Search results for: rooting percentage vegetative propagation.
942 Urban Heat Island Intensity Assessment through Comparative Study on Land Surface Temperature and Normalized Difference Vegetation Index: A Case Study of Chittagong, Bangladesh
Authors: Tausif A. Ishtiaque, Zarrin T. Tasin, Kazi S. Akter
Abstract:
Current trend of urban expansion, especially in the developing countries has caused significant changes in land cover, which is generating great concern due to its widespread environmental degradation. Energy consumption of the cities is also increasing with the aggravated heat island effect. Distribution of land surface temperature (LST) is one of the most significant climatic parameters affected by urban land cover change. Recent increasing trend of LST is causing elevated temperature profile of the built up area with less vegetative cover. Gradual change in land cover, especially decrease in vegetative cover is enhancing the Urban Heat Island (UHI) effect in the developing cities around the world. Increase in the amount of urban vegetation cover can be a useful solution for the reduction of UHI intensity. LST and Normalized Difference Vegetation Index (NDVI) have widely been accepted as reliable indicators of UHI and vegetation abundance respectively. Chittagong, the second largest city of Bangladesh, has been a growth center due to rapid urbanization over the last several decades. This study assesses the intensity of UHI in Chittagong city by analyzing the relationship between LST and NDVI based on the type of land use/land cover (LULC) in the study area applying an integrated approach of Geographic Information System (GIS), remote sensing (RS), and regression analysis. Land cover map is prepared through an interactive supervised classification using remotely sensed data from Landsat ETM+ image along with NDVI differencing using ArcGIS. LST and NDVI values are extracted from the same image. The regression analysis between LST and NDVI indicates that within the study area, UHI is directly correlated with LST while negatively correlated with NDVI. It interprets that surface temperature reduces with increase in vegetation cover along with reduction in UHI intensity. Moreover, there are noticeable differences in the relationship between LST and NDVI based on the type of LULC. In other words, depending on the type of land usage, increase in vegetation cover has a varying impact on the UHI intensity. This analysis will contribute to the formulation of sustainable urban land use planning decisions as well as suggesting suitable actions for mitigation of UHI intensity within the study area.
Keywords: Land cover change, land surface temperature, normalized difference vegetation index, urban heat island.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458941 Color Characteristics of Dried Cocoa Using Shallow Box Fermentation Technique
Authors: Khairul Bariah Sulaiman, Tajul Aris Yang
Abstract:
Fermentation is well known as an essential process to develop chocolate flavor in dried cocoa beans. Besides developing the precursor of cocoa flavor, it also induces the color changes in the beans. The fermentation process is influenced by various factors such as planting material, preconditioning of cocoa pod and fermentation technique. Therefore, this study was conducted to evaluate color of Malaysian cocoa beans and how the duration of pods storage and fermentation technique using shallow box will effect on its color characteristics. There are two factors being studied i.e. duration of cocoa pod storage (0, 2, 4 and 6 days) and duration of cocoa fermentation (0, 1, 2, 3, 4 and 5 days). The experiment is arranged in 4 x 6 factorial designs with 24 treatments and arrangement is in a Completely Randomised Design (CRD). The produced beans are inspected for color changes under artificial light during cut test and divided into four groups of color namely fully brown, purple brown, fully purple and slaty. Cut tests indicated that cocoa beans which are directly dried without undergone fermentation has the highest slaty percentage. However, application of pods storage before fermentation process is found to decrease the slaty percentage. In contrast, the percentages of fully brown beans start to dominate after two days of fermentation, especially from four and six days of pods storage batch. Whereas, almost all batches of cocoa beans have a percentage of fully purple less than 20%. Interestingly, the percentage of purple brown beans are scattered in the entire beans batch regardless any specific trend. Meanwhile, statistical analysis using General Linear Model showed that the pods storage has a significant effect on the color characteristic of the Malaysian dried beans compared to fermentation duration.Keywords: Cocoa beans, color, fermentation, shallow box.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2975940 Effects of Varying Air Temperature in the Polishing Component of Single-Pass Mill on the Quality of Rice
Authors: M. A. U. Baradi, F. B. Bulao, N. D. Ganotisi, M. Jose C. Regalado, F. P. Bongat, S. B. Manglinong, M. L. O. Quigao, N. G. T. Martinez, R. G. Ancheta, M. P. Ortal
Abstract:
The effects of varying air temperature (full, ¾ full, ½ full aircon adjustment, no aircon) in polishing component of Single-Pass Mill on the quality of Philippine inbred rice variety, was investigated. Parameters measured were milling recovery (MR), headrice recovery (HR), and percentage with bran streaks. Cooling method (with aircon) increased MR, HR, and percentage with bran streaks of milled rice. Highest MR and HR (67.62%; 47.33%) were obtained from ¾ full adjustment whereas no aircon were lowest (66.27%; 39.76%). Temperature in polishing component at ¾ full adjustment was 33oC whereas no aircon was 45oC. There was increase of 1.35% in MR and 7.57% in HR. Additional cost of milling per kg due to aircon cooling was P0.04 at 300 tons/yr volume, with 0.15 yr payback period. Net income was estimated at ₱98,100.00. Percentage of kernels with bran streaks increased from 5%–14%, indicating more nutrients of milled rice.
