Search results for: Constant surface temperature
2703 Design Parameters Selection and Optimization of Weld Zone Development in Resistance Spot Welding
Authors: Norasiah Muhammad, Yupiter HP Manurung
Abstract:
This paper investigates the development of weld zone in Resistance Spot Welding (RSW) which focuses on weld nugget and Heat Affected Zone (HAZ). The effects of four factors namely weld current, weld time, electrode force and hold time were studied using a general 24 factorial design augmented by five centre points. The results of the analysis showed that all selected factors except hold time exhibit significant effect on weld nugget radius and HAZ size. Optimization of the welding parameters (weld current, weld time and electrode force) to normalize weld nugget and to minimize HAZ size was then conducted using Central Composite Design (CCD) in Response Surface Methodology (RSM) and the optimum parameters were determined. A regression model for radius of weld nugget and HAZ size was developed and its adequacy was evaluated. The experimental results obtained under optimum operating conditions were then compared with the predicted values and were found to agree satisfactorily with each otherKeywords: Factorial design, Optimization, Resistance Spot Welding (RSW), Response Surface Methodology (RSM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34132702 Positive Periodic Solutions in a Discrete Competitive System with the Effect of Toxic Substances
Authors: Changjin Xu, Qianhong Zhang
Abstract:
In this paper, a delayed competitive system with the effect of toxic substances is investigated. With the aid of differential equations with piecewise constant arguments, a discrete analogue of continuous non-autonomous delayed competitive system with the effect of toxic substances is proposed. By using Gaines and Mawhin,s continuation theorem of coincidence degree theory, a easily verifiable sufficient condition for the existence of positive solutions of difference equations is obtained.
Keywords: Competitive system, periodic solution, discrete time delay, topological degree.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14562701 Cultural Anxiety and Its Impact on Students- Life: A Case Study of International Students in Wuhan University
Authors: Nadeem Akhtar, Shan Bo
Abstract:
This article illustrates that how non similar culture become a cause of constant anxiety among international students in China. For that, a survey was carried out among international students of Wuhan University, China. The association among non similar culture, non familiarity of Chinese culture, self finance students and food problem is looked at through a regression line, and in the light of empirical results, a model is anticipated which elucidates these results. Some suggestions were directed at the end which will help to mitigate the anxiety among prospective students in Chinese universities.
Keywords: Anxiety, international students, non similar culture, Wuhan University
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19412700 Power Reduction by Automatic Monitoring and Control System in Active Mode
Authors: Somaye Abdollahi Pour, Mohsen Saneei
Abstract:
This paper describes a novel monitoring scheme to minimize total active power in digital circuits depend on the demand frequency, by adjusting automatically both supply voltage and threshold voltages based on circuit operating conditions such as temperature, process variations, and desirable frequency. The delay monitoring results, will be control and apply so as to be maintained at the minimum value at which the chip is able to operate for a given clock frequency. Design details of power monitor are examined using simulation framework in 32nm BTPM model CMOS process. Experimental results show the overhead of proposed circuit in terms of its power consumption is about 40 μW for 32nm technology; moreover the results show that our proposed circuit design is not far sensitive to the temperature variations and also process variations. Besides, uses the simple blocks which offer good sensitivity, high speed, the continuously feedback loop. This design provides up to 40% reduction in power consumption in active mode.Keywords: active mode, delay monitor, body biasing, VDD scaling, low power.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18512699 Numerical Analysis of Wave and Hydrodynamic Models for Energy Balance and Primitive Equations
Authors: Worachat Wannawong, Usa W. Humphries, Prungchan Wongwises, Suphat Vongvisessomjai, Wiriya Lueangaram
Abstract:
A numerical analysis of wave and hydrodynamic models is used to investigate the influence of WAve and Storm Surge (WASS) in the regional and coastal zones. The numerical analyzed system consists of the WAve Model Cycle 4 (WAMC4) and the Princeton Ocean Model (POM) which used to solve the energy balance and primitive equations respectively. The results of both models presented the incorporated surface wave in the regional zone affected the coastal storm surge zone. Specifically, the results indicated that the WASS generally under the approximation is not only the peak surge but also the coastal water level drop which can also cause substantial impact on the coastal environment. The wave–induced surface stress affected the storm surge can significantly improve storm surge prediction. Finally, the calibration of wave module according to the minimum error of the significant wave height (Hs) is not necessarily result in the optimum wave module in the WASS analyzed system for the WASS prediction.Keywords: energy balance equation, numerical analysis, primitiveequation, storm surge, wave.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19402698 Risk Assessment of Trace Element Pollution in Gymea Bay, NSW, Australia
