Search results for: membrane temperature
674 Numerical Simulation of Heat Transfer in Primary Surface with Corrugations Recuperators
Authors: Liu Xuedong, Liu Hanpeng, Zhou Ling
Abstract:
Study fluid flow and heat transfer characteristics of microchannel in a primary Cross-corrugated(CC) surface recuperators with corrugations and without corrugations, using CFD method. The pitch-over-height ratios P/H of Cross-corrugated (CC) surface is from 1.5 to 4.0, included angles β=75º. The study was performed using CFD software FLUENT to create unit model and simulate fluid temperature, velocity, heat transfer coefficient and other parameters. The results from these simulations were compared to experimental data. It is concluded that, when the Reynolds number is constant, if increase P/H, j/f will decrease, also the decreasing trend will become weak. Under the condition of P/H=2.2, if increase the inlet velocity j/f will decrease; in addition, the heat transfer performance in surface with corrugation will increase 10% compared to that without corrugation. The study results can provide the basis to optimize the design, select the type of heat transfer surface, the scale structure, and heat-transfer surface arrangement for recuperators.Keywords: Cross-corrugated surface, Primary surface, Numerical simulation, Heat transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251673 Impacts of Global Warming on the World Food Market According to SRES Scenarios
Authors: J. Furuya, S. Kobayashi, S. D. Meyer
Abstract:
This research examines possible effects of climatic change focusing on global warming and its impacts on world agricultural product markets, by using a world food model developed to consider climate changes. GDP and population for each scenario were constructed by IPCC and climate data for each scenario was reported by the Hadley Center and are used in this research to consider results in different contexts. Production and consumption of primary agriculture crops of the world for each socio-economic scenario are obtained and investigated by using the modified world food model. Simulation results show that crop production in some countries or regions will have different trends depending on the context. These alternative contexts depend on the rate of GDP growth, population, temperature, and rainfall. Results suggest that the development of environment friendly technologies lead to more consumption of food in many developing countries. Relationships among environmental policy, clean energy development, and poverty elimination warrant further investigation.Keywords: Global warming, SRES scenarios, World food model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410672 On Asymptotic Laws and Transfer Processes Enhancement in Complex Turbulent Flows
Authors: A. Gorin
Abstract:
The lecture represents significant advances in understanding of the transfer processes mechanism in turbulent separated flows. Based upon experimental data suggesting the governing role of generated local pressure gradient that takes place in the immediate vicinity of the wall in separated flow as a result of intense instantaneous accelerations induced by large-scale vortex flow structures similarity laws for mean velocity and temperature and spectral characteristics and heat and mass transfer law for turbulent separated flows have been developed. These laws are confirmed by available experimental data. The results obtained were employed for analysis of heat and mass transfer in some very complex processes occurring in technological applications such as impinging jets, heat transfer of cylinders in cross flow and in tube banks, packed beds where processes manifest distinct properties which allow them to be classified under turbulent separated flows. Many facts have got an explanation for the first time.Keywords: impinging jets, packed beds, turbulent separatedflows, 'two-thirds power law'
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852671 Numerical Simulation of Investment Casting of Gold Jewelry: Experiments and Validations
Authors: Marco Actis Grande, Somlak Wannarumon
Abstract:
This paper proposes the numerical simulation of the investment casting of gold jewelry. It aims to study the behavior of fluid flow during mould filling and solidification and to optimize the process parameters, which lead to predict and control casting defects such as gas porosity and shrinkage porosity. A finite difference method, computer simulation software FLOW-3D was used to simulate the jewelry casting process. The simplified model was designed for both numerical simulation and real casting production. A set of sensor acquisitions were allocated on the different positions of the wax tree of the model to detect filling times, while a set of thermocouples were allocated to detect the temperature during casting and cooling. Those detected data were applied to validate the results of the numerical simulation to the results of the real casting. The resulting comparisons signify that the numerical simulation can be used as an effective tool in investment-casting-process optimization and casting-defect prediction.Keywords: Computer fluid dynamic, Investment casting, Jewelry, Mould filling, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2737670 Numerical Analysis and Sensitivity Study of Non-Premixed Combustion Using LES
Authors: J. Dumrongsak, A. M. Savill
Abstract:
Non-premixed turbulent combustion Computational Fluid Dynamics (CFD) has been carried out in a simplified methanefuelled coaxial jet combustor employing Large Eddy Simulation (LES). The objective of this study is to evaluate the performance of LES in modelling non-premixed combustion using a commercial software, FLUENT, and investigate the effects of the grid density and chemistry models employed on the accuracy of the simulation results. A comparison has also been made between LES and Reynolds Averaged Navier-Stokes (RANS) predictions. For LES grid sensitivity test, 2.3 and 6.2 million cell grids are employed with the equilibrium model. The chemistry model sensitivity analysis is achieved by comparing the simulation results from the equilibrium chemistry and steady flamelet models. The predictions of the mixture fraction, axial velocity, species mass fraction and temperature by LES are in good agreement with the experimental data. The LES results are similar for the two chemistry models but influenced considerably by the grid resolution in the inner flame and near-wall regions.