Keywords: Aircon, air temperature, polishing component, quality, Single-Pass Mill.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865939 An Artificial Neural Network Based Model for Predicting H2 Production Rates in a Sucrose-Based Bioreactor System
Authors: Nikhil, Bestamin Özkaya, Ari Visa, Chiu-Yue Lin, Jaakko A. Puhakka, Olli Yli-Harja
Abstract:
The performance of a sucrose-based H2 production in a completely stirred tank reactor (CSTR) was modeled by neural network back-propagation (BP) algorithm. The H2 production was monitored over a period of 450 days at 35±1 ºC. The proposed model predicts H2 production rates based on hydraulic retention time (HRT), recycle ratio, sucrose concentration and degradation, biomass concentrations, pH, alkalinity, oxidation-reduction potential (ORP), acids and alcohols concentrations. Artificial neural networks (ANNs) have an ability to capture non-linear information very efficiently. In this study, a predictive controller was proposed for management and operation of large scale H2-fermenting systems. The relevant control strategies can be activated by this method. BP based ANNs modeling results was very successful and an excellent match was obtained between the measured and the predicted rates. The efficient H2 production and system control can be provided by predictive control method combined with the robust BP based ANN modeling tool.Keywords: Back-propagation, biohydrogen, bioprocessmodeling, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773938 Oil Palm Empty Fruit Bunch as a New Organic Filler for Electrical Tree Inhibition
Authors: M. H. Ahmad, A. A. A. Jamil, H. Ahmad, M. A. M. Piah, A. Darus, Y. Z. Arief, N. Bashir
Abstract:
The use of synthetic retardants in polymeric insulated cables is not uncommon in the high voltage engineering to study electrical treeing phenomenon. However few studies on organic materials for the same investigation have been carried. .This paper describes the study on the effects of Oil Palm Empty Fruit Bunch (OPEFB) microfiller on the tree initiation and propagation in silicone rubber with different weight percentages (wt %) of filler to insulation bulk material. The weight percentages used were 0 wt % and 1 wt % respectively. It was found that the OPEFB retards the propagation of the electrical treeing development. For tree inception study, the addition of 1(wt %) OPEFB has increase the tree inception voltage of silicone rubber. So, OPEFB is a potential retardant to the initiation and growth of electrical treeing occurring in polymeric materials for high voltage application. However more studies on the effects of physical and electrical properties of OPEFB as a tree retardant material are required.Keywords: Oil palm empty fruit bunch, electrical tree, siliconerubber, fillers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2363937 Application and Assessment of Artificial Neural Networks for Biodiesel Iodine Value Prediction
Authors: Raquel M. de Sousa, Sofiane Labidi, Allan Kardec D. Barros, Alex O. Barradas Filho, Aldalea L. B. Marques
Abstract:
Several parameters are established in order to measure biodiesel quality. One of them is the iodine value, which is an important parameter that measures the total unsaturation within a mixture of fatty acids. Limitation of unsaturated fatty acids is necessary since warming of higher quantity of these ones ends in either formation of deposits inside the motor or damage of lubricant. Determination of iodine value by official procedure tends to be very laborious, with high costs and toxicity of the reagents, this study uses artificial neural network (ANN) in order to predict the iodine value property as an alternative to these problems. The methodology of development of networks used 13 esters of fatty acids in the input with convergence algorithms of back propagation of back propagation type were optimized in order to get an architecture of prediction of iodine value. This study allowed us to demonstrate the neural networks’ ability to learn the correlation between biodiesel quality properties, in this caseiodine value, and the molecular structures that make it up. The model developed in the study reached a correlation coefficient (R) of 0.99 for both network validation and network simulation, with Levenberg-Maquardt algorithm.Keywords: Artificial Neural Networks, Biodiesel, Iodine Value, Prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2380936 CFD Modeling of Mixing Enhancement in a Pitted Micromixer by High Frequency Ultrasound Waves
