Search results for: Data representation
5657 Introduce Applicability of Multi-Layer Perceptron to Predict the Behaviour of Semi-Interlocking Masonry Panel
Authors: O. Zarrin, M. Ramezanshirazi
Abstract:
The Semi Interlocking Masonry (SIM) system has been developed in Masonry Research Group at the University of Newcastle, Australia. The main purpose of this system is to enhance the seismic resistance of framed structures with masonry panels. In this system, SIM panels dissipate energy through the sliding friction between rows of SIM units during earthquake excitation. This paper aimed to find the applicability of artificial neural network (ANN) to predict the displacement behaviour of the SIM panel under out-of-plane loading. The general concept of ANN needs to be trained by related force-displacement data of SIM panel. The overall data to train and test the network are 70 increments of force-displacement from three tests, which comprise of none input nodes. The input data contain height and length of panels, height, length and width of the brick and friction and geometry angle of brick along the compressive strength of the brick with the lateral load applied to the panel. The aim of designed network is prediction displacement of the SIM panel by Multi-Layer Perceptron (MLP). The mean square error (MSE) of network was 0.00042 and the coefficient of determination (R2) values showed the 0.91. The result revealed that the ANN has significant agreement to predict the SIM panel behaviour.Keywords: Semi interlocking masonry, artificial neural network, ANN, multi-layer perceptron, MLP, displacement, prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8165656 Mikrophonie I (1964) by Karlheinz Stockhausen - Between Idea and Auditory Image
Authors: Justyna Humięcka-Jakubowska
Abstract:
Background in music analysis: Traditionally, when we think about a composer’s sketches, the chances are that we are thinking in terms of the working out of detail, rather than the evolution of an overall concept. Since music is a “time art,” it follows that questions of a form cannot be entirely detached from considerations of time. One could say that composers tend to regard time either as a place gradually and partially intuitively filled, or they can look for a specific strategy to occupy it. It seems that the one thing that sheds light on Stockhausen’s compositional thinking is his frequent use of “form schemas,” that is often a single-page representation of the entire structure of a piece. Background in music technology: Sonic Visualiser is a program used to study a musical recording. It is an open source application for viewing, analyzing, and annotating music audio files. It contains a number of visualisation tools, which are designed with useful default parameters for musical analysis. Additionally, the Vamp plugin format of SV supports to provide analysis such as for example structural segmentation. Aims: The aim of paper is to show how SV may be used to obtain a better understanding of the specific musical work, and how the compositional strategy does impact on musical structures and musical surfaces. It is known that “traditional” music analytic methods don’t allow indicating interrelationships between musical surface (which is perceived) and underlying musical/acoustical structure. Main Contribution: Stockhausen had dealt with the most diverse musical problems by the most varied methods. A characteristic which he had never ceased to be placed at the center of his thought and works, it was the quest for a new balance founded upon an acute connection between speculation and intuition. In the case with Mikrophonie I (1964) for tam-tam and 6 players Stockhausen makes a distinction between the “connection scheme,” which indicates the ground rules underlying all versions, and the form scheme, which is associated with a particular version. The preface to the published score includes both the connection scheme, and a single instance of a “form scheme,” which is what one can hear on the CD recording. In the current study, the insight into the compositional strategy chosen by Stockhausen was been compared with auditory image, that is, with the perceived musical surface. Stockhausen’s musical work is analyzed both in terms of melodic/voice and timbre evolution. Implications: The current study shows how musical structures have determined of musical surface. The general assumption is this, that while listening to music we can extract basic kinds of musical information from musical surfaces. It is shown that interactive strategies of musical structure analysis can offer a very fruitful way of looking directly into certain structural features of music.Keywords: Automated analysis, composer's strategy, Mikrophonie I, musical surface, Stockhausen.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19495655 In Search of a Suitable Neural Network Capable of Fast Monitoring of Congestion Level in Electric Power Systems
Authors: Pradyumna Kumar Sahoo, Prasanta Kumar Satpathy
Abstract:
This paper aims at finding a suitable neural network for monitoring congestion level in electrical power systems. In this paper, the input data has been framed properly to meet the target objective through supervised learning mechanism by defining normal and abnormal operating conditions for the system under study. The congestion level, expressed as line congestion index (LCI), is evaluated for each operating condition and is presented to the NN along with the bus voltages to represent the input and target data. Once, the training goes successful, the NN learns how to deal with a set of newly presented data through validation and testing mechanism. The crux of the results presented in this paper rests on performance comparison of a multi-layered feed forward neural network with eleven types of back propagation techniques so as to evolve the best training criteria. The proposed methodology has been tested on the standard IEEE-14 bus test system with the support of MATLAB based NN toolbox. The results presented in this paper signify that the Levenberg-Marquardt backpropagation algorithm gives best training performance of all the eleven cases considered in this paper, thus validating the proposed methodology.
