Search results for: Image Quality
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4268

Search results for: Image Quality

2078 A Novel Compression Algorithm for Electrocardiogram Signals based on Wavelet Transform and SPIHT

Authors: Sana Ktata, Kaïs Ouni, Noureddine Ellouze

Abstract:

Electrocardiogram (ECG) data compression algorithm is needed that will reduce the amount of data to be transmitted, stored and analyzed, but without losing the clinical information content. A wavelet ECG data codec based on the Set Partitioning In Hierarchical Trees (SPIHT) compression algorithm is proposed in this paper. The SPIHT algorithm has achieved notable success in still image coding. We modified the algorithm for the one-dimensional (1-D) case and applied it to compression of ECG data. By this compression method, small percent root mean square difference (PRD) and high compression ratio with low implementation complexity are achieved. Experiments on selected records from the MIT-BIH arrhythmia database revealed that the proposed codec is significantly more efficient in compression and in computation than previously proposed ECG compression schemes. Compression ratios of up to 48:1 for ECG signals lead to acceptable results for visual inspection.

Keywords: Discrete Wavelet Transform, ECG compression, SPIHT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2131
2077 Real-Time Hand Tracking and Gesture Recognition System Using Neural Networks

Authors: Tin Hninn Hninn Maung

Abstract:

This paper introduces a hand gesture recognition system to recognize real time gesture in unstrained environments. Efforts should be made to adapt computers to our natural means of communication: Speech and body language. A simple and fast algorithm using orientation histograms will be developed. It will recognize a subset of MAL static hand gestures. A pattern recognition system will be using a transforrn that converts an image into a feature vector, which will be compared with the feature vectors of a training set of gestures. The final system will be Perceptron implementation in MATLAB. This paper includes experiments of 33 hand postures and discusses the results. Experiments shows that the system can achieve a 90% recognition average rate and is suitable for real time applications.

Keywords: Hand gesture recognition, Orientation Histogram, Myanmar Alphabet Language, Perceptronnetwork, MATLAB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4700
2076 Person Re-Identification Using Siamese Convolutional Neural Network

Authors: Sello Mokwena, Monyepao Thabang

Abstract:

In this study, we propose a comprehensive approach to address the challenges in person re-identification models. By combining a centroid tracking algorithm with a Siamese convolutional neural network model, our method excels in detecting, tracking, and capturing robust person features across non-overlapping camera views. The algorithm efficiently identifies individuals in the camera network, while the neural network extracts fine-grained global features for precise cross-image comparisons. The approach's effectiveness is further accentuated by leveraging the camera network topology for guidance. Our empirical analysis of benchmark datasets highlights its competitive performance, particularly evident when background subtraction techniques are selectively applied, underscoring its potential in advancing person re-identification techniques.

Keywords: Camera network, convolutional neural network topology, person tracking, person re-identification, Siamese.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 83
2075 An Optimal Feature Subset Selection for Leaf Analysis

Authors: N. Valliammal, S.N. Geethalakshmi

Abstract:

This paper describes an optimal approach for feature subset selection to classify the leaves based on Genetic Algorithm (GA) and Kernel Based Principle Component Analysis (KPCA). Due to high complexity in the selection of the optimal features, the classification has become a critical task to analyse the leaf image data. Initially the shape, texture and colour features are extracted from the leaf images. These extracted features are optimized through the separate functioning of GA and KPCA. This approach performs an intersection operation over the subsets obtained from the optimization process. Finally, the most common matching subset is forwarded to train the Support Vector Machine (SVM). Our experimental results successfully prove that the application of GA and KPCA for feature subset selection using SVM as a classifier is computationally effective and improves the accuracy of the classifier.