Authors: Faezeh Mohammadi, Ebrahim Ebrahimi, Neda Azimi
Abstract:
Use of ultrasound waves is one of the techniques for increasing the mixing and mass transfer in the microdevices. Ultrasound propagation into liquid medium leads to stimulation of the fluid, creates turbulence and so increases the mixing performance. In this study, CFD modeling of two-phase flow in a pitted micromixer equipped with a piezoelectric with frequency of 1.7 MHz has been studied. CFD modeling of micromixer at different velocity of fluid flow in the absence of ultrasound waves and with ultrasound application has been performed. The hydrodynamic of fluid flow and mixing efficiency for using ultrasound has been compared with the layout of no ultrasound application. The result of CFD modeling shows well agreements with the experimental results. The results showed that the flow pattern inside the micromixer in the absence of ultrasound waves is parallel, while when ultrasound has been applied, it is not parallel. In fact, propagation of ultrasound energy into the fluid flow in the studied micromixer changed the hydrodynamic and the forms of the flow pattern and caused to mixing enhancement. In general, from the CFD modeling results, it can be concluded that the applying ultrasound energy into the liquid medium causes an increase in the turbulences and mixing and consequently, improves the mass transfer rate within the micromixer.
Keywords: CFD modeling, ultrasound, mixing, mass transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 755935 Illumination Invariant Face Recognition using Supervised and Unsupervised Learning Algorithms
Authors: Shashank N. Mathur, Anil K. Ahlawat, Virendra P. Vishwakarma
Abstract:
In this paper, a comparative study of application of supervised and unsupervised learning algorithms on illumination invariant face recognition has been carried out. The supervised learning has been carried out with the help of using a bi-layered artificial neural network having one input, two hidden and one output layer. The gradient descent with momentum and adaptive learning rate back propagation learning algorithm has been used to implement the supervised learning in a way that both the inputs and corresponding outputs are provided at the time of training the network, thus here is an inherent clustering and optimized learning of weights which provide us with efficient results.. The unsupervised learning has been implemented with the help of a modified Counterpropagation network. The Counterpropagation network involves the process of clustering followed by application of Outstar rule to obtain the recognized face. The face recognition system has been developed for recognizing faces which have varying illumination intensities, where the database images vary in lighting with respect to angle of illumination with horizontal and vertical planes. The supervised and unsupervised learning algorithms have been implemented and have been tested exhaustively, with and without application of histogram equalization to get efficient results.Keywords: Artificial Neural Networks, back propagation, Counterpropagation networks, face recognition, learning algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686934 Application of Adaptive Neuro-Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel ASTM A516 Grade 70
Authors: Omar Al Denali, Abdelaziz Badi
Abstract:
The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of PWHT experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556%, which confirms the high accuracy of the model.