Keywords: Line congestion index, critical bus, contingency, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17885654 Further Investigation of α+12C and α+16O Elastic Scattering
Authors: Sh. Hamada
Abstract:
The current work aims to study the rainbow like-structure observed in the elastic scattering of alpha particles on both 12C and 16O nuclei. We reanalyzed the experimental elastic scattering angular distributions data for α+12C and α+16O nuclear systems at different energies using both optical model and double folding potential of different interaction models such as: CDM3Y1, DDM3Y1, CDM3Y6 and BDM3Y1. Potential created by BDM3Y1 interaction model has the shallowest depth which reflects the necessity to use higher renormalization factor (Nr). Both optical model and double folding potential of different interaction models fairly reproduce the experimental data.Keywords: Nuclear rainbow, elastic scattering, optical model, double folding, density distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17165653 The Role of People and Data in Complex Spatial-Related Long-Term Decisions: A Case Study of Capital Project Management Groups
Authors: Peter Boyes, Sarah Sharples, Paul Tennent, Gary Priestnall, Jeremy Morley
Abstract:
Significant long-term investment projects can involve complex decisions. These are often described as capital projects and the factors that contribute to their complexity include budgets, motivating reasons for investment, stakeholder involvement, interdependent projects, and the delivery phases required. The complexity of these projects often requires management groups to be established involving stakeholder representatives, these teams are inherently multidisciplinary. This study uses two university campus capital projects as case studies for this type of management group. Due to the interaction of projects with wider campus infrastructure and users, decisions are made at varying spatial granularity throughout the project lifespan. This spatial-related context brings complexity to the group decisions. Sensemaking is the process used to achieve group situational awareness of a complex situation, enabling the team to arrive at a consensus and make a decision. The purpose of this study is to understand the role of people and data in complex spatial related long-term decision and sensemaking processes. The paper aims to identify and present issues experienced in practical settings of these types of decision. A series of exploratory semi-structured interviews with members of the two projects elicit an understanding of their operation. From two stages of thematic analysis, inductive and deductive, emergent themes are identified around the group structure, the data usage, and the decision making within these groups. When data were made available to the group, there were commonly issues with perception of veracity and validity of the data presented; this impacted the ability of the group to reach consensus and therefore for decision to be made. Similarly, there were different responses to forecasted or modelled data, shaped by the experience and occupation of the individuals within the multidisciplinary management group. This paper provides an understanding of further support required for team sensemaking and decision making in complex capital projects. The paper also discusses the barriers found to effective decision making in this setting and suggests opportunities to develop decision support systems in this team strategic decision-making process. Recommendations are made for further research into the sensemaking and decision-making process of this complex spatial-related setting.