Keywords: Optimization, Feature extraction, Feature subset, Classification, GA, KPCA, SVM and Computation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2242
2074 Development of Sustainable Building Environmental Model (SBEM) in Hong Kong

Authors: Kwok W. Mui, Ling T. Wong, F. Xiao, Chin T. Cheung, Ho C. Yu

Abstract:

This study addresses a concept of the Sustainable Building Environmental Model (SBEM) developed to optimize energy consumption in air conditioning and ventilation (ACV) systems without any deterioration of indoor environmental quality (IEQ). The SBEM incorporates two main components: an adaptive comfort temperature control module (ACT) and a new carbon dioxide demand control module (nDCV). These two modules take an innovative approach to maintain satisfaction of the Indoor Environmental Quality (IEQ) with optimum energy consumption; they provide a rational basis of effective control. A total of 2133 sets of measurement data of indoor air temperature (Ta), relative humidity (Rh) and carbon dioxide concentration (CO2) were conducted in some Hong Kong offices to investigate the potential of integrating the SBEM. A simulation was used to evaluate the dynamic performance of the energy and air conditioning system with the integration of the SBEM in an air-conditioned building. It allows us make a clear picture of the control strategies and performed any pre-tuned of controllers before utilized in real systems. With the integration of SBEM, it was able to save up to 12.3% in simulation of overall electricity consumption, and maintain the average carbon dioxide concentration within 1000ppm and occupant dissatisfaction in 20%. 

Keywords: —Sustainable building environmental model (SBEM), adaptive comfort temperature (ACT), new demand control ventilation (nDCV), energy saving.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
2073 Damage to Strawberries Caused by Simulated Transport

Authors: G. La Scalia, M. Enea, R. Micale, O. Corona, L. Settanni

Abstract:

The quality and condition of perishable products delivered to the market and their subsequent selling prices are directly affected by the care taken during harvesting and handling. Mechanical injury, in fact, occurs at all stages, from pre-harvest operations through post-harvest handling, packing and transport to the market. The main implications of this damage are the reduction of the product’s quality and economical losses related to the shelf life diminution. For most perishable products, the shelf life is relatively short and it is typically dictated by microbial growth related to the application of dynamic and static loads during transportation. This paper presents the correlation between vibration levels and microbiological growth on strawberries and woodland strawberries and detects the presence of volatile organic compounds (VOC) in order to develop an intelligent logistic unit capable of monitoring VOCs using a specific sensor system. Fresh fruits were exposed to vibrations by means of a vibrating table in a temperature-controlled environment. Microbiological analyses were conducted on samples, taken at different positions along the column of the crates. The values obtained were compared with control samples not exposed to vibrations and the results show that different positions along the column influence the development of bacteria, yeasts and filamentous fungi.

Keywords: Microbiological analysis, shelf life, transport damage, volatile organic compounds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3124
2072 Indicator of Small Calcification Detection in Ultrasonography using Decorrelation of Forward Scattered Waves

Authors: Hirofumi Taki, Takuya Sakamoto, Makoto Yamakawa, Tsuyoshi Shiina, Toru Sato

Abstract:

For the improvement of the ability in detecting small calcifications using Ultrasonography (US) we propose a novel indicator of calcifications in an ultrasound B-mode image without decrease in frame rate. Since the waveform of an ultrasound pulse changes at a calcification position, the decorrelation of adjacent scan lines occurs behind a calcification. Therefore, we employ the decorrelation of adjacent scan lines as an indicator of a calcification. The proposed indicator depicted wires 0.05 mm in diameter at 2 cm depth with a sensitivity of 86.7% and a specificity of 100%, which were hardly detected in ultrasound B-mode images. This study shows the potential of the proposed indicator to approximate the detectable calcification size using an US device to that of an X-ray imager, implying the possibility that an US device will become a convenient, safe, and principal clinical tool for the screening of breast cancer.

Keywords: Ultrasonography, Calcification, Decorrelation, Forward scattered wave

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1452
2071 Detection and Analysis of Deficiencies in Groundnut Plant using Geometric Moments

Authors: Sumeet S. Nisale, Chandan J. Bharambe, Vidya N.More

Abstract:

We propose our genuine research of geometric moments which detects the mineral inadequacy in the frail groundnut plant. This plant is prone to many deficiencies as a result of the variance in the soil nutrients. By analyzing the leaves of the plant, we detect the visual symptoms that are not recognizable to the naked eyes. We have collected about 160 samples of leaves from the nearby fields. The images have been taken by keeping every leaf into a black box to avoid the external interference. For the first time, it has been possible to provide the farmer with the stages of deficiencies. This paper has applied the algorithms successfully to many other plants like Lady-s finger, Green Bean, Lablab Bean, Chilli and Tomato. But we submit the results of the groundnut predominantly. The accuracy of our algorithm and method is almost 93%. This will again pioneer a kind of green revolution in the field of agriculture and will be a boon to that field.