Keywords: Prediction, post-weld heat treatment, adaptive neuro-fuzzy inference system, ANFIS, mean absolute percentage error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 399933 Burnishing of Aluminum-Magnesium-Graphite Composites
Authors: Mohammed T. Hayajneh, Adel Mahmood Hassan, Moath AL-Qudah
Abstract:
Burnishing is increasingly used as a finishing operation to improve surface roughness and surface hardness. This can be achieved by applying a hard ball or roller onto metallic surfaces under pressure, in order to achieve many advantages in the metallic surface. In the present work, the feed rate, speed and force have been considered as the basic burnishing parameters to study the surface roughness and surface hardness of metallic matrix composites. The considered metal matrix composites were made from Aluminum-Magnesium-Graphite with five different weight percentage of graphite. Both effects of burnishing parameters mentioned above and the graphite percentage on the surface hardness and surface roughness of the metallic matrix composites were studied. The results of this investigation showed that the surface hardness of the metallic composites increases with the increase of the burnishing force and decreases with the increase in the burnishing feed rate and burnishing speed. The surface roughness of the metallic composites decreases with the increasing of the burnishing force, feed rate, and speed to certain values, then it starts to increase. On the other hand, the increase in the weight percentage of the graphite in the considered composites causes a decrease in the surface hardness and an increase in the surface roughness.
Keywords: Burnishing process, Al-Mg-Graphite composites, Surface hardness, Surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2497932 The Role of Thermo Priming on Improving Seedling Production Technology (Ispt) in Soybean [Glycine max (L.) Merrill] Seeds
Authors: Behzad Sani, Vida Jodaeian
Abstract:
In order to determine the impact of thermo priming on germination of soybean seeds, an experiment was conducted as a completely randomized design with three replications. The factors of studied included different time thermo priming (control, 5 and 10 minutes) through the placing seeds were exposed to oven. The results showed that the effect of thermo priming was significant on germination percentage, seedling dry weight and seedling vigour in P ≤ 0.05. Mean comparison showed that the highest germination percentage (77%), seedling dry weight (1.39 g) and seedling vigour (107.03) were achieved by 10 minutes thermo priming.
Keywords: Thermo priming, seedling, seedling production, seedling growth, soybean.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2414931 Application of Different Ratios of Effluents of Ethyl Alcohol Factories on Germination of Barley
Authors: Azadeh Vaziri
Abstract:
Using effluent as a sustainable water resource for agriculture not only could provide part of water needs but also would save the existing water resources, durably. Vinasse, the effluent of ethyl alcohol factories, a by-product, which is derived from sugarcane molasses, is one of the water resources that could be effectively utilized for agricultural purposes. In the present study in order to investigate the application of different ratios of water: vinasse on germination and growth of barley seedlings an experiment was designed in pots with completely randomized design with three replications and control treatment. The consequences of four irrigation levels were studied with different water: effluent ratios (100% water, 90% water & 10% effluent, 75% water & 25% effluent, 50% water & 50% effluent) on germination and growth of barley seedling components in sandy-loam soil. The results showed that, with increasing the percentage of vinasse in the irrigation admixture, the germination percentage in barley seedlings decreased, significantly, so that the decrease in germination in comparison with the control samples in the second and third treatments was 20% and 93.33%, respectively. Seed germination percentage was about 46.66. The average stem length in seedlings was 14.3 mm and the average root length was 9.37 mm. The averages of the soils Electrical Conductivity (EC) and pH which were under irrigation with different ratios of vinasse (dSm-1) were 5.85 and 7.32, respectively, which showed a 76.2% increase in soil salinity.
Keywords: Electrical Conductivity, effluent, germination, vinasse, barley.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 406930 Non-destructive Watermelon Ripeness Determination Using Image Processing and Artificial Neural Network (ANN)
Authors: Shah Rizam M. S. B., Farah Yasmin A.R., Ahmad Ihsan M. Y., Shazana K.
Abstract:
Agriculture products are being more demanding in market today. To increase its productivity, automation to produce these products will be very helpful. The purpose of this work is to measure and determine the ripeness and quality of watermelon. The textures on watermelon skin will be captured using digital camera. These images will be filtered using image processing technique. All these information gathered will be trained using ANN to determine the watermelon ripeness accuracy. Initial results showed that the best model has produced percentage accuracy of 86.51%, when measured at 32 hidden units with a balanced percentage rate of training dataset.Keywords: Artificial Neural Network (ANN), Digital ImageProcessing, YCbCr Colour Space, Watermelon Ripeness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2952929 Improvising Intrusion Detection for Malware Activities on Dual-Stack Network Environment
Authors: Zulkiflee M., Robiah Y., Nur Azman Abu, Shahrin S.