Keywords: Coaxial jet, reacting LES, non-premixed combustion, turbulent flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2843669 Production of (V-B) Reinforced Fe Matrix Composites
Authors: Kerim Emre Öksüz, Mehmet Çevik, A. Enbiya Bozdağ, Ali Özer, Mehmet Simsir
Abstract:
Metal matrix composites (MMCs) have gained a considerable interest in the last three decades. Conventional powder metallurgy production route often involves the addition of reinforcing phases into the metal matrix directly, which leads to poor wetting behavior between ceramic phase and metal matrix and the segregation of reinforcements. The commonly used elements for ceramic phase formation in iron based MMCs are Ti, Nb, Mo, W, V and C, B. The aim of the present paper is to investigate the effect of sintering temperature and V-B addition on densification, phase development, microstructure, and hardness of Fe–V-B composites (Fe-(5-10) wt. %B – 25 wt. %V alloys) prepared by powder metallurgy process. Metal powder mixes were pressed uniaxial and sintered at different temperatures (ranging from 1300 to 1400ºC) for 1h. The microstructure of the (V, B) Fe composites was studied with the help of high magnification optical microscope and XRD. Experimental results show that (V, B) Fe composites can be produced by conventional powder metallurgy route.
Keywords: Hardness, Metal matrix composite (MMC), Microstructure, Powder Metallurgy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2759668 Identification of Aircraft Gas Turbine Engines Temperature Condition
Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.
Abstract:
Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.
Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660667 Cost Efficient Receiver Tube Technology for Eco-Friendly Concentrated Solar Thermal Applications
Authors: M. Shiva Prasad, S. R. Atchuta, T. Vijayaraghavan, S. Sakthivel
Abstract:
The world is in need of efficient energy conversion technologies which are affordable, accessible, and sustainable with eco-friendly nature. Solar energy is one of the cornerstones for the world’s economic growth because of its abundancy with zero carbon pollution. Among the various solar energy conversion technologies, solar thermal technology has attracted a substantial renewed interest due to its diversity and compatibility in various applications. Solar thermal systems employ concentrators, tracking systems and heat engines for electricity generation which lead to high cost and complexity in comparison with photovoltaics; however, it is compatible with distinct thermal energy storage capability and dispatchable electricity which creates a tremendous attraction. Apart from that, employing cost-effective solar selective receiver tube in a concentrating solar thermal (CST) system improves the energy conversion efficiency and directly reduces the cost of technology. In addition, the development of solar receiver tubes by low cost methods which can offer high optical properties and corrosion resistance in an open-air atmosphere would be beneficial for low and medium temperature applications. In this regard, our work opens up an approach which has the potential to achieve cost-effective energy conversion. We have developed a highly selective tandem absorber coating through a facile wet chemical route by a combination of chemical oxidation, sol-gel, and nanoparticle coating methods. The developed tandem absorber coating has gradient refractive index nature on stainless steel (SS 304) and exhibited high optical properties (α ≤ 0.95 & ε ≤ 0.14). The first absorber layer (Cr-Mn-Fe oxides) developed by controlled oxidation of SS 304 in a chemical bath reactor. A second composite layer of ZrO2-SiO2 has been applied on the chemically oxidized substrate by So-gel dip coating method to serve as optical enhancing and corrosion resistant layer. Finally, an antireflective layer (MgF2) has been deposited on the second layer, to achieve > 95% of absorption. The developed tandem layer exhibited good thermal stability up to 250 °C in open air atmospheric condition and superior corrosion resistance (withstands for > 200h in salt spray test (ASTM B117)). After the successful development of a coating with targeted properties at a laboratory scale, a prototype of the 1 m tube has been demonstrated with excellent uniformity and reproducibility. Moreover, it has been validated under standard laboratory test condition as well as in field condition with a comparison of the commercial receiver tube. The presented strategy can be widely adapted to develop highly selective coatings for a variety of CST applications ranging from hot water, solar desalination, and industrial process heat and power generation. The high-performance, cost-effective medium temperature receiver tube technology has attracted many industries, and recently the technology has been transferred to Indian industry.