Keywords: Component image, geometric moments, average intensity, average affected area, black box

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
2070 Casting Users- Perspectives on Foundries as Suppliers

Authors: T. Saarelainen, O. Piha, P. Makkonen, J. Orkas

Abstract:

Global competition is tightening and companies have to think how to remain competitive. The main aim of this paper is to discuss how Finnish foundries will remain competitive. To fulfil the aim, we conducted interviews in nine companies using castings and analysed buyer–supplier relationships, current competitive advantages of Finnish foundries and customer perspectives on how Finnish foundries remain competitive. We found that the customerfoundry relationship is still closer to traditional subcontracting than partnering and general image of foundries is negative. Current competitive advantages of Finnish foundries include designing cooperation, proximity and flexibility. Casting users state that Finnish foundries should sell their know-how and services instead of their capacity, concentrate on prototype, single and short series castings and supply ready-to-install cast components directly to customers- assembly lines.

Keywords: Buyer-supplier relationship, casting, competitiveadvantage, customer prespective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
2069 Gluten-Free Cookies Enriched with Blueberry Pomace: Optimization of Baking Process

Authors: Aleksandra Mišan, Bojana Šarić, Nataša Nedeljković, Mladenka Pestorić, Pavle Jovanov, Milica Pojić, Jelena Tomić, Bojana Filipčev, Miroslav Hadnađev, Anamarija Mandić

Abstract:

With the aim of improving nutritional profile and antioxidant capacity of gluten-free cookies, blueberry pomace, by-product of juice production, was processed into a new food ingredient by drying and grinding and used for a gluten-free cookie formulation. Since the quality of a baked product is highly influenced by the baking conditions, the objective of this work was to optimize the baking time and thickness of dough pieces, by applying Response Surface Methodology (RSM) in order to obtain the best technological quality of the cookies. The experiments were carried out according to a Central Composite Design (CCD) by selecting the dough thickness and baking time as independent variables, while hardness, color parameters (L*, a* and b* values), water activity, diameter and short/long ratio were response variables. According to the results of RSM analysis, the baking time of 13.74min and dough thickness of 4.08mm was found to be the optimal for the baking temperature of 170°C. As similar optimal parameters were obtained by previously conducted experiment based on sensory analysis, response surface methodology (RSM) can be considered as a suitable approach to optimize the baking process.

Keywords: Baking process, blueberry pomace, gluten-free cookies, Response Surface Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
2068 Towards a Sustainable Regeneration: The Case Study of the San Mateo Neighborhood, in Jerez de la Frontera (Andalusia)

Authors: J.L. Higuera Trujillo, F.J. Montero Fernández

Abstract:

Based on different experiences in the historic centers of Spain, we propose an global strategy for the regeneration of the pre-tertiary fabrics and its application to the specific case of San Mateo neighborhood, in Jerez de la Frontera (Andalusia), through a diagnosis that focus particularly on the punishments the last-decade economic situation (building boom and crisis) and shows the tragic transition from economic center to an imminent disappearance with an image similar to the ruins of war, due to the loss of their traditional roles. From it we will learn their historically-tested mechanisms of environment adaptation, which distill the vernacular architecture essence and that we will apply to our strategy of action based on a dotacional-and-free-space rhizome which rediscovers its hidden character. The architectural fact will be crystallized in one of the example-pieces proposed: The Artistic Revitalization Center.

