Search results for: Direct approach
3651 The Influence of Job Recognition and Job Motivation on Organizational Commitment in Public Sector: The Mediation Role of Employee Engagement
Authors: Muhammad Tayyab, Saba Saira
Abstract:
It is an established fact that organizations across the globe consider employees as their assets and try to advance their well-being. However, the local firms of developing countries are mostly profit oriented and do not have much concern about their employees’ engagement or commitment. Like other developing countries, the local organizations of Pakistan are also less concerned about the well-being of their employees. Especially public sector organizations lack concern regarding engagement, satisfaction or commitment of the employees. Therefore, this study aimed at investigating the impact of job recognition and job motivation on organizational commitment in the mediation role of employee engagement. The data were collected from land record officers of board of revenue, Punjab, Pakistan. Structured questionnaire was used to collect data through physically visiting land record officers and also through the internet. A total of 318 land record officers’ responses were finalized to perform data analysis. The data were analyzed through confirmatory factor analysis and structural equation modeling technique. The findings revealed that job recognition and job motivation have direct as well as indirect positive and significant impact on organizational commitment. The limitations, practical implications and future research indications are also explained.Keywords: Job motivation, job recognition, employee engagement, employee commitment, public sector, land record officers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8513650 Placer Gold Deposits in Madari Gold Mine, Southern Eastern Desert, Egypt: Orientation, Source and Distribution
Authors: Tarek Sedki
Abstract:
Madari gold mine is delineated by latitudes 22° 30' 29" and 22° 32' 33" N and longitudes 36° 24' 03" and 35°11' 44" E. Geologically, Madari rock units are classified into dismembered ophiolites, arc volcanic assemblage, syntectonic metagabbro-diorites and Mineralized quartz diorite and granodiorite. Deposition of gold in area occurred as a direct result of weathering of nearby gold-bearing veins. Main concentrations of gold are supposed to ensue close to the bed rock. Nevertheless, the several shallow channel-fill features covering lag deposits, arising throughout the alluvial fan sequence would definitely contain a percentage of the finer gold due to the limited washing and sorting capacity of the uncommon flood events. Gold deposits arise as disseminated and separate gold with limited pyrite, arsenopyrite and chalcopyrite everywhere veins in the wall rocks and lode gold deposits in quartz veins. In places, the wall rocks, in near district of the quartz vein, are grieved strong silicification, chloritization and pyritization as a result of a metasomatic alteration due to purification of external hydrothermal fluids. Quartz veins are mostly steeply dipping and display banding features and frequently sheared and brecciated.
Keywords: Madari gold mine, placer deposits, southern eastern desert, gold mineralization, quartz veins.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4253649 Solar Radiation Time Series Prediction
Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs
Abstract:
A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled direct normal irradiance field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.
Keywords: Artificial Neural Networks, Resilient Propagation, Solar Radiation, Time Series Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27633648 Physical Conserved Quantities for the Axisymmetric Liquid, Free and Wall Jets
Authors: Rehana Naz, D. P. Mason, Fazal Mahomed
Abstract:
A systematic way to derive the conserved quantities for the axisymmetric liquid jet, free jet and wall jet using conservation laws is presented. The flow in axisymmetric jets is governed by Prandtl-s momentum boundary layer equation and the continuity equation. The multiplier approach is used to construct a basis of conserved vectors for the system of two partial differential equations for the two velocity components. The basis consists of two conserved vectors. By integrating the corresponding conservation laws across the jet and imposing the boundary conditions, conserved quantities are derived for the axisymmetric liquid and free jet. The multiplier approach applied to the third-order partial differential equation for the stream function yields two local conserved vectors one of which is a non-local conserved vector for the system. One of the conserved vectors gives the conserved quantity for the axisymmetric free jet but the conserved quantity for the wall jet is not obtained from the second conserved vector. The conserved quantity for the axisymmetric wall jet is derived from a non-local conserved vector of the third-order partial differential equation for the stream function. This non-local conserved vector for the third-order partial differential equation for the stream function is obtained by using the stream function as multiplier.