Keywords: decision making, decisions under uncertainty, real decisions, sensemaking, spatial, team decision making
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4935652 Integration of Support Vector Machine and Bayesian Neural Network for Data Mining and Classification
Authors: Essam Al-Daoud
Abstract:
Several combinations of the preprocessing algorithms, feature selection techniques and classifiers can be applied to the data classification tasks. This study introduces a new accurate classifier, the proposed classifier consist from four components: Signal-to- Noise as a feature selection technique, support vector machine, Bayesian neural network and AdaBoost as an ensemble algorithm. To verify the effectiveness of the proposed classifier, seven well known classifiers are applied to four datasets. The experiments show that using the suggested classifier enhances the classification rates for all datasets.Keywords: AdaBoost, Bayesian neural network, Signal-to-Noise, support vector machine, MCMC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20205651 Performance Assessment of Computational Gridon Weather Indices from HOAPS Data
Authors: Madhuri Bhavsar, Anupam K Singh, Shrikant Pradhan
Abstract:
Long term rainfall analysis and prediction is a challenging task especially in the modern world where the impact of global warming is creating complications in environmental issues. These factors which are data intensive require high performance computational modeling for accurate prediction. This research paper describes a prototype which is designed and developed on grid environment using a number of coupled software infrastructural building blocks. This grid enabled system provides the demanding computational power, efficiency, resources, user-friendly interface, secured job submission and high throughput. The results obtained using sequential execution and grid enabled execution shows that computational performance has enhanced among 36% to 75%, for decade of climate parameters. Large variation in performance can be attributed to varying degree of computational resources available for job execution. Grid Computing enables the dynamic runtime selection, sharing and aggregation of distributed and autonomous resources which plays an important role not only in business, but also in scientific implications and social surroundings. This research paper attempts to explore the grid enabled computing capabilities on weather indices from HOAPS data for climate impact modeling and change detection.Keywords: Climate model, Computational Grid, GridApplication, Heterogeneous Grid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14435650 A Comparative Study of Global Power Grids and Global Fossil Energy Pipelines Using GIS Technology
Authors: Wenhao Wang, Xinzhi Xu, Limin Feng, Wei Cong
Abstract:
This paper comprehensively investigates current development status of global power grids and fossil energy pipelines (oil and natural gas), proposes a standard visual platform of global power and fossil energy based on Geographic Information System (GIS) technology. In this visual platform, a series of systematic visual models is proposed with global spatial data, systematic energy and power parameters. Under this visual platform, the current Global Power Grids Map and Global Fossil Energy Pipelines Map are plotted within more than 140 countries and regions across the world. Using the multi-scale fusion data processing and modeling methods, the world’s global fossil energy pipelines and power grids information system basic database is established, which provides important data supporting global fossil energy and electricity research. Finally, through the systematic and comparative study of global fossil energy pipelines and global power grids, the general status of global fossil energy and electricity development are reviewed, and energy transition in key areas are evaluated and analyzed. Through the comparison analysis of fossil energy and clean energy, the direction of relevant research is pointed out for clean development and energy transition.Keywords: Energy Transition, geographic information system, fossil energy, power systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9695649 Analysis of Noodle Production Process at Yan Hu Food Manufacturing: Basis for Production Improvement
Authors: Rhadinia Tayag-Relanes, Felina C. Young
Abstract:
This study was conducted to analyze the noodle production process at Yan Hu Food Manufacturing for the basis of production improvement. The study utilized the Plan, Do, Check, Act (PDCA) approach and record review in the gathering of data for the calendar year 2019, specifically from August to October, focusing on the noodle products miki, canton, and misua. A causal-comparative research design was employed to establish cause-effect relationships among the variables, using descriptive statistics and correlation to compute the data gathered. The findings indicate that miki, canton, and misua production have distinct cycle times and production outputs in every set of its production processes, as well as varying levels of wastage. The company has not yet established a formal allowable rejection rate for wastage; instead, this paper used a 1% wastage limit. We recommended the following: machines used for each process of the noodle product must be consistently maintained and monitored; an assessment of all the production operators should be conducted by assessing their performance statistically based on the output and the machine performance; a root cause analysis must be conducted to identify solutions to production issues; and, an improved recording system for input and output of the production process of each noodle product should be established to eliminate the poor recording of data.
Keywords: Production, continuous improvement, process, operations, Plan, Do, Check, Act approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 325648 Pervasive Differentiated Services: A QoS Model for Pervasive Systems
Authors: Sherif G. Aly
Abstract:
In this article, we introduce a mechanism by which the same concept of differentiated services used in network transmission can be applied to provide quality of service levels to pervasive systems applications. The classical DiffServ model, including marking and classification, assured forwarding, and expedited forwarding, are all utilized to create quality of service guarantees for various pervasive applications requiring different levels of quality of service. Through a collection of various sensors, personal devices, and data sources, the transmission of contextsensitive data can automatically occur within a pervasive system with a given quality of service level. Triggers, initiators, sources, and receivers are four entities labeled in our mechanism. An explanation of the role of each is provided, and how quality of service is guaranteed.