Keywords: Jerez de la Frontera, pre-tertiary fabrics, sustainable architecture, urban regeneration

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310
2067 Study on the Influence of Cladding and Finishing Materials of Apartment Buildings on the Architectural Identity of Amman, Jordan

Authors: Asil Y. Zureigat, Ayat A. Oudat

Abstract:

Analyzing the old and bringing in the new is an ever-ongoing process in driving innovations in architecture. This paper looks at the excessive use of stone in apartment buildings in Amman and speculates on the existing possibilities of changing the cladding material. By looking at architectural exceptions present in Amman, the paper seeks to make the exception the rule, by adding new materials to the architectural library of Amman and in turn, project a series of possible new identities to the existing stone scape. Through distributing a survey, conducting a photographic study on exceptional buildings and shedding light on the historical narrative of stone, the paper highlights the ways in which new finishing materials such as plaster, paint and stone variations could be introduced in an attempt to project a new architectural identity to Amman.

Keywords: Architectural city identity, cladding materials, façade architecture, image of the city.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 588
2066 Face Recognition Using Morphological Shared-weight Neural Networks

Authors: Hossein Sahoolizadeh, Mahdi Rahimi, Hamid Dehghani

Abstract:

We introduce an algorithm based on the morphological shared-weight neural network. Being nonlinear and translation-invariant, the MSNN can be used to create better generalization during face recognition. Feature extraction is performed on grayscale images using hit-miss transforms that are independent of gray-level shifts. The output is then learned by interacting with the classification process. The feature extraction and classification networks are trained together, allowing the MSNN to simultaneously learn feature extraction and classification for a face. For evaluation, we test for robustness under variations in gray levels and noise while varying the network-s configuration to optimize recognition efficiency and processing time. Results show that the MSNN performs better for grayscale image pattern classification than ordinary neural networks.

Keywords: Face recognition, Neural Networks, Multi-layer Perceptron, masking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1517
2065 A New Biologically Inspired Pattern Recognition Spproach for Face Recognition

Authors: V. Kabeer, N.K.Narayanan

Abstract:

This paper reports a new pattern recognition approach for face recognition. The biological model of light receptors - cones and rods in human eyes and the way they are associated with pattern vision in human vision forms the basis of this approach. The functional model is simulated using CWD and WPD. The paper also discusses the experiments performed for face recognition using the features extracted from images in the AT & T face database. Artificial Neural Network and k- Nearest Neighbour classifier algorithms are employed for the recognition purpose. A feature vector is formed for each of the face images in the database and recognition accuracies are computed and compared using the classifiers. Simulation results show that the proposed method outperforms traditional way of feature extraction methods prevailing for pattern recognition in terms of recognition accuracy for face images with pose and illumination variations.

Keywords: Face recognition, Image analysis, Wavelet feature extraction, Pattern recognition, Classifier algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
2064 Approaches to Promote Healthy Recreation Activities for Elderly Tourists at Bang Nam Phueng Floating Market, Prapradeang District, Samutprakarn Province

Authors: Sasitorn Chetanont

Abstract:

The objectives of this study are to find out the approaches to promote healthy recreation activities for elderly tourists and develop Bang Nam Phueng Floating Market to be a health tourism attraction. The research methodology was to analyze internal and external situations according to MP-MF and the MCSTEPS principles. As for the results of this study the researcher found that the healthy recreational activities for elderly tourists could be divided in 7 groups; travelling Bang Nam Phueng Floating Market activity, homestay relaxation, arts center platform activity, healthy massage activity, paying homage to a Buddha image activity, herbal joss-stick home activity, making local desserts and food activity.

Keywords: Elderly tourists, recreational activities, Bang Nam Phueng Floating Market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
2063 A Study on Websites of Public and Private Hospitals in Konya

Authors: H. Nur Gorkemli, Mehmet Fidan

Abstract:

After the first acquaintance with internet in April 1993, number of internet users increased rapidly in Turkey. Almost half of the population between 16-74 age group use internet in the country. Hospitals are one of the areas where the internet is intensively being used like many other businesses. As a part of public relations application, websites are important tools for hospitals to reach a wide range of target audience within and outside the organization. With their websites, hospitals have opportunities to give information about their organization, strengthen their image, compete with their rivals, interact with shareholders, reflect their transparency and meet with new audiences. This study examines web sites of totally 34 hospitals which are located in Konya. Institutions are categorized as public and private hospitals and then three main research categories are determined: content, visual and technical. Main and sub categories are examined by using content analysis method. Results are interpreted in scope of public and private institutions and as a whole.