Keywords: Axisymmetric jet, liquid jet, free jet, wall jet, conservation laws, conserved quantity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14643647 A Game-Theoretic Approach to Hedonic Housing Prices
Authors: Cielito F. Habito, Michael O. Santos, Andres G. Victorio
Abstract:
A property-s selling price is described as the result of sequential bargaining between a buyer and a seller in an environment of asymmetric information. Hedonic housing prices are estimated based upon 17,333 records of New Zealand residential properties sold during the years 2006 and 2007.Keywords: Housing demand, hedonics and valuation, residentialmarkets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13863646 Effects of Chlorhexidine in Application to Hybrid Layers
Authors: Ilma Robo, Saimir Heta, Edona Hasanaj, Vera Ostreni
Abstract:
The hybrid layer (HL), the way it is created and how it is protected against degradation over time, is the key to the clinical success of a composite restoration. The composite supports the dentinal structure exactly with the realized surface of micro-retention. Thus, this surface is in direct proportion to its size versus the duration of clinical use of composite dental restoration. Micro-retention occurs between dentin or acidified enamel and adhesive resin extensions versus pre-prepared spaces, such as hollow dentinal tubules. The way the adhesive resin binds to the acidified dentinal structure depends on the physical or chemical factors of this interrelationship between two structures with very different characteristics. During the acidification process, a precursor to the placement of the adhesive resin layer, activation of metalloproteinases of dental origin occurs, enzymes which are responsible for the degradation of the HL. These enzymes have expressed activity depending on the presence of Zn2+ or Ca2+ ions. There are several ways to inhibit these enzymes, and consequently, there are several ways to inhibit the degradation process of the HL. The study aim is to evaluate chlorhexidine (CHX) as a solution element, inhibitor of dentin activated metalloproteinases, as a result of the application of acidification. This study aims to look at this solution in advantage or contraindication theories, already published in the literature.
Keywords: Hybrid layer, chlorhexidine, degradation, smear layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3493645 Solving an Extended Resource Leveling Problem with Multiobjective Evolutionary Algorithms
Authors: Javier Roca, Etienne Pugnaghi, Gaëtan Libert
Abstract:
We introduce an extended resource leveling model that abstracts real life projects that consider specific work ranges for each resource. Contrary to traditional resource leveling problems this model considers scarce resources and multiple objectives: the minimization of the project makespan and the leveling of each resource usage over time. We formulate this model as a multiobjective optimization problem and we propose a multiobjective genetic algorithm-based solver to optimize it. This solver consists in a two-stage process: a main stage where we obtain non-dominated solutions for all the objectives, and a postprocessing stage where we seek to specifically improve the resource leveling of these solutions. We propose an intelligent encoding for the solver that allows including domain specific knowledge in the solving mechanism. The chosen encoding proves to be effective to solve leveling problems with scarce resources and multiple objectives. The outcome of the proposed solvers represent optimized trade-offs (alternatives) that can be later evaluated by a decision maker, this multi-solution approach represents an advantage over the traditional single solution approach. We compare the proposed solver with state-of-art resource leveling methods and we report competitive and performing results.
Keywords: Intelligent problem encoding, multiobjective decision making, evolutionary computing, RCPSP, resource leveling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41953644 Exploring Methods and Strategies for Sustainable Urban Development
Authors: Klio Monokrousou, Maria Giannopoulou
Abstract:
Urban areas, as they have been developed and operate today, are areas of accumulation of a significant amount of people and a large number of activities that generate desires and reasons for traveling. The territorial expansion of the cities as well as the need to preserve the importance of the central city areas lead to the continuous increase of transportation needs which in the limited urban space results in creating serious traffic and operational problems. The modern perception of urban planning is directed towards more holistic approaches and integrated policies that make it economically competitive, socially just and more environmentally friendly. Over the last 25 years, the goal of sustainable transport development has been central to the agenda of any plan or policy for the city. The modern planning of urban space takes into account the economic and social aspects of the city and the importance of the environment to sustainable urban development. In this context, the European Union promotes direct or indirect related interventions according to the cohesion and environmental policies; many countries even had the chance to actually test them. This paper explores the methods and processes that have been developed towards this direction and presents a review and systematic presentation of this work. The ultimate purpose of this research is to effectively use this review to create a decision making methodological framework which can be the basis of a useful operational tool for sustainable urban planning.Keywords: Sustainable urban development, urban mobility, urban regeneration methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35053643 Modular Harmonic Cancellation in a Multiplier High Voltage Direct Current Generator
Authors: Ahmad Zahran, Ahmed Herzallah, Ahmad Ahmad, Mahran Quraan
Abstract:
Generation of high DC voltages is necessary for testing the insulation material of high voltage AC transmission lines with long lengths. The harmonic and ripple contents of the output DC voltage supplied by high voltage DC circuits require the use of costly capacitors to smooth the output voltage after rectification. This paper proposes a new modular multiplier high voltage DC generator with embedded Cockcroft-Walton circuits that achieve a negligible harmonic and ripple contents of the output DC voltage without the need for costly filters to produce a nearly constant output voltage. In this new topology, Cockcroft-Walton modules are connected in series to produce a high DC output voltage. The modules are supplied by low input AC voltage sources that have the same magnitude and frequency and shifted from each other by a certain angle to eliminate the harmonics from the output voltage. The small ripple factor is provided by the smoothing column capacitors and the phase shifted input voltages of the cascaded modules. The constituent harmonics within each module are determined using Fourier analysis. The viability of the proposed DC generator for testing purposes and the effectiveness of the cascaded connection are confirmed by numerical simulations using MATLAB/Simulink.