Authors: Yasir M. Alyazichi, Brian G. Jones, Errol McLean, Hamd N. Altalyan, Ali K. M. Al-Nasrawi
Abstract:
The main purpose of this study is to assess the sediment quality and potential ecological risk in marine sediments in Gymea Bay located in south Sydney, Australia. A total of 32 surface sediment samples were collected from the bay. Current track trajectories and velocities have also been measured in the bay. The resultant trace elements were compared with the adverse biological effect values Effect Range Low (ERL) and Effect Range Median (ERM) classifications. The results indicate that the average values of chromium, arsenic, copper, zinc, and lead in surface sediments all reveal low pollution levels and are below ERL and ERM values. The highest concentrations of trace elements were found close to discharge points and in the inner bay, and were linked with high percentages of clay minerals, pyrite and organic matter, which can play a significant role in trapping and accumulating these elements. The lowest concentrations of trace elements were found to be on the shoreline of the bay, which contained high percentages of sand fractions. It is postulated that the fine particles and trace elements are disturbed by currents and tides, then transported and deposited in deeper areas. The current track velocities recorded in Gymea Bay had the capability to transport fine particles and trace element pollution within the bay. As a result, hydrodynamic measurements were able to provide useful information and to help explain the distribution of sedimentary particles and geochemical properties. This may lead to knowledge transfer to other bay systems, including those in remote areas. These activities can be conducted at a low cost, and are therefore also transferrable to developing countries. The advent of portable instruments to measure trace elements in the field has also contributed to the development of these lower cost and easily applied methodologies available for use in remote locations and low-cost economies.Keywords: Current track velocities, Gymea Bay, surface sediments, trace elements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21072697 Wireless Sensor Networks for Water Quality Monitoring: Prototype Design
Authors: Cesar Eduardo Hernández Curiel, Victor Hugo Benítez Baltazar, Jesús Horacio Pacheco Ramírez
Abstract:
This paper is devoted to present the advances in the design of a prototype that is able to supervise the complex behavior of water quality parameters such as pH and temperature, via a real-time monitoring system. The current water quality tests that are performed in government water quality institutions in Mexico are carried out in problematic locations and they require taking manual samples. The water samples are then taken to the institution laboratory for examination. In order to automate this process, a water quality monitoring system based on wireless sensor networks is proposed. The system consists of a sensor node which contains one pH sensor, one temperature sensor, a microcontroller, and a ZigBee radio, and a base station composed by a ZigBee radio and a PC. The progress in this investigation shows the development of a water quality monitoring system. Due to recent events that affected water quality in Mexico, the main motivation of this study is to address water quality monitoring systems, so in the near future, a more robust, affordable, and reliable system can be deployed.Keywords: pH measurement, water quality monitoring, wireless sensor networks, ZigBee.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38722696 Dependence of Dielectric Properties on Sintering Conditions of Lead Free KNN Ceramics Modified with Li-Sb
Authors: Roopam Gaur, K. Chandramani Singh, Radhapiyari Laishram
Abstract:
In order to produce lead free piezoceramics with optimum piezoelectric and dielectric properties, KNN modified with Li+ (as an A site dopant) and Sb5+ (as a B site dopant) (K0.49Na0.49Li0.02) (Nb0.96Sb0.04) O3 (referred as KNLNS in this paper) have been synthesized using solid state reaction method and conventional sintering technique. The ceramics were sintered in the narrow range of 1050°C-1090°C for 2-3 h to get precise information about sintering parameters. Detailed study of dependence of microstructural, dielectric and piezoelectric properties on sintering conditions was then carried out. The study suggests that the volatility of the highly hygroscopic KNN ceramics is not only sensitive to sintering temperatures but also to sintering durations. By merely reducing the sintering duration for a given sintering temperature we saw an increase in the density of the samples which was supported by the increase in dielectric constants of the ceramics. And since density directly or indirectly affects almost all the associated properties, other dielectric and piezoelectric properties were also enhanced as we approached towards the most suitable sintering temperature and duration combination. The detailed results are reported in this paper.Keywords: Piezoceramics, Conventional Sintering, KNN, Lead Free.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20472695 Development of a Model for the Redesign of Plant Structures
Authors: L. Richter, J. Lübkemann, P. Nyhuis
Abstract:
In order to remain competitive in what is a turbulent environment; businesses must be able to react rapidly to change. The past response to volatile market conditions was to introduce an element of flexibility to production. Nowadays, what is often required is a redesign of factory structures in order to cope with the state of constant flux. The Institute of Production Systems and Logistics is currently developing a descriptive and causal model for the redesign of plant structures as part of an ongoing research project. This article presents the first research findings attained in devising this model.