Keywords: Concentrated solar thermal system, solar selective coating, tandem absorber, ultralow refractive index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 740666 Selective Sulfidation of Copper, Zinc and Nickelin Plating Wastewater using Calcium Sulfide
Authors: K. Soya, N. Mihara, D. Kuchar, M. Kubota, H. Matsuda, T. Fukuta
Abstract:
The present work is concerned with sulfidation of Cu, Zn and Ni containing plating wastewater with CaS. The sulfidation experiments were carried out at a room temperature by adding solid CaS to simulated metal solution containing either single-metal of Ni, Zn and Cu, or Ni-Zn-Cu mixture. At first, the experiments were conducted without pH adjustment and it was found that the complete sulfidation of Zn and Ni was achieved at an equimolar ratio of CaS to a particular metal. However, in the case of Cu, a complete copper sulfidation was achieved at CaS to Cu molar ratio of about 2. In the case of the selective sulfidation, a simulated plating solution containing Cu, Zn and Ni at the concentration of 100 mg/dm3 was treated with CaS under various pH conditions. As a result, selective precipitation of metal sulfides was achieved by a sulfidation treatment at different pH values. Further, the precipitation agents of NaOH, Na2S and CaS were compared in terms of the average specific filtration resistance and compressibility coefficients of metal sulfide slurry. Consequently, based on the lowest filtration parameters of the produced metal sulfides, it was concluded that CaS was the most effective precipitation agent for separation and recovery of Cu, Zn and Ni.Keywords: Calcium sulfide, Plating Wastewater, Filtrationcharacteristics, Heavy metals, Sulfidation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3218665 Identification of Aircraft Gas Turbine Engine's Temperature Condition
Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.
Abstract:
Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.
Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672664 Comparison between the Conventional Methods and PSO Based MPPT Algorithm for Photovoltaic Systems
Authors: Ramdan B. A. Koad, Ahmed. F. Zobaa
Abstract:
Since the output characteristics of photovoltaic (PV) system depends on the ambient temperature, solar radiation and load impedance, its maximum power point (MPP) is not constant. Under each condition PV module has a point at which it can produce its MPP. Therefore, a maximum power point tracking (MPPT) method is needed to uphold the PV panel operating at its MPP. This paper presents comparative study between the conventional MPPT methods used in (PV) system: Perturb and Observe (P&O), Incremental Conductance (IncCond), andParticle Swarm Optimization (PSO) algorithmfor (MPPT) of (PV) system. To evaluate the study, the proposed PSO MPPT is implemented on a DC-DC cuk converter and has been compared with P&O and INcond methods in terms of their tracking speed, accuracy and performance by using the Matlab tool Simulink. The simulation result shows that the proposed algorithm is simple, and is superior to the P&O and IncCond methods.