Keywords: Cockcroft-Walton circuit, Harmonics, Ripple factor, HVDC generator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8323642 Six Sigma-Based Optimization of Shrinkage Accuracy in Injection Molding Processes
Authors: Sky Chou, Joseph C. Chen
Abstract:
This paper focuses on using six sigma methodologies to reach the desired shrinkage of a manufactured high-density polyurethane (HDPE) part produced by the injection molding machine. It presents a case study where the correct shrinkage is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for an injection molding process. To improve this process and keep the product within specifications, the six sigma methodology, design, measure, analyze, improve, and control (DMAIC) approach, was implemented in this study. The six sigma approach was paired with the Taguchi methodology to identify the optimized processing parameters that keep the shrinkage rate within the specifications by our customer. An L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of the cooling time, melt temperature, holding time, and metering stroke. The noise factor is the difference between material brand 1 and material brand 2. After the confirmation run was completed, measurements verify that the new parameter settings are optimal. With the new settings, the process capability index has improved dramatically. The purpose of this study is to show that the six sigma and Taguchi methodology can be efficiently used to determine important factors that will improve the process capability index of the injection molding process.
Keywords: Injection molding, shrinkage, six sigma, Taguchi parameter design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13833641 Evaluating the Nexus between Energy Demand and Economic Growth Using the VECM Approach: Case Study of Nigeria, China, and the United States
Authors: Rita U. Onolemhemhen, Saheed L. Bello, Akin P. Iwayemi
Abstract:
The effectiveness of energy demand policy depends on identifying the key drivers of energy demand both in the short-run and the long-run. This paper examines the influence of regional differences on the link between energy demand and other explanatory variables for Nigeria, China and USA using the Vector Error Correction Model (VECM) approach. This study employed annual time series data on energy consumption (ED), real gross domestic product (GDP) per capita (RGDP), real energy prices (P) and urbanization (N) for a thirty-six-year sample period. The utilized time-series data are sourced from World Bank’s World Development Indicators (WDI, 2016) and US Energy Information Administration (EIA). Results from the study, shows that all the independent variables (income, urbanization, and price) substantially affect the long-run energy consumption in Nigeria, USA and China, whereas, income has no significant effect on short-run energy demand in USA and Nigeria. In addition, the long-run effect of urbanization is relatively stronger in China. Urbanization is a key factor in energy demand, it therefore recommended that more attention should be given to the development of rural communities to reduce the inflow of migrants into urban communities which causes the increase in energy demand and energy excesses should be penalized while energy management should be incentivized.Keywords: Economic growth, energy demand, income, real GDP, urbanization, VECM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9893640 Siding Mode Control of Pitch-Rate of an F-16 Aircraft
Authors: Ekprasit Promtun, Sridhar Seshagiri
Abstract:
This paper considers the control of the longitudinal flight dynamics of an F-16 aircraft. The primary design objective is model-following of the pitch rate q, which is the preferred system for aircraft approach and landing. Regulation of the aircraft velocity V (or the Mach-hold autopilot) is also considered, but as a secondary objective. The problem is challenging because the system is nonlinear, and also non-affine in the input. A sliding mode controller is designed for the pitch rate, that exploits the modal decomposition of the linearized dynamics into its short-period and phugoid approximations. The inherent robustness of the SMC design provides a convenient way to design controllers without gain scheduling, with a steady-state response that is comparable to that of a conventional polynomial based gain-scheduled approach with integral control, but with improved transient performance. Integral action is introduced in the sliding mode design using the recently developed technique of “conditional integrators", and it is shown that robust regulation is achieved with asymptotically constant exogenous signals, without degrading the transient response. Through extensive simulation on the nonlinear multiple-input multiple-output (MIMO) longitudinal model of the F-16 aircraft, it is shown that the conditional integrator design outperforms the one based on the conventional linear control, without requiring any scheduling.Keywords: Sliding-mode Control, Integral Control, Model Following, F-16 Longitudinal Dynamics, Pitch-Rate Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32213639 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering
Authors: Sharifah Mousli, Sona Taheri, Jiayuan He
Abstract:
Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD, as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches, such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.