Keywords: Causal model, change driven factory redesign, factory planning, plant structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18152694 Support of Knowledge Sharing in Manufacturing Companies: A Case Study
Authors: Zuzana Crhova, Karel Kolman, Drahomíra Pavelkova
Abstract:
Knowledge is considered as an important asset which can help organizations to create competitive advantage. The necessity of taking care of these assets is more important in these days – in days of turbulent changes in business environment. Knowledge could facilitate adaption to constant changes. The aim of this paper is to describe how the knowledge sharing can be supported in the manufacturing companies. The methods of case studies and grounded theory were used to present information gained by carrying out semistructured interviews. Results show that knowledge sharing is supported in very similar ways in respondent companies.
Keywords: Case Study, Human Resource Management, Knowledge, Knowledge Sharing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22742693 Wetting Properties of Silver Based Alloys
Authors: Zoltán Weltsch, József Hlinka, Eszter Kókai
Abstract:
The temperature dependence of wettability (wetting angle, Θ (T)) for Ag-based melts on graphite and Al2O3 substrates is compared. Typical alloying effects are found, as the Ag host metal is gradually replaced by various metallic elements. The essence of alloying lies in the change of the electron/atom (e/a) ratio. This ratio is also manifested in the shift of wetting angles on the same substrate. Nevertheless, the effects are partially smeared by other (metallurgical) factors, like the interaction between the oxygenalloying elements and by the graphite substrate-oxygen interaction. In contrast, such effects are not pronounced in the case of Al2O3 substrates. As a consequence, Θ(T) exhibits an opposite trend in the case of two substrates. Crossovers of the Θ(T) curves were often found. The positions of crossovers depend on the chemical character and concentration of solute atoms. Segregation and epitaxial texture formation after solidification were also observed in certain alloy drops, especially in high concentration range. This phenomenon is not yet explained in every detail.
Keywords: Contact angle, graphite, silver, soldering, solid solubility, substrate, temperature dependence, wetting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25292692 Rubber Crumbs in Alkali Activated Clay Roof Tiles at Low Temperature
Authors: Aswin Kumar Krishnan, Yat Choy Wong, Reiza Mukhlis, Zipeng Zhang, Arul Arulrajah
Abstract:
The continuous increase in vehicle uptake escalates the number of rubber tyres waste which need to be managed to avoid landfilling and stockpiling. The present research focused on the sustainable use of crumb rubber in clay roof tiles. The properties of roof tiles composed of clay, crumb rubber, NaOH, and Na2SiO3 with 10 wt.% alkaline activator were studied. Tile samples were fabricated by heating the compacted mixtures at 50 °C for 72 hours, followed by a higher heating temperature of 200 °C for 24 hours. The effect of crumb rubber aggregates as a substitution for the raw clay materials were investigated by varying their concentration from 0 wt.% to 2.5 wt.%. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses have been conducted to study the phases and microstructures of the samples. It was found that the optimum rubber crumbs concentration was at 0.5 wt.% and 1 wt.%, while cracks and larger porosity were found at higher crumbs concentration. Water absorption, and compressive strength test results demonstrated that rubber crumbs and clay satisfied the standard requirement for the roof tiles.
