and no slip at die wall. The Stream Line Upwind Petrov-Galerkin has been proposed to stabilize solution. The structure of mesh after die exit was adjusted following prediction of both top and bottom free surfaces so as to keep the location of contraction point around one unit length which is close to experimental results. The simulation of extrusion process is studied widely in order to both increase products and improve quality, with broad application in wire coating. The annular tube-tooling extrusion was set up by a model that is termed as Navier-Stokes equation in addition to a rheological model of differential form based on single-mode exponential Phan- Thien/Tanner constitutive equation in a two-dimensional cylindrical coordinate system for predicting the contraction point of the polymer melt beyond the die. Numerical solutions are sought through semiimplicit Taylor-Galerkin pressure-correction finite element scheme. The investigation was focused on incompressible creeping flow with long relaxation time in terms of Weissenberg numbers up to 200. The isothermal case was considered with surface tension effect on free surface in extrudate flow and no slip at die wall. The Stream Line Upwind Petrov-Galerkin has been proposed to stabilize solution. The structure of mesh after die exit was adjusted following prediction of both top and bottom free surfaces so as to keep the location of contraction point around one unit length which is close to experimental results.

Keywords: wire coating, free surface, tube-tooling, extrudate swell, surface tension, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012
245 Influence of Dietary Inclusion of Butyric Acids, Calcium Formate, Organic Acids and Its Salts on Rabbits Productive Performance, Carcass Traits and Meat Quality

Authors: V. Viliene, A. Raceviciute-Stupeliene, V. Sasyte, V. Slausgalvis, R. Gruzauskas, J. Al-Saifi

Abstract:

Animal nutritionists and scientists have searched for alternative measures to improve the production. One of such alternative is use of organic acids as feed additive in animal nutrition. The study was conducted to investigate the impact of butyric acids, calcium formate, organic acids, and its salts (BCOS) additives on rabbit’s productive performance, carcass traits and meat quality. The study was conducted with 14 Californian breed rabbits. The rabbits were assigned to two treatment groups (seven rabbits per each treatment group). The dietary treatments were 1) control diet, 2) diet supplemented with a mixture BCOS - 2 kg/t of feed. Growth performance characteristics (body weight, daily weight gain, daily feed intake, feed conversion ratio, mortality) were evaluated. Rabbits were slaughtered; carcass characteristics and meat quality were evaluated. Samples loin and hind leg meat were analysed to determine carcass characteristics, pH and colour measurements, cholesterol, and malonyldialdehyde (MDA) content in loin and hind leg meat. Differences between treatments were significant for body weight (1.30 vs. 1.36 kg; P<0.05), daily weight gain (16.60 vs. 17.85 g; P<0.05), and daily feed intake (78.25 vs. 80.58 g; P<0.05) for control and experimental group respectively for the entire experimental period (from 28–77 days old). No significant differences were found in feed conversion ratio and mortality. The feed additives insertion in the diets did not significantly influence the carcass yield or the proportions of the various carcass parts and organs. Differences between treatments were significant for pH value after 48h in loin (5.86 vs. 5.74; P<0.05), hind leg meat (6.62 vs. 6.65; P<0.05), more intense colour b* of loin (5.57 vs. 6.06; P<0.05), less intense colour a* (14.99 vs. 13.15; P<0.05) in hind leg meat. Cholesterol content in hind leg meat decreased by 17.67 mg/100g compared to control group (P<0.05). After storage for three months, MDA concentration decreased in loin and hind leg meat by 0.3 μmol/kg and 0.26 μmol/kg respectively compared to that of the control group (P<0.05). The results of this study suggest that BCOS could potentially be used in rabbit nutrition with consequent benefits on the rabbits’ productivity and nutritional quality of rabbit meat for consumers.

Keywords: Butyric acids, calcium formate, meat quality, organic acids salts, rabbits, productivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
244 The Development of a Low Carbon Cementitious Material Produced from Cement, Ground Granulated Blast Furnace Slag and High Calcium Fly Ash

Authors: Ali Shubbar, Hassnen M. Jafer, Anmar Dulaimi, William Atherton, Ali Al-Rifaie

Abstract:

This research represents experimental work for investigation of the influence of utilising Ground Granulated Blast Furnace Slag (GGBS) and High Calcium Fly Ash (HCFA) as a partial replacement for Ordinary Portland Cement (OPC) and produce a low carbon cementitious material with comparable compressive strength to OPC. Firstly, GGBS was used as a partial replacement to OPC to produce a binary blended cementitious material (BBCM); the replacements were 0, 10, 15, 20, 25, 30, 35, 40, 45 and 50% by the dry mass of OPC. The optimum BBCM was mixed with HCFA to produce a ternary blended cementitious material (TBCM). The replacements were 0, 10, 15, 20, 25, 30, 35, 40, 45 and 50% by the dry mass of BBCM. The compressive strength at ages of 7 and 28 days was utilised for assessing the performance of the test specimens in comparison to the reference mixture using 100% OPC as a binder. The results showed that the optimum BBCM was the mix produced from 25% GGBS and 75% OPC with compressive strength of 32.2 MPa at the age of 28 days. In addition, the results of the TBCM have shown that the addition of 10, 15, 20 and 25% of HCFA to the optimum BBCM improved the compressive strength by 22.7, 11.3, 5.2 and 2.1% respectively at 28 days. However, the replacement of optimum BBCM with more than 25% HCFA have showed a gradual drop in the compressive strength in comparison to the control mix. TBCM with 25% HCFA was considered to be the optimum as it showed better compressive strength than the control mix and at the same time reduced the amount of cement to 56%. Reducing the cement content to 56% will contribute to decrease the cost of construction materials, provide better compressive strength and also reduce the CO2 emissions into the atmosphere.