Keywords: Autism spectrum disorder, clustering, optimization, unsupervised machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4213638 Simple Infrastructure in Measuring Countries e-Government
Authors: Sukhbaatar Dorj, Erdenebaatar Altangerel
Abstract:
As alternative to existing e-government measuring models, here proposed a new customer centric, service oriented, simple approach for measuring countries e-Governments. If successfully implemented, built infrastructure will provide a single egovernment index number for countries. Main schema is as follows. Country CIO or equal position government official, at the beginning of each year will provide to United Nations dedicated web site 4 numbers on behalf of own country: 1) Ratio of available online public services, to total number of public services, 2) Ratio of interagency inter ministry online public services to total number of available online public services, 3) Ratio of total number of citizen and business entities served online annually to total number of citizen and business entities served annually online and physically on those services, 4) Simple index for geographical spread of online served citizen and business entities. 4 numbers then combined into one index number by mathematical Average function. In addition to 4 numbers 5th number can be introduced as service quality indicator of online public services. If in ordering of countries index number is equal, 5th criteria will be used. Notice: This approach is for country’s current e-government achievement assessment, not for e-government readiness assessment.
Keywords: Countries e-government index, e-government, infrastructure for measuring e-government, measuring e-government.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16843637 Accurate Position Electromagnetic Sensor Using Data Acquisition System
Authors: Z. Ezzouine, A. Nakheli
Abstract:
This paper presents a high position electromagnetic sensor system (HPESS) that is applicable for moving object detection. The authors have developed a high-performance position sensor prototype dedicated to students’ laboratory. The challenge was to obtain a highly accurate and real-time sensor that is able to calculate position, length or displacement. An electromagnetic solution based on a two coil induction principal was adopted. The HPESS converts mechanical motion to electric energy with direct contact. The output signal can then be fed to an electronic circuit. The voltage output change from the sensor is captured by data acquisition system using LabVIEW software. The displacement of the moving object is determined. The measured data are transmitted to a PC in real-time via a DAQ (NI USB -6281). This paper also describes the data acquisition analysis and the conditioning card developed specially for sensor signal monitoring. The data is then recorded and viewed using a user interface written using National Instrument LabVIEW software. On-line displays of time and voltage of the sensor signal provide a user-friendly data acquisition interface. The sensor provides an uncomplicated, accurate, reliable, inexpensive transducer for highly sophisticated control systems.
Keywords: Electromagnetic sensor, data acquisition, accurately, position measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9613636 Building a Transformative Continuing Professional Development Experience for Educators through a Principle-Based, Technological-Driven Knowledge Building Approach: A Case Study of a Professional Learning Team in Secondary Education
Authors: Melvin Chan, Chew Lee Teo
Abstract:
There has been a growing emphasis in elevating the teachers’ proficiency and competencies through continuing professional development (CPD) opportunities. In this era of a Volatile, Uncertain, Complex, Ambiguous (VUCA) world, teachers are expected to be collaborative designers, critical thinkers and creative builders. However, many of the CPD structures are still revolving in the model of transmission, which stands in contradiction to the cultivation of future-ready teachers for the innovative world of emerging technologies. This article puts forward the framing of CPD through a Principle-Based, Technological-Driven Knowledge Building Approach grounded in the essence of andragogy and progressive learning theories where growth is best exemplified through an authentic immersion in a social/community experience-based setting. Putting this Knowledge Building Professional Development Model (KBPDM) in operation via a Professional Learning Team (PLT) situated in a Secondary School in Singapore, research findings reveal that the intervention has led to a fundamental change in the learning paradigm of the teachers, henceforth equipping and empowering them successfully in their pedagogical design and practices for a 21st century classroom experience. This article concludes with the possibility in leveraging the Learning Analytics to deepen the CPD experiences for educators.