Keywords: Pervasive systems, quality of service, differentiated services, mobile devices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14975647 Recommendations as a Key Aspect for Online Learning Personalization: Perceptions of Teachers and Students
Authors: N. Ipiña, R. Basagoiti, O. Jimenez, I. Arriaran
Abstract:
Higher education students are increasingly enrolling in online courses, they are, at the same time, generating data about their learning process in the courses. Data collected in those technology enhanced learning spaces can be used to identify patterns and therefore, offer recommendations/personalized courses to future online students. Moreover, recommendations are considered key aspects for personalization in online learning. Taking into account the above mentioned context, the aim of this paper is to explore the perception of higher education students and teachers towards receiving recommendations in online courses. The study was carried out with 322 students and 10 teachers from two different faculties (Engineering and Education) from Mondragon University. Online questionnaires and face to face interviews were used to gather data from the participants. Results from the questionnaires show that most of the students would like to receive recommendations in their online courses as a guide in their learning process. Findings from the interviews also show that teachers see recommendations useful for their students’ learning process. However, teachers believe that specific pedagogical training is required. Conclusions can also be drawn as regards the importance of personalization in technology enhanced learning. These findings have significant implications for those who train online teachers due to the fact that pedagogy should be the driven force and further training on the topic could be required. Therefore, further research is needed to better understand the impact of recommendations on online students’ learning process and draw some conclusion on pedagogical concerns.
Keywords: Higher education, perceptions, recommendations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12335646 Energy Efficient Data Aggregation in Sensor Networks with Optimized Cluster Head Selection
Authors: D. Naga Ravi Kiran, C. G. Dethe
Abstract:
Wireless Sensor Network (WSN) routing is complex due to its dynamic nature, computational overhead, limited battery life, non-conventional addressing scheme, self-organization, and sensor nodes limited transmission range. An energy efficient routing protocol is a major concern in WSN. LEACH is a hierarchical WSN routing protocol to increase network life. It performs self-organizing and re-clustering functions for each round. This study proposes a better sensor networks cluster head selection for efficient data aggregation. The algorithm is based on Tabu search.Keywords: Wireless Sensor Network (WSN), LEACH, Clustering, Tabu Search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20285645 Survey on Handover Security Issues in WiMAX Networks
Authors: R. Chithra, B. Kalaavathi, K. S. Aruna Shivani
Abstract:
Worldwide Interoperability for Microwave Access, is a broadband technology, which can effectively transmit a data across a group of users using Multicast and Broadcast Service. WiMAX belongs to a family of (IEEE 802.16) standards and is evolving as a fourth generation technology. WiMAX is the next generation technology that offers wireless access over long distances. MBS zone, which is a group of base stations that are broadcasting the same multicast packets which defines Multicast and Broadcast services. Handover is a process of transferring an ongoing call or data session from one channel connected to the core network to another channel. The handover causes authentication, delay, packet loss, jitter that mainly affects the communication. In this paper, we present a survey on handover security issues in WiMAX.Keywords: WiMAX, Handover, Multicast and Broadcast Security.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14065644 Injury Prediction for Soccer Players Using Machine Learning
Authors: Amiel Satvedi, Richard Pyne
Abstract:
Injuries in professional sports occur on a regular basis. Some may be minor while others can cause huge impact on a player’s career and earning potential. In soccer, there is a high risk of players picking up injuries during game time. This research work seeks to help soccer players reduce the risk of getting injured by predicting the likelihood of injury while playing in the near future and then providing recommendations for intervention. The injury prediction tool will use a soccer player’s number of minutes played on the field, number of appearances, distance covered and performance data for the current and previous seasons as variables to conduct statistical analysis and provide injury predictive results using a machine learning linear regression model.