Keywords: Incremental Conductance (IncCond) Method, Perturb and Observe (P&O) Method, Photovoltaic Systems (PV) and Practical Swarm Optimization Algorithm (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5729663 Assessment of Green and Smart IT Level: A Case Study on Public Research Institute
Authors: Han-Gook Kim, Dong-Suk Hong
Abstract:
As the latest advancement and trend in IT field, Green & Smart IT has attracted more and more attentions from researchers. This study focuses on the development of assessing tools which can be used for evaluating Green & Smart IT level within an organization. In order to achieve meaningful results, a comprehensive review of relevant literature was performed in advance, then, Delphi survey and other processes were also employed to develop the assessment tools for Green & Smart IT level. Two rounds of Delphi questionnaire survey were conducted with 20 IT experts in public sector. The results reveal that the top five weighted KPIs to evaluate maturity of Green & Smart IT were: (1) electronic execution of business process; (2) shutdown of unused IT devices; (3) virtualization of severs; (4) automation of constant temperature and humidity; and (5) introduction of smart-work system. Finally, these tools were applied to case study of a public research institute in Korea. The findings presented in this study provide organizations with useful implications for the introduction and promotion of Green & Smart IT in the futureKeywords: Assessment, Case Study, Delphi, Green & Smart
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502662 Determination of Water Pollution and Water Quality with Decision Trees
Authors: Çiğdem Bakır, Mecit Yüzkat
Abstract:
With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software used in the study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: Preprocessing of the data used, feature detection and classification. We tried to determine the success of our study with different accuracy metrics and the results were presented comparatively. In addition, we achieved approximately 98% success with the decision tree.
Keywords: Decision tree, water quality, water pollution, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 260661 Effect of CW Laser Annealing on Silicon Surface for Application of Power Device
Authors: Satoru Kaneko, Takeshi Ito, Kensuke Akiyama, Manabu Yasui, Chihiro Kato, Satomi Tanaka, Yasuo Hirabayashi, Takeshi Ozawa, Akira Matsuno, Takashi Nire, Hiroshi Funakubo, Mamoru Yoshimoto
Abstract:
As application of re-activation of backside on power device Insulated Gate Bipolar Transistor (IGBT), laser annealing was employed to irradiate amorphous silicon substrate, and resistivities were measured using four point probe measurement. For annealing the amorphous silicon two lasers were used at wavelength of visible green (532 nm) together with Infrared (793 nm). While the green laser efficiently increased temperature at top surface the Infrared laser reached more deep inside and was effective for melting the top surface. A finite element method was employed to evaluate time dependent thermal distribution in silicon substrate.Keywords: laser, annealing, silicon, recrystallization, thermal distribution, resistivity, finite element method, absorption, melting point, latent heat of fusion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2888660 Investigating the Effects of Thermal and Surface Energy on the Two-Dimensional Flow Characteristics of Oil in Water Mixture between Two Parallel Plates: A Lattice Boltzmann Method Study
Abstract:
A hybrid quasi-steady thermal lattice Boltzmann model was used to study the combined effects of temperature and contact angle on the movement of slugs and droplets of oil in water (O/W) system flowing between two parallel plates. The model static contact angle due to the deposition of the O/W droplet on a flat surface with simulated hydrophilic characteristic at different fluid temperatures, matched very well the proposed theoretical calculation. Furthermore, the model was used to simulate the dynamic behavior of droplets and slugs deposited on the domain’s upper and lower surfaces, while subjected to parabolic flow conditions. The model accurately simulated the contact angle hysteresis for the dynamic droplets cases. It was also shown that at elevated temperatures the required power to transport the mixture diminished remarkably.Keywords: Lattice Boltzmann method, Gunstensen model, thermal, contact angle, high viscosity ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 884659 Control of Thermal Flow in Machine Tools Using Shape Memory Alloys
Authors: Reimund Neugebauer, Welf-Guntram Drossel, Andre Bucht, Christoph Ohsenbrügge
Abstract:
In this paper the authors propose and verify an approach to control heat flow in machine tool components. Thermal deformations are a main aspect that affects the accuracy of machining. Due to goals of energy efficiency, thermal basic loads should be reduced. This leads to inhomogeneous and time variant temperature profiles. To counteract these negative consequences, material with high melting enthalpy is used as a method for thermal stabilization. The increased thermal capacity slows down the transient thermal behavior. To account for the delayed thermal equilibrium, a control mechanism for thermal flow is introduced. By varying a gap in a heat flow path the thermal resistance of an assembly can be controlled. This mechanism is evaluated in two experimental setups. First to validate the ability to control the thermal resistance and second to prove the possibility of a self-sufficient option based on the selfsensing abilities of thermal shape memory alloys.