Keywords: Cementitious material, compressive strength, GGBS, HCFA, OPC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1005
243 Physicochemical Characterization of Medium Alkyd Resins Prepared with a Mixture of Linum usitatissimum L. and Plukenetia volubilis L. Oils

Authors: Antonella Hadzich, Santiago Flores

Abstract:

Alkyds have become essential raw materials in the coating and paint industry, due to their low cost, good application properties and lower environmental impact in comparison with petroleum-based polymers. The properties of these oil-modified materials depend on the type of polyunsaturated vegetable oil used for its manufacturing, since a higher degree of unsaturation provides a better crosslinking of the cured paint. Linum usitatissimum L. (flax) oil is widely used to develop alkyd resins due to its high degree of unsaturation. Although it is intended to find non-traditional sources and increase their commercial value, to authors’ best knowledge a natural source that can replace flaxseed oil has not yet been found. However, Plukenetia volubilis L. oil, of Peruvian origin, contains a similar fatty acid polyunsaturated content to the one reported for Linum usitatissimum L. oil. In this perspective, medium alkyd resins were prepared with a mixture of 50% of Linum usitatissimum L. oil and 50% of Plukenetia volubilis L. oil. Pure Linum usitatissimum L. oil was also used for comparison purposes. Three different resins were obtained by varying the amount of glycerol and pentaerythritol. The synthesized alkyd resins were characterized by FT-IR, and physicochemical properties like acid value, colour, viscosity, density and drying time were evaluated by standard methods. The pencil hardness and chemical resistance behaviour of the cured resins were also studied. Overall, it can be concluded that medium alkyd resins containing Plukenetia volubilis L. oil have an equivalent behaviour compared to those prepared purely with Linum usitatissimum L. oil. Both Plukenetia volubilis L. oil and pentaerythritol have a remarkable influence on certain physicochemical properties of medium alkyd resins.

Keywords: Alkyd resins, flaxseed oil, pentaerythritol, Plukenetia volubilis L. oil, protective coating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 761
242 A Comparative Study of Single- and Multi-Walled Carbon Nanotube Incorporation to Indium Tin Oxide Electrodes for Solar Cells

Authors: G. Gokceli, O. Eksik, E. Ozkan Zayim, N. Karatepe

Abstract:

Alternative electrode materials for optoelectronic devices have been widely investigated in recent years. Since indium tin oxide (ITO) is the most preferred transparent conductive electrode, producing ITO films by simple and cost-effective solution-based techniques with enhanced optical and electrical properties has great importance. In this study, single- and multi-walled carbon nanotubes (SWCNT and MWCNT) incorporated into the ITO structure to increase electrical conductivity, mechanical strength, and chemical stability. Carbon nanotubes (CNTs) were firstly functionalized by acid treatment (HNO3:H2SO4), and the thermal resistance of CNTs after functionalization was determined by thermogravimetric analysis (TGA). Thin films were then prepared by spin coating technique and characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), four-point probe measurement system and UV-Vis spectrophotometer. The effects of process parameters were compared for ITO, MWCNT-ITO, and SWCNT-ITO films. Two factors including CNT concentration and annealing temperature were considered. The UV-Vis measurements demonstrated that the transmittance of ITO films was 83.58% at 550 nm, which was decreased depending on the concentration of CNT dopant. On the other hand, both CNT dopants provided an enhancement in the crystalline structure and electrical conductivity. Due to compatible diameter and better dispersibility of SWCNTs in the ITO solution, the best result in terms of electrical conductivity was obtained by SWCNT-ITO films with the 0.1 g/L SWCNT dopant concentration and heat-treatment at 550 °C for 1 hour.

Keywords: CNT incorporation, ITO electrode, spin coating, thin film.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
241 An Evaluation of the Feasibility of Several Industrial Wastes and Natural Materials as Precursors for the Production of Alkali Activated Materials

Authors: O. Alelweet, S. Pavia

Abstract:

In order to face current compelling environmental problems affecting the planet, the construction industry needs to adapt. It is widely acknowledged that there is a need for durable, high-performance, low-greenhouse gas emission binders that can be used as an alternative to Portland cement (PC) to lower the environmental impact of construction. Alkali activated materials (AAMs) are considered a more sustainable alternative to PC materials. The binders of AAMs result from the reaction of an alkali metal source and a silicate powder or precursor which can be a calcium silicate or an aluminosilicate-rich material. This paper evaluates the particle size, specific surface area, chemical and mineral composition and amorphousness of silicate materials (most industrial waste locally produced in Ireland and Saudi Arabia) to develop alkali-activated binders that can replace PC resources in specific applications. These include recycled ceramic brick, bauxite, illitic clay, fly ash and metallurgical slag. According to the results, the wastes are reactive and comply with building standards requirements. The study also evidenced that the reactivity of the Saudi bauxite (with significant kaolinite) can be enhanced on thermal activation; and high calcium in the slag will promote reaction; which should be possible with low alkalinity activators. The wastes evidenced variable water demands that will be taken into account for mixing with the activators. Finally, further research is proposed to further determine the reactive fraction of the clay-based precursors.