Keywords: Continual professional development, knowledge building, learning paradigm, andragogy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10153635 A Rule-based Approach for Anomaly Detection in Subscriber Usage Pattern
Authors: Rupesh K. Gopal, Saroj K. Meher
Abstract:
In this report we present a rule-based approach to detect anomalous telephone calls. The method described here uses subscriber usage CDR (call detail record) data sampled over two observation periods: study period and test period. The study period contains call records of customers- non-anomalous behaviour. Customers are first grouped according to their similar usage behaviour (like, average number of local calls per week, etc). For customers in each group, we develop a probabilistic model to describe their usage. Next, we use maximum likelihood estimation (MLE) to estimate the parameters of the calling behaviour. Then we determine thresholds by calculating acceptable change within a group. MLE is used on the data in the test period to estimate the parameters of the calling behaviour. These parameters are compared against thresholds. Any deviation beyond the threshold is used to raise an alarm. This method has the advantage of identifying local anomalies as compared to techniques which identify global anomalies. The method is tested for 90 days of study data and 10 days of test data of telecom customers. For medium to large deviations in the data in test window, the method is able to identify 90% of anomalous usage with less than 1% false alarm rate.Keywords: Subscription fraud, fraud detection, anomalydetection, maximum likelihood estimation, rule based systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28133634 Development of a Neural Network based Algorithm for Multi-Scale Roughness Parameters and Soil Moisture Retrieval
Authors: L. Bennaceur Farah, I. R. Farah, R. Bennaceur, Z. Belhadj, M. R. Boussema
Abstract:
The overall objective of this paper is to retrieve soil surfaces parameters namely, roughness and soil moisture related to the dielectric constant by inverting the radar backscattered signal from natural soil surfaces. Because the classical description of roughness using statistical parameters like the correlation length doesn't lead to satisfactory results to predict radar backscattering, we used a multi-scale roughness description using the wavelet transform and the Mallat algorithm. In this description, the surface is considered as a superposition of a finite number of one-dimensional Gaussian processes each having a spatial scale. A second step in this study consisted in adapting a direct model simulating radar backscattering namely the small perturbation model to this multi-scale surface description. We investigated the impact of this description on radar backscattering through a sensitivity analysis of backscattering coefficient to the multi-scale roughness parameters. To perform the inversion of the small perturbation multi-scale scattering model (MLS SPM) we used a multi-layer neural network architecture trained by backpropagation learning rule. The inversion leads to satisfactory results with a relative uncertainty of 8%.Keywords: Remote sensing, rough surfaces, inverse problems, SAR, radar scattering, Neural networks and Fractals.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15953633 A Modular On-line Profit Sharing Approach in Multiagent Domains
Authors: Pucheng Zhou, Bingrong Hong
Abstract:
How to coordinate the behaviors of the agents through learning is a challenging problem within multi-agent domains. Because of its complexity, recent work has focused on how coordinated strategies can be learned. Here we are interested in using reinforcement learning techniques to learn the coordinated actions of a group of agents, without requiring explicit communication among them. However, traditional reinforcement learning methods are based on the assumption that the environment can be modeled as Markov Decision Process, which usually cannot be satisfied when multiple agents coexist in the same environment. Moreover, to effectively coordinate each agent-s behavior so as to achieve the goal, it-s necessary to augment the state of each agent with the information about other existing agents. Whereas, as the number of agents in a multiagent environment increases, the state space of each agent grows exponentially, which will cause the combinational explosion problem. Profit sharing is one of the reinforcement learning methods that allow agents to learn effective behaviors from their experiences even within non-Markovian environments. In this paper, to remedy the drawback of the original profit sharing approach that needs much memory to store each state-action pair during the learning process, we firstly address a kind of on-line rational profit sharing algorithm. Then, we integrate the advantages of modular learning architecture with on-line rational profit sharing algorithm, and propose a new modular reinforcement learning model. The effectiveness of the technique is demonstrated using the pursuit problem.Keywords: Multi-agent learning; reinforcement learning; rationalprofit sharing; modular architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14463632 Fighter Aircraft Selection Using Technique for Order Preference by Similarity to Ideal Solution with Multiple Criteria Decision Making Analysis
Authors: C. Ardil
Abstract:
This paper presents a multiple criteria decision making analysis technique for selecting fighter aircraft for the national air force. The selection of military aircraft is a process consisting of contradictory goals and objectives. When a modern air force needs to choose fighter aircraft to upgrade existing fleets, a multiple criteria decision making analysis and scenario planning for defense acquisition has been put forward. The selection of fighter aircraft for the air defense force is a strategic decision making process, since the purchase or lease of fighter jets, maintenance and operating costs and having a fleet is the biggest cost for the air force. Multiple criteria decision making analysis methods are effectively applied to facilitate decision making from various available options. The selection criteria were determined using the literature on the problem of fighter aircraft selection. The selection of fighter aircraft to be purchased for the air defense forces is handled using a multiple criteria decision making analysis technique that also determines a suitable methodological approach for the defense procurement and fleet upgrade planning process. The aim of this study is to originate an approach to evaluate fighter aircraft alternatives, Su-35, F-35, and TF-X (MMU), based on technique for order preference by similarity to ideal solution (TOPSIS).