Keywords: energy-efficiency, heat transfer path, MT thermal stability, thermal shape memory alloy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932658 Active Packaging Influence on Shelf Life Extension of Sliced Wheat Bread
Authors: Sandra Muizniece-Brasava, Lija Dukalska, Irisa Murniece, Ilona Dabina-Bicka, Emils Kozlinskis, Svetlana Sarvi, Ralfs Santars, Anna Silvjane
Abstract:
The research object was wheat bread. Experiments were carried out at the Faculty of Food Technology of the Latvia University of Agriculture. An active packaging in combination with modified atmosphere (MAP, CO2 60% and N2 40%) was examined and compared with traditional packaging in air ambiance. Polymer Multibarrier 60, PP and OPP bags were used. Influence of iron based oxygen absorber in sachets of 100 cc obtained from Mitsubishi Gas Chemical Europe Ageless® was tested on the quality during the shelf of wheat bread. Samples of 40±4 g were packaged in polymer pouches (110 mm x 120 mm), hermetically sealed by MULTIVAC C300 vacuum chamber machine, and stored in room temperature +21.0±0.5 °C. The physiochemical properties – weight losses, moisture content, hardness, pH, colour, changes of atmosphere content (CO2 and O2) in headspace of packs, and microbial conditions were analysed before packaging and in the 7th, 14th, 21st and 28th days of storage.Keywords: Active packaging, wheat bread, shelf life.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3532657 CFD Simulation of Condensing Vapor Bubble using VOF Model
Authors: Seong-Su Jeon, Seong-Jin Kim, Goon-Cherl Park
Abstract:
In this study, direct numerical simulation for the bubble condensation in the subcooled boiling flow was performed. The main goal was to develop the CFD modeling for the bubble condensation and to evaluate the accuracy of the VOF model with the developed CFD modeling. CFD modeling for the bubble condensation was developed by modeling the source terms in the governing equations of VOF model using UDF. In the modeling, the amount of condensation was determined using the interfacial heat transfer coefficient obtained from the bubble velocity, liquid temperature and bubble diameter every time step. To evaluate the VOF model using the CFD modeling for the bubble condensation, CFD simulation results were compared with SNU experimental results such as bubble volume and shape, interfacial area, bubble diameter and bubble velocity. Simulation results predicted well the behavior of the actual condensing bubble. Therefore, it can be concluded that the VOF model using the CFD modeling for the bubble condensation will be a useful computational fluid dynamics tool for analyzing the behavior of the condensing bubble in a wide range of the subcooled boiling flow.
Keywords: Bubble condensation, CFD modeling, Subcooled boiling flow, VOF model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6747656 Tin (II) Chloride a Suitable Wetting Agent for AA1200 - SiC Composites
Authors: S. O. Adeosun, E. I. Akpan, S. A. Balogun, A. S. Abdulmunim
Abstract:
SiC reinforced Aluminum samples were produced by stir casting of liquid AA1200 aluminum alloy at 600-650ºC casting temperature. 83µm SiC particles were rinsed in 10g/l, 20g/l and 30g/l molar concentration of Sncl2 through cleaning times of 0, 60, 120, and 180 minutes. Some cast samples were tested for mechanical properties and some were subjected to heat treatment before testing. The SnCl2 rinsed SiC reinforced aluminum exhibited higher yield strength, hardness, stiffness and elongation which increases with cleaning concentration and time up to 120 minutes, compared to composite with untreated SiC. However, the impact energy resistance decreases with cleaning concentration and time. The improved properties were attributed to good wettability and mechanical adhesion at the fiber-matrix interface. Quenching and annealing the composite samples further improve the tensile/yield strengths, elongation, stiffness, hardness similar to those of the as-cast samples.
Keywords: Al-SIC, Aluminum, Composites, Intermetallic, Reinforcement, Tensile Strength, Wetting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2587655 Magnetic Properties and Cytotoxicity of Ga-Mn Magnetic Ferrites Synthesized by the Citrate Sol-Gel Method
Authors: Javier Sánchez, Laura Elena De León Prado, Dora Alicia Cortés Hernández
Abstract:
Magnetic spinel ferrites are materials that possess size, magnetic properties and heating ability adequate for their potential use in biomedical applications. The Mn0.5Ga0.5Fe2O4 magnetic nanoparticles (MNPs) were synthesized by sol-gel method using citric acid as chelating agent of metallic precursors. The synthesized samples were identified by X-Ray Diffraction (XRD) as an inverse spinel structure with no secondary phases. Saturation magnetization (Ms) of crystalline powders was 45.9 emu/g, which was higher than those corresponding to GaFe2O4 (14.2 emu/g) and MnFe2O4 (40.2 emu/g) synthesized under similar conditions, while the coercivity field (Hc) was 27.9 Oe. The average particle size was 18 ± 7 nm. The heating ability of the MNPs was enough to increase the surrounding temperature up to 43.5 °C in 7 min when a quantity of 4.5 mg of MNPs per mL of liquid medium was tested. Cytotoxic effect (hemolysis assay) of MNPs was determined and the results showed hemolytic values below 1% in all tested cases. According to the results obtained, these synthesized nanoparticles can be potentially used as thermoseeds for hyperthermia therapy.