Keywords: Reactivity, water demand, alkali-activated materials, brick, bauxite, illitic clay, fly ash, slag.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 782
240 Corrosion Mitigation in Gas Facilities Piping through the Use of Fusion Bond Epoxy Coated Pipes and Corrosion Resistant Alloy Girth Welds

Authors: Saad Alkhaldi, Fadi Ghammas, Tariq Alghamdi, Stefano Alexandirs

Abstract:

The operating conditions and corrosive nature of the process fluid in the Haradh and Hawiyah areas are subjecting facility piping to undesirable corrosion phenomena. Therefore, production headers inside remote headers have been internally cladded with high alloy material to mitigate the corrosion damage mechanism. Corrosion mitigation in the jump-over lines, constructed between the existing flowlines and the newly constructed facilities to provide operational flexibility, is proposed. This corrosion mitigation system includes the application of fusion bond epoxy (FBE) coating on the internal surface of the pipe and depositing corrosion-resistant alloy (CRA) weld layers at pipe and fittings ends to protect the carbon steel material. In addition, high alloy CRA weld material is used to deposit the girth weld between the 90-degree elbows and mating internally coated segments. A rigorous testing and qualification protocol was established prior to actual adoption at the Haradh and Hawiyah Field Gas Compression Program, currently being executed by Saudi Aramco. The proposed mitigation system, aimed at applying the cladding at the ends of the internally FBE coated pipes/elbows, will resolve field joint coating challenges, eliminate the use of approximately 1700 breakout flanges, and prevent the potential hydrocarbon leaks.

Keywords: Corrosion, FBE coated sour service, cost savings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 331
239 Study the Efficacies of Green Manure Application as Chickpea Pre Plant

Authors: Khosro Mohammadi, Amir Ghalavand, Majid Aghaalikhani

Abstract:

In order to Study the efficacy application of green manure as chickpea pre plant, field experiments were carried out in 2007 and 2008 growing seasons. In this research the effects of different strategies for soil fertilization were investigated on grain yield and yield component, minerals, organic compounds and cooking time of chickpea. Experimental units were arranged in splitsplit plots based on randomized complete blocks with three replications. Main plots consisted of (G1): establishing a mixed vegetation of Vicia panunica and Hordeum vulgare and (G2): control, as green manure levels. Also, five strategies for obtaining the base fertilizer requirement including (N1): 20 t.ha-1 farmyard manure; (N2): 10 t.ha-1 compost; (N3): 75 kg.ha-1 triple super phosphate; (N4): 10 t.ha-1 farmyard manure + 5 t.ha-1 compost and (N5): 10 t.ha-1 farmyard manure + 5 t.ha-1 compost + 50 kg.ha-1 triple super phosphate were considered in sub plots. Furthermoree four levels of biofertilizers consisted of (B1): Bacillus lentus + Pseudomonas putida; (B2): Trichoderma harzianum; (B3): Bacillus lentus + Pseudomonas putida + Trichoderma harzianum; and (B4): control (without biofertilizers) were arranged in sub-sub plots. Results showed that integrating biofertilizers (B3) and green manure (G1) produced the highest grain yield. The highest amounts of yield were obtained in G1×N5 interaction. Comparison of all 2-way and 3-way interactions showed that G1N5B3 was determined as the superior treatment. Significant increasing of N, P2O5, K2O, Fe and Mg content in leaves and grains emphasized on superiority of mentioned treatment because each one of these nutrients has an approved role in chlorophyll synthesis and photosynthesis abilities of the crops. The combined application of compost, farmyard manure and chemical phosphorus (N5) in addition to having the highest yield, had the best grain quality due to high protein, starch and total sugar contents, low crude fiber and reduced cooking time.

Keywords: chickpea, biofertilizer, nitrogen fixation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2390
238 Synthesis and Characterization of Surface Functionalized Nanobiocomposite by Nano Hydroxyapatite

Authors: M. Meskinfam , M. S. Sadjadi , H. Jazdarreh

Abstract:

In this study, synthesis of biomemitic patterned nano hydroxyapatite-starch biocomposites using different concentration of starch to evaluate effect of polymer alteration on biocomposites structural properties has been reported. Formation of hydroxyapatite nano particles was confirmed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Size and morphology of the samples were characterized using scanning and transmission electron microscopy (SEM and TEM). It seems that by increasing starch content, the more active site of polymer (oxygen atoms) can be provided for interaction with Ca2+ followed by phosphate and hydroxyl group.