Keywords: Injury predictor, soccer injury prevention, machine learning in soccer, big data in soccer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17485643 Novel Hybrid Method for Gene Selection and Cancer Prediction
Authors: Liping Jing, Michael K. Ng, Tieyong Zeng
Abstract:
Microarray data profiles gene expression on a whole genome scale, therefore, it provides a good way to study associations between gene expression and occurrence or progression of cancer. More and more researchers realized that microarray data is helpful to predict cancer sample. However, the high dimension of gene expressions is much larger than the sample size, which makes this task very difficult. Therefore, how to identify the significant genes causing cancer becomes emergency and also a hot and hard research topic. Many feature selection algorithms have been proposed in the past focusing on improving cancer predictive accuracy at the expense of ignoring the correlations between the features. In this work, a novel framework (named by SGS) is presented for stable gene selection and efficient cancer prediction . The proposed framework first performs clustering algorithm to find the gene groups where genes in each group have higher correlation coefficient, and then selects the significant genes in each group with Bayesian Lasso and important gene groups with group Lasso, and finally builds prediction model based on the shrinkage gene space with efficient classification algorithm (such as, SVM, 1NN, Regression and etc.). Experiment results on real world data show that the proposed framework often outperforms the existing feature selection and prediction methods, say SAM, IG and Lasso-type prediction model.Keywords: Gene Selection, Cancer Prediction, Lasso, Clustering, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20445642 Web Log Mining by an Improved AprioriAll Algorithm
Authors: Wang Tong, He Pi-lian
Abstract:
This paper sets forth the possibility and importance about applying Data Mining in Web logs mining and shows some problems in the conventional searching engines. Then it offers an improved algorithm based on the original AprioriAll algorithm which has been used in Web logs mining widely. The new algorithm adds the property of the User ID during the every step of producing the candidate set and every step of scanning the database by which to decide whether an item in the candidate set should be put into the large set which will be used to produce next candidate set. At the meantime, in order to reduce the number of the database scanning, the new algorithm, by using the property of the Apriori algorithm, limits the size of the candidate set in time whenever it is produced. Test results show the improved algorithm has a more lower complexity of time and space, better restrain noise and fit the capacity of memory.
Keywords: Candidate Sets Pruning, Data Mining, ImprovedAlgorithm, Noise Restrain, Web Log
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22815641 Simulation using the Recursive Method in USN
Authors: Tae Kyung Kim, Hee Suk Seo
Abstract:
Sensor networks are often deployed in unattended environments, thus leaving these networks vulnerable to false data injection attacks in which an adversary injects forged reports into the network through compromised nodes, with the goal of deceiving the base station or depleting the resources of forwarding nodes. Several research solutions have been recently proposed to detect and drop such forged reports during the forwarding process. Each design can provide the equivalent resilience in terms of node compromising. However, their energy consumption characteristics differ from each other. Thus, employing only a single filtering scheme for a network is not a recommendable strategy in terms of energy saving. It's very important the threshold determination for message authentication to identify. We propose the recursive contract net protocols which less energy level of terminal node in wireless sensor network.Keywords: Data filtering, recursive CNP, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15035640 The Use of Software and Internet Search Engines to Develop the Encoding and Decoding Skills of a Dyslexic Learner: A Case Study
Authors: Rabih Joseph Nabhan
Abstract:
This case study explores the impact of two major computer software programs Learn to Speak English and Learn English Spelling and Pronunciation, and some Internet search engines such as Google on mending the decoding and spelling deficiency of Simon X, a dyslexic student. The improvement in decoding and spelling may result in better reading comprehension and composition writing. Some computer programs and Internet materials can help regain the missing awareness and consequently restore his self-confidence and self-esteem. In addition, this study provides a systematic plan comprising a set of activities (four computer programs and Internet materials) which address the problem from the lowest to the highest levels of phoneme and phonological awareness. Four methods of data collection (accounts, observations, published tests, and interviews) create the triangulation to validly and reliably collect data before the plan, during the plan, and after the plan. The data collected are analyzed quantitatively and qualitatively. Sometimes the analysis is either quantitative or qualitative, and some other times a combination of both. Tables and figures are utilized to provide a clear and uncomplicated illustration of some data. The improvement in the decoding, spelling, reading comprehension, and composition writing skills that occurred is proved through the use of authentic materials performed by the student under study. Such materials are a comparison between two sample passages written by the learner before and after the plan, a genuine computer chat conversation, and the scores of the academic year that followed the execution of the plan. Based on these results, the researcher recommends further studies on other Lebanese dyslexic learners using the computer to mend their language problem in order to design and make a most reliable software program that can address this disability more efficiently and successfully.