Keywords: Crumb rubber, clay, roof tiles, alkaline activators.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762691 Simulation of the Effect of Sea Water Using Ground Tank to the Flexural Capacity of GFRP Sheet Reinforced Concrete Beams
Authors: Rudy Djamaluddin, Arbain Tata, Rita Irmawaty
Abstract:
The study conducted a simulation of the effect of sea water to the bonding capacity of GFRP sheet on the concrete beams using a simulation tank. Fiber reinforced polymer (FRP) has been developed and applied in many fields civil engineering structures on the new structures and also for strengthening of the deteriorated structures. The FRP has advantages such as its corrosion resistance as well as high tensile strength to weight ratio. Compared to the other FRP materials, Glass composed FRP (GFRP) is relatively cheaper. GFRP sheet is applied externally by bonding it on the concrete surface. The studies regarding the application of GFRP sheet have been conducted such as strengthening system, bonding behavior of GFRP sheet including the application as reinforcement in new structures. For application to the structures with direct contact to sea environment, a study regarding the effect of sea water to the bonding capacity of GFRP sheet is important to be clarified. To achieve the objective of the study, a series of concrete beams strengthened with GFRP sheet on extreme tension surface were prepared. The beams then were stored on the sea water tank for six months. Results indicated the bonding capacity decreased after six month exposed to the sea water.Keywords: GFRP sheet, sea water, concrete beams, bonding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18682690 Thermal Performance of an Air Heating Storing System
Authors: Mohammed A. Elhaj, Jamal S. Yassin
Abstract:
Owing to the lack of synchronization between the solar energy availability and the heat demands in a specific application, the energy storing sub-system is necessary to maintain the continuity of thermal process. The present work is dealing with an active solar heating storing system in which an air solar collector is connected to storing unit where this energy is distributed and provided to the heated space in a controlled manner. The solar collector is a box type absorber where the air flows between a number of vanes attached between the collector absorber and the bottom plate. This design can improve the efficiency due to increasing the heat transfer area exposed to the flowing air, as well as the heat conduction through the metal vanes from the top absorbing surface. The storing unit is a packed bed type where the air is coming from the air collector and circulated through the bed in order to add/remove the energy through the charging / discharging processes, respectively. The major advantage of the packed bed storage is its high degree of thermal stratification. Numerical solution of the packed bed energy storage is considered through dividing the bed into a number of equal segments for the bed particles and solved the energy equation for each segment depending on the neighbor ones. The studied design and performance parameters in the developed simulation model including, particle size, void fraction, etc. The final results showed that the collector efficiency was fluctuated between 55%-61% in winter season (January) under the climatic conditions of Misurata in Libya. Maximum temperature of 52ºC is attained at the top of the bed while the lower one is 25ºC at the end of the charging process of hot air into the bed. This distribution can satisfy the required load for the most house heating in Libya.
Keywords: Solar energy, thermal process, performance, collector, packed bed, numerical analysis, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19982689 Effect of Eccentricity on Conjugate Natural Convection in Vertical Eccentric Annuli
Authors: A. Jamal, M. A. I. El-Shaarawi, E. M. A. Mokheimer
Abstract:
Combined conduction-free convection heat transfer in vertical eccentric annuli is numerically investigated using a finitedifference technique. Numerical results, representing the heat transfer parameters such as annulus walls temperature, heat flux, and heat absorbed in the developing region of the annulus, are presented for a Newtonian fluid of Prandtl number 0.7, fluid-annulus radius ratio 0.5, solid-fluid thermal conductivity ratio 10, inner and outer wall dimensionless thicknesses 0.1 and 0.2, respectively, and dimensionless eccentricities 0.1, 0.3, 0.5, and 0.7. The annulus walls are subjected to thermal boundary conditions, which are obtained by heating one wall isothermally whereas keeping the other wall at inlet fluid temperature. In the present paper, the annulus heights required to achieve thermal full development for prescribed eccentricities are obtained. Furthermore, the variation in the height of thermal full development as function of the geometrical parameter, i.e., eccentricity is also investigated.Keywords: Conjugate natural convection, eccentricity, heat transfer, vertical eccentric annuli.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22222688 Recovery of Cu, Zn, Ni and Cr from Plating Sludge by Combined Sulfidation and Oxidation Treatment
Authors: D. Kuchar, T. Fukuta, M. Kubota, H. Matsuda
Abstract:
The selective recovery of heavy metals of Cu, Zn, Ni and Cr from a mixed plating sludge by sulfidation and oxidation treatment was targeted in this study. At first, the mixed plating sludge was simultaneously subjected to an extraction and Cu sulfidation process at pH=1.5 to dissolve heavy metals and to precipitate Cu2+ as CuS. In the next step, the sulfidation treatment of Zn was carried out at pH=4.5 and the residual solution was subjected to an oxidation treatment of chromium with H2O2 at pH=10.0. After the experiments, the selectivity of metal precipitation and the chromium oxidation ratio were evaluated. As results, it was found that the filter cake obtained after selective sulfidation of Cu was composed of 96.6% of Cu (100% equals to the sum of Cu, Zn, Ni and Cr contents). Such findings confirmed that almost complete extraction of heavy metals was achieved at pH=1.5 and also that Cu could be selectively recovered as CuS. Further, the filter cake obtained at pH=4.5 was composed of 91.5% Zn and 6.83% of Cr. Regarding the chromium oxidation step, the chromium oxidation ratio was found to increase with temperature and the addition of oxidation agent of H2O2, but only oxidation ratio of 59% was achieved at a temperature of 60°C and H2O2 to Cr3+ equivalent ratio of 180.