Keywords: Biocomposite, Biomimetic, Nano hydroxyapatite, Starch

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
237 A 25-year Monitoring of the Air Pollution Depicted by Plane Tree Species in Tehran

Authors: S. A. A. Korori, H. Valipour K., S. Shabestani, A. shirvany, M. Matinizadeh

Abstract:

Tehran, one of the heavily-populated capitals, is severely suffering from increasing air pollution. To show a documented trend of such pollutants during last years, plane tree species (Platanus orientalis) were suited to be studied as indicators, for the species have been planted throughout the city many years ago. Two areas (Saadatabad and Narmak districts) allotting different contents of crowed and highly-traffic routs but the same ecological characteristics were selected. Twelve sample individuals were cored twice perpendicularly in each area. Tree-rings of each core were measured by a binocular microscope and separated annually for the last 25 years. Two heavy metals including Cd and Pb accompanied by a mineral element (Ca) were analyzed using Hatch method. Treerings analysis of the two areas showed different groups in term of physiologically ability as the growths were plunged during the last 10 years in Saadatabad district and showed a slight decrease in the same period for another studying area. In direct contrast to decreasing growth trend in Saadatabad, all three mentioned elements increased sharply during last 25 years in the same area. When it came to Narmak district, the trend was completely different with Saadatabad. There were some fluctuations in absorbing trace elements like tree-rings widths were, yet calcium showed an upward trend all the last 25 years. The results of the study proved the possibility of using tree species of each region to monitor its air pollution trends of the past, hence to depict a pollution assessment of a populated city for last years and then to make appropriate decisions for the future as it is well-known what the trend is. On the other hand, risen values of calcium (as the stress-indicator element) accompanied by increased trace elements suggests non-sustainable state of the trees.

Keywords: Air pollution, Platanus orientalis, Tehran, Traceelements, Tree rings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
236 Evaluation of Chromium Fortified Parboiled Rice Coated with Herbal Extracts: Cooking Quality and Sensory Properties

Authors: Wisnu Adi Yulianto, Agus Slamet, Sri Luwihana, Septian Albar Dwi Suprayogi

Abstract:

Parboiled rice was developed to produce rice, which has a low glycemic index for diabetics. However, diabetics also have a chromium (Cr) deficiency. Thus, it is important to fortify rice with Cr to increase the Cr content. Moreover, parboiled rice becomes rancid easily and has a musty odor, rendering the rice unfavorable. Natural herbs such as pandan leaves (Pandanus amaryllifolius Roxb.), bay leaves (Syzygium polyanthum [Wigh] Walp) and cinnamon bark powder (Cinnamomon cassia) are commonly added to food as aroma enhancers. Previous research has shown that these herbs could improve insulin sensitivity. The purpose of this study was to evaluate the effect of herbal extract coatings on the cooking quality and the preference level of chromium fortified - parboiled rice (CFPR). The rice grain variety used for this experiment was Ciherang and the fortificant was CrCl3. The three herbal extracts used for coating the CFPR were cinnamon, pandan and bay leaf, with concentration variations of 3%, 6%, and 9% (w/w) for each of the extracts. The samples were analyzed for their alkali spreading value, cooking time, elongation, water uptake ratio, solid loss, colour and lightness; and their sensory properties were determined by means of an organoleptic test. The research showed that coating the CFPR with pandan and cinnamon extracts at a concentration of 3% each produced a preferred CFPR. When coated with those herbal extracts the CFPR had the following cooking quality properties: alkali spreading value 5 (intermediate gelatinization temperature), cooking time, 26-27 min, color value, 14.95-15.00, lightness, 42.30 – 44.06, elongation, 1.53 – 1.54, water uptake ratio , 4.05-4.06, and solid loss, 0.09/100 g – 0.13 g/100 g.

Keywords: Bay leaves, chromium, cinnamon, pandan leaves, parboiled rice.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
235 Effect of Organic Matter and Biofertilizers on Chickpea Quality and Biological Nitrogen Fixation

Authors: Khosro Mohammadi, Amir Ghalavand, Majid Aghaalikhani

Abstract:

In order to evaluation the effects of soil organic matter and biofertilizer on chickpea quality and biological nitrogen fixation, field experiments were carried out in 2007 and 2008 growing seasons. In this research the effects of different strategies for soil fertilization were investigated on grain yield and yield component, minerals, organic compounds and cooking time of chickpea. Experimental units were arranged in split-split plots based on randomized complete blocks with three replications. Main plots consisted of (G1): establishing a mixed vegetation of Vicia panunica and Hordeum vulgare and (G2): control, as green manure levels. Also, five strategies for obtaining the base fertilizer requirement including (N1): 20 t.ha-1 farmyard manure; (N2): 10 t.ha-1 compost; (N3): 75 kg.ha-1 triple super phosphate; (N4): 10 t.ha-1 farmyard manure + 5 t.ha-1 compost and (N5): 10 t.ha-1 farmyard manure + 5 t.ha-1 compost + 50 kg.ha-1 triple super phosphate were considered in sub plots. Furthermoree four levels of biofertilizers consisted of (B1): Bacillus lentus + Pseudomonas putida; (B2): Trichoderma harzianum; (B3): Bacillus lentus + Pseudomonas putida + Trichoderma harzianum; and (B4): control (without biofertilizers) were arranged in sub-sub plots. Results showed that integrating biofertilizers (B3) and green manure (G1) produced the highest grain yield. The highest amounts of yield were obtained in G1×N5 interaction. Comparison of all 2-way and 3-way interactions showed that G1N5B3 was determined as the superior treatment. Significant increasing of N, P2O5, K2O, Fe and Mg content in leaves and grains emphasized on superiority of mentioned treatment because each one of these nutrients has an approved role in chlorophyll synthesis and photosynthesis abilities of the crops. The combined application of compost, farmyard manure and chemical phosphorus (N5) in addition to having the highest yield, had the best grain quality due to high protein, starch and total sugar contents, low crude fiber and reduced cooking time.