Keywords: Health Communication, Hospital, Internet, Webpages, Websites

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
2062 A Control Model for Improving Safety and Efficiency of Navigation System Based on Reinforcement Learning

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Artificial Intelligence (AI), specifically Reinforcement Learning (RL), has proven helpful in many control path planning technologies by maximizing and enhancing their performance, such as navigation systems. Since it learns from experience by interacting with the environment to determine the optimal policy, the optimal policy takes the best action in a particular state, accounting for the long-term rewards. Most navigation systems focus primarily on "arriving faster," overlooking safety and efficiency while estimating the optimum path, as safety and efficiency are essential factors when planning for a long-distance journey. This paper represents an RL control model that proposes a control mechanism for improving navigation systems. Also, the model could be applied to other control path planning applications because it is adjustable and can accept different properties and parameters. However, the navigation system application has been taken as a case and evaluation study for the proposed model. The model utilized a Q-learning algorithm for training and updating the policy. It allows the agent to analyze the quality of an action made in the environment to maximize rewards. The model gives the ability to update rewards regularly based on safety and efficiency assessments, allowing the policy to consider the desired safety and efficiency benefits while making decisions, which improves the quality of the decisions taken for path planning compared to the conventional RL approaches.

Keywords: Artificial intelligence, control system, navigation systems, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202
2061 Inter-frame Collusion Attack in SS-N Video Watermarking System

Authors: Yaser Mohammad Taheri, Alireza Zolghadr–asli, Mehran Yazdi

Abstract:

Video watermarking is usually considered as watermarking of a set of still images. In frame-by-frame watermarking approach, each video frame is seen as a single watermarked image, so collusion attack is more critical in video watermarking. If the same or redundant watermark is used for embedding in every frame of video, the watermark can be estimated and then removed by watermark estimate remodolulation (WER) attack. Also if uncorrelated watermarks are used for every frame, these watermarks can be washed out with frame temporal filtering (FTF). Switching watermark system or so-called SS-N system has better performance against WER and FTF attacks. In this system, for each frame, the watermark is randomly picked up from a finite pool of watermark patterns. At first SS-N system will be surveyed and then a new collusion attack for SS-N system will be proposed using a new algorithm for separating video frame based on watermark pattern. So N sets will be built in which every set contains frames carrying the same watermark. After that, using WER attack in every set, N different watermark patterns will be estimated and removed later.

Keywords: Watermark estimation remodulation (WER), Frame Temporal Averaging (FTF), switching watermark system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497
2060 Multi Task Scheme to Monitor Multivariate Environments Using Artificial Neural Network

Authors: K. Atashgar

Abstract:

When an assignable cause(s) manifests itself to a multivariate process and the process shifts to an out-of-control condition, a root-cause analysis should be initiated by quality engineers to identify and eliminate the assignable cause(s) affected the process. A root-cause analysis in a multivariate process is more complex compared to a univariate process. In the case of a process involved several correlated variables an effective root-cause analysis can be only experienced when it is possible to identify the required knowledge including the out-of-control condition, the change point, and the variable(s) responsible to the out-of-control condition, all simultaneously. Although literature addresses different schemes to monitor multivariate processes, one can find few scientific reports focused on all the required knowledge. To the best of the author’s knowledge this is the first time that a multi task model based on artificial neural network (ANN) is reported to monitor all the required knowledge at the same time for a multivariate process with more than two correlated quality characteristics. The performance of the proposed scheme is evaluated numerically when different step shifts affect the mean vector. Average run length is used to investigate the performance of the proposed multi task model. The simulated results indicate the multi task scheme performs all the required knowledge effectively.

Keywords: Artificial neural network, Multivariate process, Statistical process control, Change point.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
2059 Automatic Landmark Selection Based on Feature Clustering for Visual Autonomous Unmanned Aerial Vehicle Navigation

Authors: Paulo Fernando Silva Filho, Elcio Hideiti Shiguemori

Abstract:

The selection of specific landmarks for an Unmanned Aerial Vehicles’ Visual Navigation systems based on Automatic Landmark Recognition has significant influence on the precision of the system’s estimated position. At the same time, manual selection of the landmarks does not guarantee a high recognition rate, which would also result on a poor precision. This work aims to develop an automatic landmark selection that will take the image of the flight area and identify the best landmarks to be recognized by the Visual Navigation Landmark Recognition System. The criterion to select a landmark is based on features detected by ORB or AKAZE and edges information on each possible landmark. Results have shown that disposition of possible landmarks is quite different from the human perception.