Keywords: Fighter Aircraft, Fighter Aircraft Selection, Technique for Order Preference by Similarity to Ideal Solution, TOPSIS, Multiple Criteria Decision Making, Multiple Criteria Decision Making Analysis, MCDMA, Su-35, F-35, TF-X (MMU)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6323631 An Approach to Capture, Evaluate and Handle Complexity of Engineering Change Occurrences in New Product Development
Authors: Mohammad Rostami Mehr, Seyed Arya Mir Rashed, Arndt Lueder, Magdalena Mißler-Behr
Abstract:
This paper represents the conception that complex problems do not necessary need similar complex solutions in order to cope with the complexity. Furthermore, a simple solution based on established methods can provide a sufficient way dealing with the complexity. To verify this conception, the presented paper focuses on the field of change management as a part of new product development process in automotive sector. In the field of complexity management, dealing with increasing complexity is essential, while, only non-flexible rigid processes that are not designed to handle complexity are available. The basic methodology of this paper can be divided in four main sections: 1) analyzing the complexity of the change management, 2) literature review in order to identify potential solutions and methods, 3) capturing and implementing expertise of experts from change management filed of an automobile manufacturing company and 4) systematical comparison of the identified methods from literature and connecting these with defined requirements of the complexity of the change management in order to develop a solution. As a practical outcome, this paper provides a method to capture the complexity of engineering changes (EC) and includes it within the EC evaluation process, following case-related process guidance to cope with the complexity. Furthermore, this approach supports the conception that dealing with complexity is possible while utilizing rather simple and established methods by combining them in to a powerful tool.
Keywords: complexity management, new product development, engineering change management, flexibility
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5573630 A Robotic “Puppet Master” Application to ASD Therapeutic Support
Authors: Sophie Sakka, Rénald Gaboriau
Abstract:
This paper describes a preliminary work aimed at setting a therapeutic support for autistic teenagers using three humanoid robots NAO shared by ASD (Autism Spectrum Disorder) subjects. The studied population had attended successfully a first year program, and were observed with a second year program using the robots. This paper focuses on the content and the effects of the second year program. The approach is based on a master puppet concept: the subjects program the robots, and use them as an extension for communication. Twenty sessions were organized, alternating ten preparatory sessions and ten robotics programming sessions. During the preparatory sessions, the subjects write a story to be played by the robots. During the robot programming sessions, the subjects program the motions to be realized to make the robot tell the story. The program was concluded by a public performance. The experiment involves five ASD teenagers aged 12-15, who had all attended the first year robotics training. As a result, a progress in voluntary and organized communication skills of the five subjects was observed, leading to improvements in social organization, focus, voluntary communication, programming, reading and writing abilities. The changes observed in the subjects general behavior took place in a short time, and could be observed from one robotics session to the next one. The approach allowed the subjects to draw the limits of their body with respect to the environment, and therefore helped them confronting the world with less anxiety.Keywords: Autism spectrum disorder, robot, therapeutic support, rob’autism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8563629 A Neutral Set Approach for Applying TOPSIS in Maintenance Strategy Selection
Authors: C. Ardil
Abstract:
This paper introduces the concept of neutral sets (NSs) and explores various operations on NSs, along with their associated properties. The foundation of the Neutral Set framework lies in ontological neutrality and the principles of logic, including the Law of Non-Contradiction. By encompassing components for possibility, indeterminacy, and necessity, the NS framework provides a flexible representation of truth, uncertainty, and necessity, accommodating diverse ontological perspectives without presupposing specific existential commitments. The inclusion of Possibility acknowledges the spectrum of potential states or propositions, promoting neutrality by accommodating various viewpoints. Indeterminacy reflects the inherent uncertainty in understanding reality, refraining from making definitive ontological commitments in uncertain situations. Necessity captures propositions that must hold true under all circumstances, aligning with the principle of logical consistency and implicitly supporting the Law of Non-Contradiction. Subsequently, a neutral set-TOPSIS approach is applied in the maintenance strategy selection problem, demonstrating the practical applicability of the NS framework. The paper further explores uncertainty relations and presents the fundamental preliminaries of NS theory, emphasizing its role in fostering ontological neutrality and logical coherence in reasoning.