Keywords: chickpea, biofertilizer, nitrogen fixation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3376
234 Property of Polyurethane: from Soy-derived Phosphate Ester

Authors: Flora Elvistia Firdaus

Abstract:

Polyurethane foams (PUF) were formed by a chemical reaction of polyol and isocyanate. The polyol was manufactured by ring-opening hydrolysis of epoxidized soybean oil in the presence of phosphoric acid under varying experimental conditions. Other factors in the foam formulation such as water content and surfactant were kept constant. The effect of the amount of solvents, phosphoric acid, and their derivates in the foam formulation on the properties of polyurethane foams were studied. The properties of the material were measured via a number of parameters, which are water content of prepared polyol, polymer density and cellular structures.

Keywords: soy, polyurethane, phosporic acid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
233 Development Trend in Investigation of Residual Stresses in WC-Co Coating by HVOF Thermal Spraying

Authors: M.Jalali Azizpour, S.Norouzi, , H.Mohammadi Majd, D.Sajedipour , R.Mohammadi Sadr, M.Derakhshan Mehr, S.A Shoabi, R.Mohammadi

Abstract:

In this paper, the techniques for estimating the residual stress in high velocity oxy fuel thermal spray coatings have been discussed and compared. The development trend and the last investigation have been studied. It is seemed that the there is not effective study on the effect of the peening action in HVOF analytically and numerically.

Keywords: HVOF, WC-Co, Residual stress, Compressive stress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2392
232 Using Sugar Mill Waste for Biobased Epoxy Composites

Authors: Ulku Soydal, Mustafa Esen Marti, Gulnare Ahmetli

Abstract:

In this study, precipitated calcium carbonate lime waste (LW) from sugar beet process was recycled as the raw material for the preparation of composite materials. Epoxidized soybean oil (ESO) was used as a co-matrix in 50 wt% with DGEBA type epoxy resin (ER). XRD was used for characterization of composites. Effects of ESO and LW filler amounts on mechanical properties of neat ER were investigated. Modification of ER with ESO remarkably enhanced plasticity of ER.

Keywords: Epoxy resin, biocomposite, lime waste, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1729
231 Study of Influencing Factors on the Flowability of Jute Nonwoven Reinforced Sheet Molding Compound

Authors: Miriam I. Lautenschläger, Max H. Scheiwe, Kay A. Weidenmann, Frank Henning, Peter Elsner

Abstract:

Due to increasing environmental awareness jute fibers are more often used in fiber reinforced composites. In the Sheet Molding Compound (SMC) process, the mold cavity is filled via material flow allowing more complex component design. But, the difficulty of using jute fibers in this process is the decreased capacity of fiber movement in the mold. A comparative flow study with jute nonwoven reinforced SMC was conducted examining the influence of the fiber volume content, the grammage of the jute nonwoven textile and a mechanical modification of the nonwoven textile on the flowability. The nonwoven textile reinforcement was selected to support homogeneous fiber distribution. Trials were performed using two SMC paste formulations differing only in filler type. Platy-shaped kaolin with a mean particle size of 0.8 μm and ashlar calcium carbonate with a mean particle size of 2.7 μm were selected as fillers. Ensuring comparability of the two SMC paste formulations the filler content was determined to reach equal initial viscosity for both systems. The calcium carbonate filled paste was set as reference. The flow study was conducted using a jute nonwoven textile with 300 g/m² as reference. The manufactured SMC sheets were stacked and centrally placed in a square mold. The mold coverage was varied between 25 and 90% keeping the weight of the stack for comparison constant. Comparing the influence of the two fillers kaolin yielded better results regarding a homogeneous fiber distribution. A mold coverage of about 68% was already sufficient to homogeneously fill the mold cavity whereas for calcium carbonate filled system about 79% mold coverage was necessary. The flow study revealed a strong influence of the fiber volume content on the flowability. A fiber volume content of 12 vol.-% and 25 vol.-% were compared for both SMC formulations. The lower fiber volume content strongly supported fiber transport whereas 25 vol.-% showed insignificant influence. The results indicate a limiting fiber volume content for the flowability. The influence of the nonwoven textile grammage was determined using nonwoven jute material with 500 g/m² and a fiber volume content of 20 vol.-%. The 500 g/m² reinforcement material showed inferior results with regard to fiber movement. A mold coverage of about 90 % was required to prevent the destruction of the nonwoven structure. Below this mold coverage the 500 g/m² nonwoven material was ripped and torn apart. Low mold coverages led to damage of the textile reinforcement. Due to the ripped nonwoven structure the textile was modified with cuts in order to facilitate fiber movement in the mold. Parallel cuts of about 20 mm length and 20 mm distance to each other were applied to the textile and stacked with varying orientations prior to molding. Stacks with unidirectional orientated cuts over stacks with cuts in various directions e.g. (0°, 45°, 90°, -45°) were investigated. The mechanical modification supported tearing of the textile without achieving benefit for the flowability.