Keywords: Analysis, awareness, dyslexic, software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6455639 Using SNAP and RADTRAD to Establish the Analysis Model for Maanshan PWR Plant
Authors: J. R. Wang, H. C. Chen, C. Shih, S. W. Chen, J. H. Yang, Y. Chiang
Abstract:
In this study, we focus on the establishment of the analysis model for Maanshan PWR nuclear power plant (NPP) by using RADTRAD and SNAP codes with the FSAR, manuals, and other data. In order to evaluate the cumulative dose at the Exclusion Area Boundary (EAB) and Low Population Zone (LPZ) outer boundary, Maanshan NPP RADTRAD/SNAP model was used to perform the analysis of the DBA LOCA case. The analysis results of RADTRAD were similar to FSAR data. These analysis results were lower than the failure criteria of 10 CFR 100.11 (a total radiation dose to the whole body, 250 mSv; a total radiation dose to the thyroid from iodine exposure, 3000 mSv).Keywords: RADionuclide, transport, removal, and dose estimation, RADTRAD, symbolic nuclear analysis package, SNAP, dose, PWR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10255638 Hydrothermal Alteration Zones Identification Based on Remote Sensing Data in the Mahin Area, West of Qazvin Province, Iran
Authors: R. Nouri, M.R. Jafari, M. Arain., F. Feizi
Abstract:
The Mahin area is a part of Tarom- Hashtjin zone that located in west of Qazvin province in northwest of Iran. Many copper and base metals ore deposits are hosted by this zone. High potential localities identification in this area is very necessary. The objective of this research, is finding hydrothermal alteration zones by remote sensing methods and best processing technique of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Different methods such as band ratio, Principal Component Analysis (PCA), Minimum Noise Fraction (MNF) and Least Square Fit (LS-Fit) were used for mapping hydrothermal alteration zones.Keywords: Hydrothermal alteration, Iran, Mahin, Remote sensing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28205637 Collaborative Online Learning for Lecturers
Authors: Lee Bih Ni, Emily Doreen Lee, Wee Hui Yean
Abstract:
This paper was prepared to see the perceptions of online lectures regarding collaborative learning, in terms of how lecturers view online collaborative learning in the higher learning institution. The purpose of this study was conducted to determine the perceptions of online lectures about collaborative learning, especially how lecturers see online collaborative learning in the university. Adult learning education enhance collaborative learning culture with the target of involving learners in the learning process to make teaching and learning more effective and open at the university. This will finally make students learning that will assist each other. It is also to cut down the pressure of loneliness and isolation might felt among adult learners. Their ways in collaborative online was also determined. In this paper, researchers collect data using questionnaires instruments. The collected data were analyzed and interpreted. By analyzing the data, researchers report the results according the proof taken from the respondents. Results from the study, it is not only dependent on the lecturer but also a student to shape a good collaborative learning practice. Rational concepts and pattern to achieve these targets be clear right from the beginning and may be good seen by a number of proposals submitted and include how the higher learning institution has trained with ongoing lectures online. Advantages of online collaborative learning show that lecturers should be trained effectively. Studies have seen that the lecturer aware of online collaborative learning. This positive attitude will encourage the higher learning institution to continue to give the knowledge and skills required.