Keywords: Clustering, edges, feature points, landmark selection, X-Means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819
2058 Performance Evaluation of Conventional and Wiper Carbide Tools When Turning 6060 Aluminium Alloy: Analysis of Surface Roughness

Authors: Salah Gariani, Taher Dao, Khaled Jegandi

Abstract:

Wiper inserts are widely used nowadays, particularly in turning and milling operations, due to their unique geometric characteristics that generate superb surface finish and improve productivity. Wiper inserts can produce double the feed rate while preserving comparable surface roughness compared to that produced by conventional cutting tools. This paper reports an experimental investigation of surface quality generated in the precision dry turning of 6060 Aluminium alloy using conventional and wiper inserts at different cutting conditions. The Taguchi L9 array, Analysis of Means (AOM) and variance (ANOVA) were employed in the development of the experimental design and to optimise the process parameter identified: average surface roughness (Ra). The experimental results show that the wiper inserts substantially improved the surface quality of the machined samples by a factor of two compared to those for the conventional insert under all cutting conditions. The ANOVA and AOM analysis showed that the type of insert is the most significant factor affecting surface roughness, with a Percentage Contribution Ratio (PCR) value of 67.41%. Feed rate also significantly affected surface roughness but contributed less to its variation. No significant difference was found between values of Ra using wiper inserts under dry and wet cooling modes when turning 6060 Aluminium alloy.

Keywords: 6060 Aluminium alloy, conventional and wiper carbide tools, dry turning, average surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 323
2057 Anisotropic Total Fractional Order Variation Model in Seismic Data Denoising

Authors: Jianwei Ma, Diriba Gemechu

Abstract:

In seismic data processing, attenuation of random noise is the basic step to improve quality of data for further application of seismic data in exploration and development in different gas and oil industries. The signal-to-noise ratio of the data also highly determines quality of seismic data. This factor affects the reliability as well as the accuracy of seismic signal during interpretation for different purposes in different companies. To use seismic data for further application and interpretation, we need to improve the signal-to-noise ration while attenuating random noise effectively. To improve the signal-to-noise ration and attenuating seismic random noise by preserving important features and information about seismic signals, we introduce the concept of anisotropic total fractional order denoising algorithm. The anisotropic total fractional order variation model defined in fractional order bounded variation is proposed as a regularization in seismic denoising. The split Bregman algorithm is employed to solve the minimization problem of the anisotropic total fractional order variation model and the corresponding denoising algorithm for the proposed method is derived. We test the effectiveness of theproposed method for synthetic and real seismic data sets and the denoised result is compared with F-X deconvolution and non-local means denoising algorithm.

Keywords: Anisotropic total fractional order variation, fractional order bounded variation, seismic random noise attenuation, Split Bregman Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1016
2056 Quality Parameters of Offset Printing Wastewater

Authors: Kiurski S. Jelena, Kecić S. Vesna, Aksentijević M. Snežana

Abstract:

Samples of tap and wastewater were collected in three offset printing facilities in Novi Sad, Serbia. Ten physicochemical parameters were analyzed within all collected samples: pH, conductivity, m - alkalinity, p - alkalinity, acidity, carbonate concentration, hydrogen carbonate concentration, active oxygen content, chloride concentration and total alkali content. All measurements were conducted using the standard analytical and instrumental methods. Comparing the obtained results for tap water and wastewater, a clear quality difference was noticeable, since all physicochemical parameters were significantly higher within wastewater samples. The study also involves the application of simple linear regression analysis on the obtained dataset. By using software package ORIGIN 5 the pH value was mutually correlated with other physicochemical parameters. Based on the obtained values of Pearson coefficient of determination a strong positive correlation between chloride concentration and pH (r = -0.943), as well as between acidity and pH (r = -0.855) was determined. In addition, statistically significant difference was obtained only between acidity and chloride concentration with pH values, since the values of parameter F (247.634 and 182.536) were higher than Fcritical (5.59). In this way, results of statistical analysis highlighted the most influential parameter of water contamination in offset printing, in the form of acidity and chloride concentration. The results showed that variable dependence could be represented by the general regression model: y = a0 + a1x+ k, which further resulted with matching graphic regressions.