Keywords: Filler, flowability, jute fiber, nonwoven, sheet molding compound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
230 A Preliminary X-Ray Study on Human-Hair Microstructures for a Health-State Indicator

Authors: Phannee Saengkaew, Weerasak Ussawawongaraya, Sasiphan Khaweerat, Supagorn Rugmai, Sirisart Ouajai, Jiraporn Luengviriya, Sakuntam Sanorpim, Manop Tirarattanasompot, Somboon Rhianphumikarakit

Abstract:

We present a preliminary x-ray study on human-hair microstructures for a health-state indicator, in particular a cancer case. As an uncomplicated and low-cost method of x-ray technique, the human-hair microstructure was analyzed by wide-angle x-ray diffractions (XRD) and small-angle x-ray scattering (SAXS). The XRD measurements exhibited the simply reflections at the d-spacing of 28 Å, 9.4 Å and 4.4 Å representing to the periodic distance of the protein matrix of the human-hair macrofibrous and the diameter and the repeated spacing of the polypeptide alpha helixes of the photofibrils of the human-hair microfibrous, respectively. When compared to the normal cases, the unhealthy cases including to the breast- and ovarian-cancer cases obtained higher normalized ratios of the x-ray diffracting peaks of 9.4 Å and 4.4 Å. This likely resulted from the varied distributions of microstructures by a molecular alteration. As an elemental analysis by x-ray fluorescence (XRF), the normalized quantitative ratios of zinc(Zn)/calcium(Ca) and iron(Fe)/calcium(Ca) were determined. Analogously, both Zn/Ca and Fe/Ca ratios of the unhealthy cases were obtained higher than both of the normal cases were. Combining the structural analysis by XRD measurements and the elemental analysis by XRF measurements exhibited that the modified fibrous microstructures of hair samples were in relation to their altered elemental compositions. Therefore, these microstructural and elemental analyses of hair samples will be benefit to associate with a diagnosis of cancer and genetic diseases. This functional method would lower a risk of such diseases by the early diagnosis. However, the high-intensity x-ray source, the highresolution x-ray detector, and more hair samples are necessarily desired to develop this x-ray technique and the efficiency would be enhanced by including the skin and fingernail samples with the human-hair analysis.

Keywords: Human-hair analysis, XRD, SAXS, breast cancer, health-state indicator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
229 Cellulose Extraction from Pomelo Peel: Synthesis of Carboxymethyl Cellulose

Authors: J. Chumee, D. Seeburin

Abstract:

The cellulose was extracted from pomelo peel and an etherification reaction used for converting cellulose to carboxymethyl cellulose (CMC). The pomelo peel was refluxed with 0.5 M HCl and 1 M NaOH solution at 90°C for 1 h and 2 h, respectively. The cellulose was bleached with calcium hypochlorite and used as precursor. The precursor was soaked in mixed solution between isopropyl alcohol and 40%w/v NaOH for 12 h. After that, chloroacetic acid was added and reacted at 55°C for 6 h. The optimum condition was 5 g of cellulose: 0.25 mole of NaOH : 0.07 mole of ClCH2COOH with 78.00% of yield. Moreover, the product had 0.54 of degree of substitution (DS).

Keywords: Pomelo peel, Carboxymethyl cellulose, Cellulose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4310
228 Photoluminescence Properties of β-FeSi2 on Cu- or Au-coated Si

Authors: Kensuke Akiyama, Satoru Kaneko, Takeshi Ozawa, Kazuya Yokomizo, Masaru Itakura

Abstract:

The photoluminescence (PL) at 1.55 μm from semiconducting β-FeSi2 has attracted a noticeable interest for silicon-based optoelectronic applications. Moreover, its high optical absorption coefficient (higher than 105 cm-1 above 1.0 eV) allows this semiconducting material to be used as photovoltanics devices. A clear PL spectrum for β-FeSi2 was observed by Cu or Au coating on Si(001). High-crystal-quality β-FeSi2 with a low-level nonradiative center was formed on a Cu- or Au- reated Si layer. This method of deposition can be applied to other materials requiring high crystal quality.