Keywords: Chromium recovery, oxidation, plating sludge, sulfidation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26402687 Effect of Transglutaminase Cross Linking on the Functional Properties as a Function of NaCl Concentration of Legumes Protein Isolate
Authors: Nahid A. Ali, Salma H. Ahmed, ElShazali A. Mohamed, Isam A. Mohamed Ahmed, Elfadil E.Babiker
Abstract:
The effect of cross linking of the protein isolates of three legumes with the microbial enzyme transglutaminase (EC 2.3.2.13) on the functional properties at different NaCl concentration was studied. The reduction in the total free amino groups (OD340) of the polymerized protein showed that TGase treatment cross-linking the protein subunit of each legume. The solubility of the protein polymer of each legume was greatly improved at high concentration of NaCl. At 1.2 M NaCl the solubility of the native legumes protein was significantly decreased but after polymerization slightly improved. Cross linked proteins were less turbid on heating to higher temperature as compared to native proteins and the temperature at which the protein turns turbid also increased in the polymerized proteins. The emulsifying and foaming properties of the protein polymer were greatly improved at all concentrations of NaCl for all legumes.Keywords: Functional properties, Legumes, Protein isolate, NaCl, Transglutaminase.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25932686 Optimization of Dissolution of Chevreul’s Salt in Ammonium Chloride Solutions
Authors: Mustafa Sertçelik, Hacali Necefoğlu, Turan Çalban, Soner Kuşlu
Abstract:
In this study, Chevreul’s salt was dissolved in ammonium chloride solutions. All experiments were performed in a batch reactor. The obtained results were optimized. Parameters used in the experiments were the reaction temperature, the ammonium chloride concentration, the reaction time and the solid-to-liquid ratio. The optimum conditions were determined by 24 factorial experimental design method. The best values of four parameters were determined as based on the experiment results. After the evaluation of experiment results, all parameters were found as effective in experiment conditions selected. The optimum conditions on the maximum Chevreul’s salt dissolution were the ammonium chloride concentration 4.5 M, the reaction time 13.2 min., the reaction temperature 25 oC, and the solid-to-liquid ratio 9/80 g.mL-1. The best dissolution yield in these conditions was 96.20%.Keywords: Ammonium chloride, Chevreul’s salt, copper, Factorial experimental design method, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16772685 Mixed Convection in a 2D-channel with a Co- Flowing Fluid Injection: Influence of the Jet Position
Authors: Ameni Mokni, Hatem Mhiri, Georges Le Palec, Philippe Bournot
Abstract:
Numerical study of a plane jet occurring in a vertical heated channel is carried out. The aim is to explore the influence of the forced flow, issued from a flat nozzle located in the entry section of a channel, on the up-going fluid along the channel walls. The Reynolds number based on the nozzle width and the jet velocity ranges between 3 103 and 2.104; whereas, the Grashof number based on the channel length and the wall temperature difference is 2.57 1010. Computations are established for a symmetrically heated channel and various nozzle positions. The system of governing equations is solved with a finite volumes method. The obtained results show that the jet-wall interactions activate the heat transfer, the position variation modifies the heat transfer especially for low Reynolds numbers: the heat transfer is enhanced for the adjacent wall; however it is decreased for the opposite one. The numerical velocity and temperature fields are post-processed to compute the quantities of engineering interest such as the induced mass flow rate, and the Nusselt number along the plates.Keywords: Channel, Heat flux, Jet, Mixed convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17542684 Comparison of Conventional Control and Robust Control on Double-Pipe Heat Exchanger
Authors: Hanan Rizk
Abstract:
Heat exchanger is a device used to mix liquids having different temperatures. In this case, the temperature control becomes a critical objective. This research work presents the temperature control of the double-pipe heat exchanger (multi-input multi-output (MIMO) system), which is modeled as first-order coupled hyperbolic partial differential equations (PDEs), using conventional and advanced control techniques, and develops appropriate robust control strategy to meet stability requirements and performance objectives. We designed the proportional–integral–derivative (PID) controller and H-infinity controller for a heat exchanger (HE) system. Frequency characteristics of sensitivity functions and open-loop and closed-loop time responses are simulated using MATLAB software and the stability of the system is analyzed using Kalman's test. The simulation results have demonstrated that the H-infinity controller is more efficient than PID in terms of robustness and performance.