Keywords: Uncertainty sets, neutral sets, maintenance strategy selection multiple criteria decision-making analysis, MCDM, uncertainty decision analysis, distance function, multiple attribute, decision making, selection method, uncertainty, TOPSIS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1183628 Application of a Systemic Soft Domain-Driven Design Framework
Authors: Mohammed Salahat, Steve Wade, Izhar Ul-Haq
Abstract:
This paper proposes a “soft systems" approach to domain-driven design of computer-based information systems. We propose a systemic framework combining techniques from Soft Systems Methodology (SSM), the Unified Modelling Language (UML), and an implementation pattern known as “Naked Objects". We have used this framework in action research projects that have involved the investigation and modelling of business processes using object-oriented domain models and the implementation of software systems based on those domain models. Within the proposed framework, Soft Systems Methodology (SSM) is used as a guiding methodology to explore the problem situation and to generate a ubiquitous language (soft language) which can be used as the basis for developing an object-oriented domain model. The domain model is further developed using techniques based on the UML and is implemented in software following the “Naked Objects" implementation pattern. We argue that there are advantages from combining and using techniques from different methodologies in this way. The proposed systemic framework is overviewed and justified as multimethodologyusing Mingers multimethodology ideas. This multimethodology approach is being evaluated through a series of action research projects based on real-world case studies. A Peer-Tutoring case study is presented here as a sample of the framework evaluation processKeywords: SSM, UML, Domain-Driven Design, Soft Domain-Driven Design, Naked Objects, Soft Languag e.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17783627 Fuzzy Logic Approach to Robust Regression Models of Uncertain Medical Categories
Authors: Arkady Bolotin
Abstract:
Dichotomization of the outcome by a single cut-off point is an important part of various medical studies. Usually the relationship between the resulted dichotomized dependent variable and explanatory variables is analyzed with linear regression, probit regression or logistic regression. However, in many real-life situations, a certain cut-off point dividing the outcome into two groups is unknown and can be specified only approximately, i.e. surrounded by some (small) uncertainty. It means that in order to have any practical meaning the regression model must be robust to this uncertainty. In this paper, we show that neither the beta in the linear regression model, nor its significance level is robust to the small variations in the dichotomization cut-off point. As an alternative robust approach to the problem of uncertain medical categories, we propose to use the linear regression model with the fuzzy membership function as a dependent variable. This fuzzy membership function denotes to what degree the value of the underlying (continuous) outcome falls below or above the dichotomization cut-off point. In the paper, we demonstrate that the linear regression model of the fuzzy dependent variable can be insensitive against the uncertainty in the cut-off point location. In the paper we present the modeling results from the real study of low hemoglobin levels in infants. We systematically test the robustness of the binomial regression model and the linear regression model with the fuzzy dependent variable by changing the boundary for the category Anemia and show that the behavior of the latter model persists over a quite wide interval.
Keywords: Categorization, Uncertain medical categories, Binomial regression model, Fuzzy dependent variable, Robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15613626 Rapid Determination of Biochemical Oxygen Demand
Authors: Mayur Milan Kale, Indu Mehrotra
Abstract:
Biochemical Oxygen Demand (BOD) is a measure of the oxygen used in bacteria mediated oxidation of organic substances in water and wastewater. Theoretically an infinite time is required for complete biochemical oxidation of organic matter, but the measurement is made over 5-days at 20 0C or 3-days at 27 0C test period with or without dilution. Researchers have worked to further reduce the time of measurement. The objective of this paper is to review advancement made in BOD measurement primarily to minimize the time and negate the measurement difficulties. Survey of literature review in four such techniques namely BOD-BARTTM, Biosensors, Ferricyanidemediated approach, luminous bacterial immobilized chip method. Basic principle, method of determination, data validation and their advantage and disadvantages have been incorporated of each of the methods. In the BOD-BARTTM method the time lag is calculated for the system to change from oxidative to reductive state. BIOSENSORS are the biological sensing element with a transducer which produces a signal proportional to the analyte concentration. Microbial species has its metabolic deficiencies. Co-immobilization of bacteria using sol-gel biosensor increases the range of substrate. In ferricyanidemediated approach, ferricyanide has been used as e-acceptor instead of oxygen. In Luminous bacterial cells-immobilized chip method, bacterial bioluminescence which is caused by lux genes was observed. Physiological responses is measured and correlated to BOD due to reduction or emission. There is a scope to further probe into the rapid estimation of BOD.Keywords: BOD, Four methods, Rapid estimation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36413625 Biosensor Design through Molecular Dynamics Simulation
Authors: Wenjun Zhang, Yunqing Du, Steven W. Cranford, Ming L. Wang
Abstract:
The beginning of 21st century has witnessed new advancements in the design and use of new materials for biosensing applications, from nano to macro, protein to tissue. Traditional analytical methods lack a complete toolset to describe the complexities introduced by living systems, pathological relations, discrete hierarchical materials, cross-phase interactions, and structure-property dependencies. Materiomics – via systematic molecular dynamics (MD) simulation – can provide structureprocess- property relations by using a materials science approach linking mechanisms across scales and enables oriented biosensor design. With this approach, DNA biosensors can be utilized to detect disease biomarkers present in individuals’ breath such as acetone for diabetes. Our wireless sensor array based on single-stranded DNA (ssDNA)-decorated single-walled carbon nanotubes (SWNT) has successfully detected trace amount of various chemicals in vapor differentiated by pattern recognition. Here, we present how MD simulation can revolutionize the way of design and screening of DNA aptamers for targeting biomarkers related to oral diseases and oral health monitoring. It demonstrates great potential to be utilized to build a library of DNDA sequences for reliable detection of several biomarkers of one specific disease, and as well provides a new methodology of creating, designing, and applying of biosensors.