Keywords: Pollution, printing industry, simple linear regression analysis, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1674
2055 Performance Evaluation of ROI Extraction Models from Stationary Images

Authors: K.V. Sridhar, Varun Gunnala, K.S.R Krishna Prasad

Abstract:

In this paper three basic approaches and different methods under each of them for extracting region of interest (ROI) from stationary images are explored. The results obtained for each of the proposed methods are shown, and it is demonstrated where each method outperforms the other. Two main problems in ROI extraction: the channel selection problem and the saliency reversal problem are discussed and how best these two are addressed by various methods is also seen. The basic approaches are 1) Saliency based approach 2) Wavelet based approach 3) Clustering based approach. The saliency approach performs well on images containing objects of high saturation and brightness. The wavelet based approach performs well on natural scene images that contain regions of distinct textures. The mean shift clustering approach partitions the image into regions according to the density distribution of pixel intensities. The experimental results of various methodologies show that each technique performs at different acceptable levels for various types of images.

Keywords: clustering, ROI, saliency, wavelets.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
2054 Performance Analysis of Polycrystalline and Monocrystalline Solar Module in Dhaka, Bangladesh

Authors: N. J. Imu, N. Rabbani, Md E. Hossain

Abstract:

Achieving national climate goals requires transforming the energy system and increasing the use of renewable energy in Bangladesh as renewable energy offers an environmentally friendly energy supply. In view of this, Bangladesh has set a goal of 100% renewable power generation by 2050. Among all the renewable energy, solar is the most effective and popular source of renewable energy in Bangladesh. In order to build up on-grid and off-grid solar systems to increase energy transformation, monocrystalline type (highly efficient) solar module, and the polycrystalline type (low-efficient) solar module are commonly used. Due to their low price and availability, polycrystalline-type solar modules dominated the local market in the past years. However, in recent times the use of monocrystalline types modules has increased considerably owing to the significant decrease in price difference that existed between these two modules. Despite the deployment of both mono- and poly-crystalline modules in the market, the proliferation of low-quality solar panels are dominating the market resulting in reduced generation of solar electricity than expected. This situation is further aggravated by insufficient information regarding the effect of solar irradiation on solar module performance in relation to the quality of the materials used for the production of the module. This research aims to evaluate the efficiency of monocrystalline and polycrystalline solar modules that are available in Bangladesh by considering seasonal variations. Both types of solar modules have been tested for three different capacities 45W, 60W, and 100W in Dhaka regions to evaluate their power generation capability under Standard Test Conditions (STC). Module testing data were recorded twelve months in a full year from January to December. Data for solar irradiation were collected using HT304N while HT I-V400 multifunction instrument was used for testing voltage and current of photovoltaic (PV) systems and complete power quality analyzer. Results obtained in this study indicated differences between the efficiencies of polycrystalline and monocrystalline solar modules under the country’s solar irradiation. The average efficiencies of 45W, 60W, and 100W monocrystalline solar panels were recorded as 11.73%, 13.41%, and 15.37% respectively while for polycrystalline panels were 8.66%, 9.37%, and 12.34%. Monocrystalline solar panels, which offer greater working output than polycrystalline ones, are also represented by the Pearson Correlation value. The output of polycrystalline solar panels fluctuated highly with the changes in irradiation and temperature whereas monocrystalline panels were much stable.