Keywords: Collaborative Online Learning, Lecturers’ Training.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24535636 RDFGraph: New Data Modeling Tool for Semantic Web
Authors: Daniel Siahaan, Aditya Prapanca
Abstract:
The emerging Semantic Web has been attracted many researchers and developers. New applications have been developed on top of Semantic Web and many supporting tools introduced to improve its software development process. Metadata modeling is one of development process where supporting tools exists. The existing tools are lack of readability and easiness for a domain knowledge expert to graphically models a problem in semantic model. In this paper, a metadata modeling tool called RDFGraph is proposed. This tool is meant to solve those problems. RDFGraph is also designed to work with modern database management systems that support RDF and to improve the performance of the query execution process. The testing result shows that the rules used in RDFGraph follows the W3C standard and the graphical model produced in this tool is properly translated and correct.Keywords: CASE tool, data modeling, semantic web
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20915635 A Real Time Development Study for Automated Centralized Remote Monitoring System at Royal Belum Forest
Authors: Amri Yusoff, Shahrizuan Shafiril, Ashardi Abas, Norma Che Yusoff
Abstract:
Nowadays, illegal logging has been causing many effects including flash flood, avalanche, global warming, and etc. The purpose of this study was to maintain the earth ecosystem by keeping and regulate Malaysia’s treasurable rainforest by utilizing a new technology that will assist in real-time alert and give faster response to the authority to act on these illegal activities. The methodology of this research consisted of design stages that have been conducted as well as the system model and system architecture of the prototype in addition to the proposed hardware and software that have been mainly used such as microcontroller, sensor with the implementation of GSM, and GPS integrated system. This prototype was deployed at Royal Belum forest in December 2014 for phase 1 and April 2015 for phase 2 at 21 pinpoint locations. The findings of this research were the capture of data in real-time such as temperature, humidity, gaseous, fire, and rain detection which indicate the current natural state and habitat in the forest. Besides, this device location can be detected via GPS of its current location and then transmitted by SMS via GSM system. All of its readings were sent in real-time for further analysis. The data that were compared to meteorological department showed that the precision of this device was about 95% and these findings proved that the system is acceptable and suitable to be used in the field.Keywords: Remote monitoring system, forest data, GSM, GPS, wireless sensor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16215634 Impact of Graduates’ Quality of Education and Research on ICT Adoption at Workplace
Authors: Mohammed A. Kafaji
Abstract:
This paper aims to investigate the influence of quality of education and quality of research, provided by local educational institutions, on the adoption of Information and Communication Technology (ICT) in managing business operations for companies in Saudi market. A model was developed and tested using data collected from 138 Chief Executive Officers (CEOs) of foreign companies in diverse business sectors. The data is analyzed and managed using multivariate approaches through standard statistical packages. The results showed that educational quality has little contribution to the ICT adoption while research quality seems to play a more prominent role. These results are analyzed in terms of business environment and market constraints and further extended to the perceived effectiveness of applied pedagogical approaches in schools and universities.
Keywords: Domestic Competition, Quality of Education, Quality of Research, ICT Adoption, Mediation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17725633 Bank Loans and the Business Cycle: The Case of the Czech Republic
Authors: Libena Cernohorska, Jan Cernohorsky
Abstract:
This article aims to evaluate the impact of loans provided within the Czech banking sector on the growth of the Czech economy. The article is based on research of current scientific findings in respect to bank loans and economic development. The paper is based on data taken from the Czech Statistical Office on the development of the gross domestic product and data from the Czech National Bank on the development of loans from the period 2004-2015. Links between selected variables are tested using Granger causality tests. The results calculated confirm the hypothesis of the impact of the loans on economic growth, with a six-month delay. The results thus correspond to the standard economic findings and results of most previous studies.
Keywords: Bank, business cycle, economic growth, loans.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6695632 Towards Modeling for Crashes A Low-Cost Adaptive Methodology for Karachi
Authors: Mohammad Ahmed Rehmatullah
Abstract:
The aim of this paper is to discuss a low-cost methodology that can predict traffic flow conflicts and quantitatively rank crash expectancies (based on relative probability) for various traffic facilities. This paper focuses on the application of statistical distributions to model traffic flow and Monte Carlo techniques to simulate traffic and discusses how to create a tool in order to predict the possibility of a traffic crash. A low-cost data collection methodology has been discussed for the heterogeneous traffic flow that exists and a GIS platform has been proposed to thematically represent traffic flow from simulations and the probability of a crash. Furthermore, discussions have been made to reflect the dynamism of the model in reference to its adaptability, adequacy, economy, and efficiency to ensure adoption.