Keywords: iron silicide, semiconductor, epitaxial, photoluminescence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2617
227 Analysis of Combustion, Performance and Emission Characteristics of Turbocharged LHR Extended Expansion DI Diesel Engine

Authors: Mohd.F.Shabir, P. Tamilporai, B. Rajendra Prasath

Abstract:

The fundamental aim of extended expansion concept is to achieve higher work done which in turn leads to higher thermal efficiency. This concept is compatible with the application of turbocharger and LHR engine. The Low Heat Rejection engine was developed by coating the piston crown, cylinder head inside with valves and cylinder liner with partially stabilized zirconia coating of 0.5 mm thickness. Extended expansion in diesel engines is termed as Miller cycle in which the expansion ratio is increased by reducing the compression ratio by modifying the inlet cam for late inlet valve closing. The specific fuel consumption reduces to an appreciable level and the thermal efficiency of the extended expansion turbocharged LHR engine is improved. In this work, a thermodynamic model was formulated and developed to simulate the LHR based extended expansion turbocharged direct injection diesel engine. It includes a gas flow model, a heat transfer model, and a two zone combustion model. Gas exchange model is modified by incorporating the Miller cycle, by delaying inlet valve closing timing which had resulted in considerable improvement in thermal efficiency of turbocharged LHR engines. The heat transfer model, calculates the convective and radiative heat transfer between the gas and wall by taking into account of the combustion chamber surface temperature swings. Using the two-zone combustion model, the combustion parameters and the chemical equilibrium compositions were determined. The chemical equilibrium compositions were used to calculate the Nitric oxide formation rate by assuming a modified Zeldovich mechanism. The accuracy of this model is scrutinized against actual test results from the engine. The factors which affect thermal efficiency and exhaust emissions were deduced and their influences were discussed. In the final analysis it is seen that there is an excellent agreement in all of these evaluations.

Keywords: Low Heat Rejection, Miller cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094
226 Hypertensive Response to Maximal Exercise Test in Young and Middle Age Hypertensive on Blood Pressure Lowering Medication: Monotherapy vs. Combination Therapy

Authors: James Patrick A. Diaz, Raul E. Ramboyong

Abstract:

Background: Hypertensive response during maximal exercise test provides important information on the level of blood pressure control and evaluation of treatment. Method: A single center retrospective descriptive study was conducted among 117 young (aged 20 to 40) and middle age (aged 40 to 65) hypertensive patients, who underwent treadmill stress test. Currently on maintenance frontline medication either monotherapy (Angiotensin-converting enzyme inhibitor/Angiotensin receptor blocker [ACEi/ARB], Calcium channel blocker [CCB], Diuretic - Hydrochlorthiazide [HCTZ]) or combination therapy (ARB+CCB, ARB+HCTZ), who attained a maximal exercise on treadmill stress test (TMST) with hypertensive response (systolic blood pressure: male >210 mm Hg, female >190 mm Hg, diastolic blood pressure >100 mmHg, or increase of >10 mm Hg at any time during the test), on Bruce and Modified Bruce protocol. Exaggerated blood pressure response during exercise (systolic [SBP] and diastolic [DBP]), peak exercise blood pressure (SBP and DBP), recovery period (SBP and DBP) and test for ischemia and their antihypertensive medication/s were investigated. Analysis of variance and chi-square test were used for statistical analysis. Results: Hypertensive responses on maximal exercise test were seen mostly among female population (P < 0.000) and middle age (P < 0.000) patients. Exaggerated diastolic blood pressure responses were significantly lower in patients who were taking CCB (P < 0.004). A longer recovery period that showed a delayed decline in SBP was observed in patients taking ARB+HCTZ (P < 0.036). There were no significant differences in the level of exaggerated systolic blood pressure response and during peak exercise (both systolic and diastolic) in patients using either monotherapy or combination antihypertensives. Conclusion: Calcium channel blockers provided lower exaggerated diastolic BP response during maximal exercise test in hypertensive middle age patients. Patients on combination therapy using ARB+HCTZ exhibited a longer recovery period of systolic blood pressure.

Keywords: Antihypertensive, exercise test, hypertension, hypertensive response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920
225 Corrosion Study of Magnetically Driven Components in Spinal Implants by Immersion Testing in Simulated Body Fluids

Authors: Benjawan Saengwichian, Alasdair E. Charles, Philip J. Hyde

Abstract:

Magnetically controlled growing rods (MCGRs) have been used to stabilise and correct spinal curvature in children to support non-invasive scoliosis adjustment. Although the encapsulated driving components are intended to be isolated from body fluid contact, in vivo corrosion was observed on these components due to sealing mechanism damage. Consequently, a corrosion circuit is created with the body fluids, resulting in malfunction of the lengthening mechanism. Particularly, the chloride ions in blood plasma or cerebrospinal fluid (CSF) may corrode the MCGR alloys, possibly resulting in metal ion release in long-term use. However, there is no data available on the corrosion resistance of spinal implant alloys in CSF. In this study, an in vitro immersion configuration was designed to simulate in vivo corrosion of 440C SS-Ti6Al4V couples. The 440C stainless steel (SS) was heat-treated to investigate the effect of tempering temperature on intergranular corrosion (IGC), while crevice and galvanic corrosion were studied by limiting the clearance of dissimilar couples. Tests were carried out in a neutral artificial cerebrospinal fluid (ACSF) and phosphate-buffered saline (PBS) under aeration and deaeration for 2 months. The composition of the passive films and metal ion release were analysed. The effect of galvanic coupling, pH, dissolved oxygen and anion species on corrosion rates and corrosion mechanisms are discussed based on quantitative and qualitative measurements. The results suggest that ACSF is more aggressive than PBS due to the combination of aggressive chlorides and sulphate anions, while phosphate in PBS acts as an inhibitor to delay corrosion. The presence of Vivianite on the SS surface in PBS lowered the corrosion rate (CR) more than 5 times for aeration and nearly 2 times for deaeration, compared with ACSF. The CR of 440C is dependent on passive film properties varied by tempering temperature and anion species. Although the CR of Ti6Al4V is insignificant, it tends to release more Ti ions in deaerated ACSF than under aeration, about 6 µg/L. It seems the crevice-like design has more effect on macroscopic corrosion than combining the dissimilar couple, whereas IGC is dominantly observed on sensitized microstructure.