Keywords: Biosensor, design, DNA, molecular dynamics simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30363624 Hybrid Collaborative-Context Based Recommendations for Civil Affairs Operations
Authors: Patrick Cummings, Laura Cassani, Deirdre Kelliher
Abstract:
In this paper we present findings from a research effort to apply a hybrid collaborative-context approach for a system focused on Marine Corps civil affairs data collection, aggregation, and analysis called the Marine Civil Information Management System (MARCIMS). The goal of this effort is to provide operators with information to make sense of the interconnectedness of entities and relationships in their area of operation and discover existing data to support civil military operations. Our approach to build a recommendation engine was designed to overcome several technical challenges, including 1) ensuring models were robust to the relatively small amount of data collected by the Marine Corps civil affairs community; 2) finding methods to recommend novel data for which there are no interactions captured; and 3) overcoming confirmation bias by ensuring content was recommended that was relevant for the mission despite being obscure or less well known. We solve this by implementing a combination of collective matrix factorization (CMF) and graph-based random walks to provide recommendations to civil military operations users. We also present a method to resolve the challenge of computation complexity inherent from highly connected nodes through a precomputed process.
Keywords: Recommendation engine, collaborative filtering, context based recommendation, graph analysis, coverage, civil affairs operations, Marine Corps.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3893623 Comparison of Compression Ability Using DCT and Fractal Technique on Different Imaging Modalities
Authors: Sumathi Poobal, G. Ravindran
Abstract:
Image compression is one of the most important applications Digital Image Processing. Advanced medical imaging requires storage of large quantities of digitized clinical data. Due to the constrained bandwidth and storage capacity, however, a medical image must be compressed before transmission and storage. There are two types of compression methods, lossless and lossy. In Lossless compression method the original image is retrieved without any distortion. In lossy compression method, the reconstructed images contain some distortion. Direct Cosine Transform (DCT) and Fractal Image Compression (FIC) are types of lossy compression methods. This work shows that lossy compression methods can be chosen for medical image compression without significant degradation of the image quality. In this work DCT and Fractal Compression using Partitioned Iterated Function Systems (PIFS) are applied on different modalities of images like CT Scan, Ultrasound, Angiogram, X-ray and mammogram. Approximately 20 images are considered in each modality and the average values of compression ratio and Peak Signal to Noise Ratio (PSNR) are computed and studied. The quality of the reconstructed image is arrived by the PSNR values. Based on the results it can be concluded that the DCT has higher PSNR values and FIC has higher compression ratio. Hence in medical image compression, DCT can be used wherever picture quality is preferred and FIC is used wherever compression of images for storage and transmission is the priority, without loosing picture quality diagnostically.Keywords: DCT, FIC, PIFS, PSNR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18263622 Holistic Simulation-Based Impact Analysis Framework for Sustainable Manufacturing
Authors: Mijoh A. Gbededo, Kapila Liyanage, Sabuj Mallik
Abstract:
The emerging approaches to sustainable manufacturing are considered to be solution-oriented with the aim of addressing the environmental, economic and social issues holistically. However, the analysis of the interdependencies amongst the three sustainability dimensions has not been fully captured in the literature. In a recent review of approaches to sustainable manufacturing, two categories of techniques are identified: 1) Sustainable Product Development (SPD), and 2) Sustainability Performance Assessment (SPA) techniques. The challenges of the approaches are not only related to the arguments and misconceptions of the relationships between the techniques and sustainable development but also to the inability to capture and integrate the three sustainability dimensions. This requires a clear definition of some of the approaches and a road-map to the development of a holistic approach that supports sustainability decision-making. In this context, eco-innovation, social impact assessment, and life cycle sustainability analysis play an important role. This paper deployed an integrative approach that enabled amalgamation of sustainable manufacturing approaches and the theories of reciprocity and motivation into a holistic simulation-based impact analysis framework. The findings in this research have the potential to guide sustainability analysts to capture the aspects of the three sustainability dimensions into an analytical model. Additionally, the research findings presented can aid the construction of a holistic simulation model of a sustainable manufacturing and support effective decision-making.
Keywords: Life cycle sustainability analysis, sustainable manufacturing, sustainability performance assessment, sustainable product development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 849