Keywords: Heterogeneous traffic data collection, Monte CarloSimulation, Traffic Flow Modeling, GIS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14355631 Intelligent Transport System: Classification of Traffic Signs Using Deep Neural Networks in Real Time
Authors: Anukriti Kumar, Tanmay Singh, Dinesh Kumar Vishwakarma
Abstract:
Traffic control has been one of the most common and irritating problems since the time automobiles have hit the roads. Problems like traffic congestion have led to a significant time burden around the world and one significant solution to these problems can be the proper implementation of the Intelligent Transport System (ITS). It involves the integration of various tools like smart sensors, artificial intelligence, position technologies and mobile data services to manage traffic flow, reduce congestion and enhance driver's ability to avoid accidents during adverse weather. Road and traffic signs’ recognition is an emerging field of research in ITS. Classification problem of traffic signs needs to be solved as it is a major step in our journey towards building semi-autonomous/autonomous driving systems. The purpose of this work focuses on implementing an approach to solve the problem of traffic sign classification by developing a Convolutional Neural Network (CNN) classifier using the GTSRB (German Traffic Sign Recognition Benchmark) dataset. Rather than using hand-crafted features, our model addresses the concern of exploding huge parameters and data method augmentations. Our model achieved an accuracy of around 97.6% which is comparable to various state-of-the-art architectures.
Keywords: Multiclass classification, convolution neural network, OpenCV, Data Augmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8165630 On-The-Spot Spectators- Motivations, Experiences, and Satisfactions at the 2011 TPGA Ever Rich Championship – North Bay Open
Authors: Li-Wei Liu, Cheng-Yu Tsai, Ming-Tsang Wu
Abstract:
The study investigated the 2011 TPGA Ever Rich Championship – North Bay Open spectators- on-the-site spectating motivations, experiences, and satisfactions. The research was conducted on a convenience sample of the on-the-spot spectators at the North Bay Golf and Country Club. A total of 200 questionnaires were distributed, of which 185 valid questionnaires were collected, approaching a 92.5% response rate. The data obtained was analyzed with statistical techniques. First, the data showed significant differences in motivations, experiences, and satisfactions relative to demographic variables among the on-the-spot spectators. Second, spectating motivation, experience, and satisfaction were significantly related to one another.Keywords: Spectating motivation, spectating experience, spectating satisfaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12885629 Entropy Analysis in a Bubble Column Based on Ultrafast X-Ray Tomography Data
Authors: Stoyan Nedeltchev, Markus Schubert
Abstract:
By means of the ultrafast X-ray tomography facility, data were obtained at different superficial gas velocities UG in a bubble column (0.1 m in ID) operated with an air-deionized water system at ambient conditions. Raw reconstructed images were treated by both the information entropy (IE) and the reconstruction entropy (RE) algorithms in order to identify the main transition velocities in a bubble column. The IE values exhibited two well-pronounced minima at UG=0.025 m/s and UG=0.085 m/s identifying the boundaries of the homogeneous, transition and heterogeneous regimes. The RE extracted from the central region of the column’s cross-section exhibited only one characteristic peak at UG=0.03 m/s, which was attributed to the transition from the homogeneous to the heterogeneous flow regime. This result implies that the transition regime is non-existent in the core of the column.
Keywords: Bubble column, ultrafast X-ray tomography, information entropy, reconstruction entropy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15245628 Feature Subset Selection approach based on Maximizing Margin of Support Vector Classifier
Authors: Khin May Win, Nan Sai Moon Kham
Abstract:
Identification of cancer genes that might anticipate the clinical behaviors from different types of cancer disease is challenging due to the huge number of genes and small number of patients samples. The new method is being proposed based on supervised learning of classification like support vector machines (SVMs).A new solution is described by the introduction of the Maximized Margin (MM) in the subset criterion, which permits to get near the least generalization error rate. In class prediction problem, gene selection is essential to improve the accuracy and to identify genes for cancer disease. The performance of the new method was evaluated with real-world data experiment. It can give the better accuracy for classification.Keywords: Microarray data, feature selection, recursive featureelimination, support vector machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542