Keywords: heat exchanger, multi-input multi-output system, MATLAB simulation, partial differential equations, PID controller, robust control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6962683 Design of a Strain Sensor Based on Cascaded Fiber Bragg Grating for Remote Sensing Monitoring
Authors: Arafat A. A. Shabaneh
Abstract:
Harsh environments require developed detection by an optical communication system to ensure a high level of security and safety. Fiber Bragg gratings (FBGs) are emerging sensing instruments that respond to variations in strain and temperature by varying wavelengths. In this study, a cascaded uniform FBG is designed as a strain sensor for 6 km length at 1550 nm wavelength with 30 °C temperature by analyzing dynamic strain and wavelength shifts. The FBG is placed in a small segment of an optical fiber that reflects light with a specific wavelength and passes on the remaining wavelengths. Consequently, periodic alteration occurs in the refractive index in the fiber core. The alteration in the modal index of the fiber is produced by strain effects on a Bragg wavelength. When the developed sensor is exposed to the strain (0.01) of the cascaded uniform FBG, the wavelength shifts by 0.0000144383 μm. The sensing accuracy of the developed sensor is 0.0012. Simulation results show the reliability and effectiveness of the strain monitoring sensor for remote sensing application.
Keywords: Remote sensing, cascaded fiber Bragg grating, strain sensor, wavelength shift.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4782682 Research on Simulation Model of Collision Force between Floating Ice and Pier
Authors: Tianlai Yu, Zhengguo Yuan, Sidi Shan
Abstract:
Adopting the measured constitutive relationship of stress-strain of river ice, the finite element analysis model of percussive force of river ice and pier is established, by the explicit dynamical analysis software package LS-DYNA. Effects of element types, contact method and arithmetic of ice and pier, coupled modes between different elements, mesh density of pier, and ice sheet in contact area on the collision force are studied. Some of measures for the collision force analysis of river ice and pier are proposed as follows: bridge girder can adopt beam161 element with 3-node; pier below the line of 1.30m above ice surface and ice sheet use solid164 element with 8-node; in order to accomplish the connection of different elements, the rigid body with 0.01-0.05m thickness is defined between solid164 and beam161; the contact type of ice and pier adopts AUTOMATIC_SURFACE_TO_SURFACE, using symmetrical penalty function algorithms; meshing size of pier below the line of 1.30m above ice surface should not less than 0.25×0.25×0.5m3. The simulation results have the advantage of high precision by making a comparison between measured and computed data. The research results can be referred for collision force study between river ice and pier.Keywords: River ice, collision force, simulation analysis, ANSYS/LS-DYNA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20472681 Study of Mordenite ZSM-5 and NaY Zeolites,Containing Cr, Cs, Zn, Ni, Co, Li, Mn, to Control Hydrocarbon Cold-Start Emission
Authors: V. Golubeva, A. Korableva, O. Anischenko, A. Nemova, N. Yegorushina, L. Kustov, G. Kapustin, U.S.Rohatgi
Abstract:
The implementation of Super-Ultra Low Emission Vehicle standards requires more efficient exhaust gas purification. To increase the efficiency of exhaust gas purification, an the adsorbent capable of holding hydrocarbons up to 250-300 ОС should be developed. The possibility to design such adsorbents by modification of zeolites of mordenite type, ZSM-5 and NaY, using different metals cations has been studied. It has been shown that introducing Cr, Cs, Zn, Ni, Co, Li, Mn in zeolites results in modification of the toluene TPD and toluene sorption capacity. 5%LiZSM-5 zeolite exhibits the most attractive TPD curve, with toluene desorption temperature ranging from 250 to 350ОС. The sorption capacity of 5%Li-ZSM-5 is 0.4 mmol/g. NaY zeolite has the highest sorption capacity, up to 2 mmol/g, and holds toluene up to 350ОС, but at 120ОС toluene desorption starts, which is not desirable, since the adsorbent of cold start hydrocarbons should retain them until 250-300ОС. Therefore 5%LiZSM-5 zeolite was found to be the most promising to control the cold-start hydrocarbon emissions among the samples studied.Keywords: Hydrocarbon emission control, adsorbents, zeolites, temperature-programmed desorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20852680 A New Self-stabilizing Algorithm for Maximal 2-packing
Authors: Zhengnan Shi
Abstract:
In the self-stabilizing algorithmic paradigm, each node has a local view of the system, in a finite amount of time the system converges to a global state with desired property. In a graph G = (V, E), a subset S C V is a 2-packing if Vi c V: IN[i] n SI <1. In this paper, an ID-based, constant space, self-stabilizing algorithm that stabilizes to a maximal 2-packing in an arbitrary graph is proposed. It is shown that the algorithm stabilizes in 0(n3) moves under any scheduler (daemon). Specifically, it is shown that the algorithm stabilizes in linear time-steps under a synchronous daemon where every privileged node moves at each time-step.Keywords: self-stabilization, 2-packing, distributed computing, fault tolerance, graph algorithms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16682679 Investigations of Natural Convective Heat Transfer in Rectangular Thermal Passages
Authors: Hussain H. Al-Kayiem, Ahmed K. Hussein, Toh Seng Peow
Abstract:
The evaluation of the convective heat transfer of flow in passages with rectangular cross section is still of interest for the heat transfer investigators, as in the air heater solar collectors. The aim of this paper is to present investigation results on the natural convection heat transfer in a solar air heater. The effect of the channel length as heat transfer surface and the inclination of the passage were investigated. The results were obtained experimentally and theoretically. For that, an experimental test rig was fabricated with channel lengths of 1m, 1.5m, and 2m. For each length, the air outlet and inlet temperatures, absorber and cover temperatures, solar radiation intensity and air flow rate were measured at 10o, 30o, 50o, 70o, and 90o tilt angles. Measurements were recorded every 2 hours interval to investigate the transient behavior of the system. The experimental and theoretical results are presented in terms of Nu number versus Ra number and discussed. The percentages of differences between experimental and theoretical results are within the margin of 6% to 13%, effectively. It is recommended to extend the investigation to study the same configurations with different artificial surface roughing by ribs or pins.
Keywords: Convective heat transfer, Flat plate, Natural convection, Passage flow, Solar energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20662678 Online Monitoring Rheological Property of Polymer Melt during Injection Molding
Authors: Chung-Chih Lin, Chien-Liang Wu
Abstract:
The detection of the polymer melt state during manufacture process is regarded as an efficient way to control the molded part quality in advance. Online monitoring rheological property of polymer melt during processing procedure provides an approach to understand the melt state immediately. Rheological property reflects the polymer melt state at different processing parameters and is very important in injection molding process especially. An approach that demonstrates how to calculate rheological property of polymer melt through in-process measurement, using injection molding as an example, is proposed in this study. The system consists of two sensors and a data acquisition module can process the measured data, which are used for the calculation of rheological properties of polymer melt. The rheological properties of polymer melt discussed in this study include shear rate and viscosity which are investigated with respect to injection speed and melt temperature. The results show that the effect of injection speed on the rheological properties is apparent, especially for high melt temperature and should be considered for precision molding process.
Keywords: Injection molding, melt viscosity, shear rate, monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28072677 Empirical Modeling of Air Dried Rubberwood Drying System
Authors: S. Khamtree, T. Ratanawilai, C. Nuntadusit
Abstract:
Rubberwood is a crucial commercial timber in Southern Thailand. All processes in a rubberwood production depend on the knowledge and expertise of the technicians, especially the drying process. This research aims to develop an empirical model for drying kinetics in rubberwood. During the experiment, the temperature of the hot air and the average air flow velocity were kept at 80-100 °C and 1.75 m/s, respectively. The moisture content in the samples was determined less than 12% in the achievement of drying basis. The drying kinetic was simulated using an empirical solver. The experimental results illustrated that the moisture content was reduced whereas the drying temperature and time were increased. The coefficient of the moisture ratio between the empirical and the experimental model was tested with three statistical parameters, R-square (R²), Root Mean Square Error (RMSE) and Chi-square (χ²) to predict the accuracy of the parameters. The experimental moisture ratio had a good fit with the empirical model. Additionally, the results indicated that the drying of rubberwood using the Henderson and Pabis model revealed the suitable level of agreement. The result presented an excellent estimation (R² = 0.9963) for the moisture movement compared to the other models. Therefore, the empirical results were valid and can be implemented in the future experiments.