Keywords: Solar energy, solar irradiation, efficiency, polycrystalline solar module, monocrystalline solar module, SPSS analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 161
2053 An Automated Method to Segment and Classify Masses in Mammograms

Authors: Viet Dzung Nguyen, Duc Thuan Nguyen, Tien Dzung Nguyen, Van Thanh Pham

Abstract:

Mammography is the most effective procedure for an early diagnosis of the breast cancer. Nowadays, people are trying to find a way or method to support as much as possible to the radiologists in diagnosis process. The most popular way is now being developed is using Computer-Aided Detection (CAD) system to process the digital mammograms and prompt the suspicious region to radiologist. In this paper, an automated CAD system for detection and classification of massive lesions in mammographic images is presented. The system consists of three processing steps: Regions-Of- Interest detection, feature extraction and classification. Our CAD system was evaluated on Mini-MIAS database consisting 322 digitalized mammograms. The CAD system-s performance is evaluated using Receiver Operating Characteristics (ROC) and Freeresponse ROC (FROC) curves. The archived results are 3.47 false positives per image (FPpI) and sensitivity of 85%.

Keywords: classification, computer-aided detection, featureextraction, mass detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1657
2052 Foot Recognition Using Deep Learning for Knee Rehabilitation

Authors: Rakkrit Duangsoithong, Jermphiphut Jaruenpunyasak, Alba Garcia

Abstract:

The use of foot recognition can be applied in many medical fields such as the gait pattern analysis and the knee exercises of patients in rehabilitation. Generally, a camera-based foot recognition system is intended to capture a patient image in a controlled room and background to recognize the foot in the limited views. However, this system can be inconvenient to monitor the knee exercises at home. In order to overcome these problems, this paper proposes to use the deep learning method using Convolutional Neural Networks (CNNs) for foot recognition. The results are compared with the traditional classification method using LBP and HOG features with kNN and SVM classifiers. According to the results, deep learning method provides better accuracy but with higher complexity to recognize the foot images from online databases than the traditional classification method.

Keywords: Convolutional neural networks, deep learning, foot recognition, knee rehabilitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435
2051 Speech Enhancement Using Wavelet Coefficients Masking with Local Binary Patterns

Authors: Christian Arcos, Marley Vellasco, Abraham Alcaim

Abstract:

In this paper, we present a wavelet coefficients masking based on Local Binary Patterns (WLBP) approach to enhance the temporal spectra of the wavelet coefficients for speech enhancement. This technique exploits the wavelet denoising scheme, which splits the degraded speech into pyramidal subband components and extracts frequency information without losing temporal information. Speech enhancement in each high-frequency subband is performed by binary labels through the local binary pattern masking that encodes the ratio between the original value of each coefficient and the values of the neighbour coefficients. This approach enhances the high-frequency spectra of the wavelet transform instead of eliminating them through a threshold. A comparative analysis is carried out with conventional speech enhancement algorithms, demonstrating that the proposed technique achieves significant improvements in terms of PESQ, an international recommendation of objective measure for estimating subjective speech quality. Informal listening tests also show that the proposed method in an acoustic context improves the quality of speech, avoiding the annoying musical noise present in other speech enhancement techniques. Experimental results obtained with a DNN based speech recognizer in noisy environments corroborate the superiority of the proposed scheme in the robust speech recognition scenario.

Keywords: Binary labels, local binary patterns, mask, wavelet coefficients, speech enhancement, speech recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1017
2050 Walsh-Hadamard Transform for Facial Feature Extraction in Face Recognition

Authors: M. Hassan, I. Osman, M. Yahia

Abstract:

This Paper proposes a new facial feature extraction approach, Wash-Hadamard Transform (WHT). This approach is based on correlation between local pixels of the face image. Its primary advantage is the simplicity of its computation. The paper compares the proposed approach, WHT, which was traditionally used in data compression with two other known approaches: the Principal Component Analysis (PCA) and the Discrete Cosine Transform (DCT) using the face database of Olivetti Research Laboratory (ORL). In spite of its simple computation, the proposed algorithm (WHT) gave very close results to those obtained by the PCA and DCT. This paper initiates the research into WHT and the family of frequency transforms and examines their suitability for feature extraction in face recognition applications.

Keywords: Face Recognition, Facial Feature Extraction, Principal Component Analysis, and Discrete Cosine Transform, Wash-Hadamard Transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2571
2049 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests

Authors: Julius Onyancha, Valentina Plekhanova

Abstract:

One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.

Keywords: Web log data, web user profile, user interest, noise web data learning, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1734