Keywords: Cytotoxicity, heating ability, manganese-gallium ferrite, magnetic hyperthermia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1318654 Experimental Evaluation of Methane Adsorptionon Granular Activated Carbon (GAC) and Determination of Model Isotherm
Authors: M. Delavar, A.A. Ghoreyshi, M. Jahanshahi, M. Irannejad
Abstract:
This study investigates the capacity of granular activated carbon (GAC) for the storage of methane through the equilibrium adsorption. An experimental apparatus consist of a dual adsorption vessel was set up for the measurement of equilibrium adsorption of methane on GAC using volumetric technique (pressure decay). Experimental isotherms of methane adsorption were determined by the measurement of equilibrium uptake of methane in different pressures (0-50 bar) and temperatures (285.15-328.15°K). The experimental data was fitted to Freundlich and Langmuir equations to determine the model isotherm. The results show that the experimental data is equally well fitted by the both model isotherms. Using the experimental data obtained in different temperatures the isosteric heat of methane adsorption was also calculated by the Clausius-Clapeyron equation from the Sips isotherm model. Results of isosteric heat of adsorption show that decreasing temperature or increasing methane uptake by GAC decrease the isosteric heat of methane adsorption.Keywords: Methane adsorption, Activated carbon, Modelisotherm, Isosteric heat
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2479653 Effect of Structure on Properties of Incrementally Formed Titanium Alloy Sheets
Authors: Lucie Novakova, Petr Homola, Vaclav Kafka
Abstract:
Asymmetric incremental sheet forming (AISF) could significantly reduce costs incurred by the fabrication of complex industrial components with a minimal environmental impact. The AISF experiments were carried out on commercially pure titanium (Ti-Gr2), Timetal (15-3-3-3) alloy, and Ti-6Al-4V (Ti-Gr5) alloy. A special testing geometry was used to characterize the titanium alloys properties from the point of view of the forming zone and titanium structure effect. The structure and properties of the materials were assessed by means of metallographic analyses and microhardness measurements.The highest differences in the parameters assessed as a function of the sampling zone were observed in the case of alpha-phase Ti-Gr2at the expense of the most substantial sheet thinning occurrence. A springback causes a smaller stored deformation in Timetal (β alloy) resulting in less pronounced microstructure refinement and microhardness increase. Ti-6Al-4V alloy exhibited early failure due to its poor formability at ambient temperature.
Keywords: Incremental forming, metallography, hardness, titanium alloys.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2639652 Influence of Initial Surface Roughness on Severe Wear Volume for SUS304 Austenitic Stainless Steels
Authors: A. Kawamura, K. Ishida, K. Okada, T. Sato
Abstract:
Simultaneous measurements of the curves for wear versus distance, wear rate versus distance, and coefficient of friction versus distance were performed in situ to distinguish the transition from severe running-in wear to mild wear. The effects of the initial surface roughness on the severe running-in wear volume were investigated. Disk-on-plate friction and wear tests were carried out with SUS304 austenitic stainless steel in contact with itself under repeated dry sliding conditions at room temperature. The wear volume was dependent on the initial surface roughness. The wear volume when the initial surfaces on the plate and disk had dissimilar roughness was lower than that when these surfaces had similar roughness. For the dissimilar roughness, the wear volume decreased with decreasing initial surface roughness and reached a minimum; it stayed nearly constant as the roughness was less than the mean size of the oxide particles.