Keywords: Cerebrospinal fluid, crevice corrosion, intergranular corrosion, magnetically controlled growing rods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 704
224 Formation of Round Channel for Microfluidic Applications

Authors: A. Zahra, G. de Cesare, D. Caputo, A. Nascetti

Abstract:

PDMS (Polydimethylsiloxane) polymer is a suitable material for biological and MEMS (Microelectromechanical systems) designers, because of its biocompatibility, transparency and high resistance under plasma treatment. PDMS round channel is always been of great interest due to its ability to confine the liquid with membrane type micro valves. In this paper we are presenting a very simple way to form round shapemicrofluidic channel, which is based on reflow of positive photoresist AZ® 40 XT. With this method, it is possible to obtain channel of different height simply by varying the spin coating parameters of photoresist.

Keywords: Lab-on-Chip, PDMS, Reflow, Round microfluidic channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3024
223 The Effect Particle Velocity on the Thickness of Thermally Sprayed Coatings

Authors: M. Jalali Azizpour, H. Mohammadi Majd

Abstract:

In this paper, the effect of WC-12Co particle velocity in HVOF thermal spraying process on the coating thickness has been studied. The statistical results show that the spray distance and oxygen-to-fuel ratio are more effective factors on particle characterization and thickness of HVOF thermal spraying coatings. Spray Watch diagnostic system, scanning electron microscopy (SEM), X-ray diffraction and thickness measuring system were used for this purpose.

Keywords: Grinding, HVOF, Thermal spray, WC-Co.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365
222 Growth Performance and Yield of the Edible White Rot Fungus (Pleurotus ostreatus) on Different Agro Waste Materials

Authors: Terna T. Paul, Iloechuba P. Ngozika

Abstract:

A study was carried out to evaluate the growth and yield performance of Pleurotus ostreatus spawn on different organic substrates in Lafia, Nasarawa State, Nigeria. 50 g each of four different substrates namely; corncobs, rice straw, sugarcane bagasse and sawdust sourced locally from farmlands and processing sites, were amended with 2% calcium carbonate and calcium sulphide and sterilized using three sterilization methods namely; hot water, steam, and lime. Five grams of P. ostreatus spawn were inoculated unto treated substrates, incubated in the dark for 16 days and in light for 19 days at 25 0C for the commencement of pinhead and fruit body formations respectively. Growth and yield parameters such as days to full colonization, days to pinhead formation and days to fruit body formation were recorded. Cap diameter and fresh weight of mature mushrooms were also measured for a total count of four flushes. P. ostreatus spawn grown on sugarcane bagasse recorded the highest mean cap diameter (4.69 cm), highest mean fresh weight (34.68 g), highest biological efficiency (69.37%) and highest production rate (2.83 g per day). Spawn grown on rice straw recorded the least number of days to full substrate colonization (11.00). Spawn grown on corn cobs recorded the least mean number of days to pin head (18.75) and fruiting body formations (20.25). There were no significant differences (P ≤ 0.05) among the evaluated substrates with respect to growth and yield performance of P. ostreatus. Substrates sterilized with hot water supported the highest mean cap diameter (5.64 cm), highest biological efficiency (87.04%) and highest production rate (3.43 g per day) of P. ostreatus. Significant differences (P ≤ 0.05) were observed in cap diameter, fresh weight, biological efficiency and production rates among the evaluated sterilization methods. Hot water sterilization of sugarcane bagasse could be adopted for enhanced yield of oyster mushrooms, especially among indigent farming communities in Nigeria and beyond.

Keywords: Agro wastes, growth, Pleurotus ostreatus, sterilization methods, yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 850
221 Desalination of Salt Water by Collision with Surface Coated with Nano Particles

Authors: Hesham Muhammad Ibrahim

Abstract:

This paper introduces and proves new concept of salt dissolving in water as very tiny solid sodium chloride particles of nanovolumes, from this point of view salt water can be desalinated by collision with special surface characterized by smoothness upon nano level, high rigidity, high hardness under appropriate conditions of water launching in the form of thin laminar flow under suitable speed and angle of incidence to get desalinated water.

Keywords: Desalination by collision, nano coating, water desalination, water repellent surface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915