Keywords: Empirical models, hot air, moisture ratio, rubberwood.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7802676 Numerical Optimization Design of PEM Fuel Cell Performance Applying the Taguchi Method
Authors: Shan-Jen Cheng, Jr-Ming Miao, Sheng-Ju Wu
Abstract:
The purpose of this paper is applied Taguchi method on the optimization for PEMFC performance, and a representative Computational Fluid Dynamics (CFD) model is selectively performed for statistical analysis. The studied factors in this paper are pressure of fuel cell, operating temperature, the relative humidity of anode and cathode, porosity of gas diffusion electrode (GDE) and conductivity of GDE. The optimal combination for maximum power density is gained by using a three-level statistical method. The results confirmed that the robustness of the optimum design parameters influencing the performance of fuel cell are founded by pressure of fuel cell, 3atm; operating temperature, 353K; the relative humidity of anode, 50%; conductivity of GDE, 1000 S/m, but the relative humidity of cathode and porosity of GDE are pooled as error due to a small sum of squares. The present simulation results give designers the ideas ratify the effectiveness of the proposed robust design methodology for the performance of fuel cell.
Keywords: PEMFC, numerical simulation, optimization, Taguchi method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25522675 Using 3-Glycidoxypropyltrimethoxysilane Functionalized SiO2 Nanoparticles to Improve Flexural Properties of Glass Fibers/Epoxy Grid-Stiffened Composite Panels
Authors: Reza Eslami-Farsani, Hamed Khosravi, Saba Fayazzadeh
Abstract:
Lightweight and efficient structures have the aim to enhance the efficiency of the components in various industries. Toward this end, composites are one of the most widely used materials because of durability, high strength and modulus, and low weight. One type of the advanced composites is grid-stiffened composite (GSC) structures, which have been extensively considered in aerospace, automotive, and aircraft industries. They are one of the top candidates for replacing some of the traditional components, which are used here. Although there are a good number of published surveys on the design aspects and fabrication of GSC structures, little systematic work has been reported on their material modification to improve their properties, to our knowledge. Matrix modification using nanoparticles is an effective method to enhance the flexural properties of the fibrous composites. In the present study, a silanecoupling agent (3-glycidoxypropyltrimethoxysilane/3-GPTS) was introduced onto the silica (SiO2) nanoparticle surface and its effects on the three-point flexural response of isogrid E-glass/epoxy composites were assessed. Based on the Fourier Transform Infrared Spectrometer (FTIR) spectra, it was inferred that the 3-GPTS coupling agent was successfully grafted onto the surface of SiO2 nanoparticles after modification. Flexural test revealed an improvement of 16%, 14%, and 36% in stiffness, maximum load and energy absorption of the isogrid specimen filled with 3 wt.% 3- GPTS/SiO2 compared to the neat one. It would be worth mentioning that in these structures, considerable energy absorption was observed after the primary failure related to the load peak. In addition, 3- GPTMS functionalization had a positive effect on the flexural behavior of the multiscale isogrid composites. In conclusion, this study suggests that the addition of modified silica nanoparticles is a promising method to improve the flexural properties of the gridstiffened fibrous composite structures.Keywords: Isogrid-stiffened composite panels, silica nanoparticles, surface modification, flexural properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30112674 Constructal Enhancement of Fins Design Integrated to Phase Change Materials
Authors: Varun Joshi, Manish K. Rathod
Abstract:
The latent heat thermal energy storage system is a thrust area of research due to exuberant thermal energy storage potential. The thermal performance of PCM is significantly augmented by installation of the high thermal conductivity fins. The objective of the present study is to obtain optimum size and location of the fins to enhance diffusion heat transfer without altering overall melting time. Hence, the constructal theory is employed to eliminate, resize, and re-position the fins. A numerical code based on conjugate heat transfer coupled enthalpy porosity approached is developed to solve Navier-Stoke and energy equation.The numerical results show that the constructal fin design has enhanced the thermal performance along with the increase in the overall volume of PCM when compared to conventional. The overall volume of PCM is found to be increased by half of total of volume of fins. The elimination and repositioning the fins at high temperature gradient from low temperature gradient is found to be vital.Keywords: Constructal theory, enthalpy porosity approach, phase change materials, fins.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 922