Keywords: Austenitic stainless steel, initial surface roughness, running-in, severe wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2211651 An Evaluation of the Oxide Layers in Machining Swarfs to Improve Recycling
Authors: J. Uka, B. McKay, T. Minton, O. Adole, R. Lewis, S. J. Glanvill, L. Anguilano
Abstract:
Effective heat treatment conditions to obtain maximum aluminium swarf recycling are investigated in this work. Aluminium swarf briquettes underwent treatments at different temperatures and cooling times to investigate the improvements obtained in the recovery of aluminium metal. The main issue for the recovery of the metal from swarfs is to overcome the constraints due to the oxide layers present in high concentration in the swarfs since they have a high surface area. Briquettes supplied by Renishaw were heat treated at 650, 700, 750, 800 and 850 ℃ for 1-hour and then cooled at 2.3, 3.5 and 5 ℃/min. The resulting material was analysed using SEM EDX to observe the oxygen diffusion and aluminium coalescence at the boundary between adjacent swarfs. Preliminary results show that, swarf needs to be heat treated at a temperature of 850 ℃ and cooled down slowly at 2.3 ℃/min to have thin and discontinuous alumina layers between the adjacent swarf and consequently allowing aluminium coalescence. This has the potential to save energy and provide maximum financial profit in preparation of swarf briquettes for recycling.
Keywords: Aluminium, swarf, oxide layers, recycle, reuse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 573650 Space Charge Distribution in 22 kV XLPE Insulated Cable by Using Pulse Electroacoustic Measurement Technique
Authors: N. Ruangkajonmathee, R. Thiamsri, B. Marungsri
Abstract:
This paper presents the experimental results on space charge distribution in cross-linked polyethylene (XLPE) insulating material for 22 kV power distribution system cable by using pulse electroacoustic measurement technique (PEA). Numbers of XLPE insulating material ribbon having thickness 60 μm taken from unused 22 kV high voltage cable were used as specimen in this study. DC electric field stress was applied to test specimen at room temperature (25°C). Four levels of electric field stress, 25 kV/mm, 50 kV/mm, 75 kV/mm and 100 kV/mm, were used. In order to investigate space charge distribution characteristic, space charge distribution characteristics were measured after applying electric field stress 15 min, 30 min and 60 min, respectively. The results show that applied time and magnitude of dc electric field stress play an important role to the formation of space charge.
Keywords: Space charge distribution, pulsed electroacoustic(PEA) technique, cross-linked polyethylene (XLPE), DC electrical fields stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3282649 Enhancement of Thermal Performance of Latent Heat Solar Storage System
Authors: Rishindra M. Sarviya, Ashish Agrawal
Abstract:
Solar energy is available abundantly in the world, but it is not continuous and its intensity also varies with time. Due to above reason the acceptability and reliability of solar based thermal system is lower than conventional systems. A properly designed heat storage system increases the reliability of solar thermal systems by bridging the gap between the energy demand and availability. In the present work, two dimensional numerical simulation of the melting of heat storage material is presented in the horizontal annulus of double pipe latent heat storage system. Longitudinal fins were used as a thermal conductivity enhancement. Paraffin wax was used as a heat-storage or phase change material (PCM). Constant wall temperature is applied to heat transfer tube. Presented two-dimensional numerical analysis shows the movement of melting front in the finned cylindrical annulus for analyzing the thermal behavior of the system during melting.
Keywords: Latent heat, numerical study, phase change material, solar energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355648 Optimization of Growth of Rhodobacter Sphaeroides Using Mixed Volatile Fatty Acidsby Response Surface Methodology
Authors: R.Sangeetha, T.Karunanithi
Abstract:
A combination of photosynthetic bacteria along with anaerobic acidogenic bacteria is an ideal option for efficient hydrogen production. In the present study, the optimum concentration of substrates for the growth of Rhodobacter sphaeroides was found by response surface methodology. The optimum combination of three individual fatty acids was determined by Box Behnken design. Increase of volatile fatty acid concentration decreased the growth. Combination of sodium acetate and sodium propionate was most significant for the growth of the organism. The results showed that a maximum biomass concentration of 0.916 g/l was obtained when the concentrations of acetate, propionate and butyrate were 0.73g/l,0.99g/l and 0.799g/l, respectively. The growth was studied under an optimum concentration of volatile fatty acids and at a light intensity of 3000 lux, initial pH of 7 and a temperature of 35°C.The maximum biomass concentration of 0.92g/l was obtained which verified the practicability of this optimization.Keywords: Biohydrogen, Response Surface Methodology, Rhodobacter sphaeroides, Volatile fatty acid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143647 High Efficiency Electrolyte Lithium Battery and RF Characterization
Authors: Wei Quan, Liu Chao, Mohammed N. Afsar
Abstract:
The dielectric properties and ionic conductivity of novel "ceramic state" polymer electrolytes for high capacity lithium battery are characterized by Radio frequency and Microwave methods in two broad frequency ranges from 50 Hz to 20 KHz and 4 GHz to 40 GHz. This innovative solid polymer electrolyte which is highly ionic conductive (10-3 S/cm at room temperature) from -40oC to +150oC can be used in any battery application. Such polymer exhibits properties more like a ceramic rather than polymer. The various applied measurement methods produced accurate dielectric results for comprehensive analysis of electrochemical properties and ion transportation mechanism of this newly invented polymer electrolyte. Two techniques and instruments employing air gap measurement by Capacitance Bridge and in-waveguide measurement by vector network analyzer are applied to measure the complex dielectric spectra. The complex dielectric spectra are used to determine the complex alternating current electrical conductivity and thus the ionic conductivity.
Keywords: Polymer electrolyte, dielectric permittivity, lithium battery, ionic relaxation, microwave measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2424646 Optimization of Growth Conditions for Acidic Protease Production from Rhizopus oligosporus through Solid State Fermentation of Sunflower Meal
Authors: Abdul Rauf, Muhammad Irfan, Muhammad Nadeem, Ishtiaq Ahmed, Hafiz Muhammad Nasir Iqbal
Abstract:
Rhizopus oligosporus was used in the present study for the production of protease enzyme under SSF. Sunflower meal was used as by-product of oil industry incorporated with organic salts was employed for the production of protease enzyme. The main purpose of the present was to study different parameters of protease productivity, its yields and to optimize basal fermentation conditions. The optimal conditions found for protease production using sunflower meal as a substrate in the present study were inoculum size (1%), substrate (Sunflower meal), substrate concentration (20 g), pH (3), cultivation period (72 h), incubation temperature (35oC), substrate to diluent-s ratio (1:2) and tween 81 (1 mL). The maximum production of protease in the presence of cheaper substrate at low concentration and stability at acidic pH, these characteristics make the strain and its enzymes useful in different industry.Keywords: Acidic protease, Rhizopus oligosporus, Mediaoptimization, Solid state Fermentation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3002645 Composition Dependent Formation of Sputtered Co-Cu Film on Cr Under-Layer
Authors: Watcharee Rattanasakulthong, Pichai Sirisangsawang, Supree Pinitsoontorn
Abstract:
Sputtered CoxCu100-x films with the different compositions of x = 57.7, 45.8, 25.5, 13.8, 8.8, 7.5 and 1.8 were deposited on Cr under-layer by RF-sputtering. SEM result reveals that the averaged thickness of Co-Cu film and Cr under-layer are 92 nm and 22nm, respectively. All Co-Cu films are composed of Co (FCC) and Cu (FCC) phases in (111) directions on BCC-Cr (110) under-layers. Magnetic properties, surface roughness and morphology of Co-Cu films are dependent on the film composition. The maximum and minimum surface roughness of 3.24 and 1.16nm are observed on the Co7.5Cu92.5 and Co45.8Cu54.2films, respectively. It can be described that the variance of surface roughness of the film because of the difference of the agglomeration rate of Co and Cu atoms on Cr under-layer. The Co57.5Cu42.3, Co45.8Cu54.2 and Co25.5Cu74.5 films shows the ferromagnetic phase whereas the rest of the film exhibits the paramagnetic phase at room temperature. The saturation magnetization, remnant magnetization and coercive field of Co-Cu films on Cr under-layer are slightly increased with increasing the Co composition. It can be concluded that the required magnetic properties and surface roughness of the Co-Cu film can be adapted by the adjustment of the film composition.
Keywords: Co-Cu films, Under-layers, Sputtering, Surface roughness, Magnetic properties, Atomic force microscopy (AFM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1944