Abstract:
Malware is software which was invented and meant for doing harms on computers. Malware is becoming a significant threat in computer network nowadays. Malware attack is not just only involving financial lost but it can also cause fatal errors which may cost lives in some cases. As new Internet Protocol version 6 (IPv6) emerged, many people believe this protocol could solve most malware propagation issues due to its broader addressing scheme. As IPv6 is still new compares to native IPv4, some transition mechanisms have been introduced to promote smoother migration. Unfortunately, these transition mechanisms allow some malwares to propagate its attack from IPv4 to IPv6 network environment. In this paper, a proof of concept shall be presented in order to show that some existing IPv4 malware detection technique need to be improvised in order to detect malware attack in dual-stack network more efficiently. A testbed of dual-stack network environment has been deployed and some genuine malware have been released to observe their behaviors. The results between these different scenarios will be analyzed and discussed further in term of their behaviors and propagation methods. The results show that malware behave differently on IPv6 from the IPv4 network protocol on the dual-stack network environment. A new detection technique is called for in order to cater this problem in the near future.
Keywords: Dual-Stack, Malware, Worm, IPv6;IDS
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004928 Implication of the Exchange-Correlation on Electromagnetic Wave Propagation in Single-Wall Carbon Nanotubes
Authors: A. Abdikian
Abstract:
Using the linearized quantum hydrodynamic model (QHD) and by considering the role of quantum parameter (Bohm’s potential) and electron exchange-correlation potential in conjunction with Maxwell’s equations, electromagnetic wave propagation in a single-walled carbon nanotubes was studied. The electronic excitations are described. By solving the mentioned equations with appropriate boundary conditions and by assuming the low-frequency electromagnetic waves, two general expressions of dispersion relations are derived for the transverse magnetic (TM) and transverse electric (TE) modes, respectively. The dispersion relations are analyzed numerically and it was found that the dependency of dispersion curves with the exchange-correlation effects (which have been ignored in previous works) in the low frequency would be limited. Moreover, it has been realized that asymptotic behaviors of the TE and TM modes are similar in single wall carbon nanotubes (SWCNTs). The results show that by adding the function of electron exchange-correlation potential lead to the phenomena and make to extend the validity range of QHD model. The results can be important in the study of collective phenomena in nanostructures.
Keywords: Transverse magnetic, transverse electric, quantum hydrodynamic model, electron exchange-correlation potential, single-wall carbon nanotubes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1079927 Influence of Optical Fluence Distribution on Photoacoustic Imaging
Authors: Mohamed K. Metwally, Sherif H. El-Gohary, Kyung Min Byun, Seung Moo Han, Soo Yeol Lee, Min Hyoung Cho, Gon Khang, Jinsung Cho, Tae-Seong Kim
Abstract:
Photoacoustic imaging (PAI) is a non-invasive and non-ionizing imaging modality that combines the absorption contrast of light with ultrasound resolution. Laser is used to deposit optical energy into a target (i.e., optical fluence). Consequently, the target temperature rises, and then thermal expansion occurs that leads to generating a PA signal. In general, most image reconstruction algorithms for PAI assume uniform fluence within an imaging object. However, it is known that optical fluence distribution within the object is non-uniform. This could affect the reconstruction of PA images. In this study, we have investigated the influence of optical fluence distribution on PA back-propagation imaging using finite element method. The uniform fluence was simulated as a triangular waveform within the object of interest. The non-uniform fluence distribution was estimated by solving light propagation within a tissue model via Monte Carlo method. The results show that the PA signal in the case of non-uniform fluence is wider than the uniform case by 23%. The frequency spectrum of the PA signal due to the non-uniform fluence has missed some high frequency components in comparison to the uniform case. Consequently, the reconstructed image with the non-uniform fluence exhibits a strong smoothing effect.
Keywords: Finite Element Method, Fluence Distribution, Monte Carlo Method, Photoacoustic Imaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2680926 Development of a Complete Single Jet Common Rail Injection System Gas Dynamic Model for Hydrogen Fueled Engine with Port Injection Feeding System
Authors: Mohammed Kamil, M. M. Rahman, Rosli A. Bakar
Abstract:
Modeling of hydrogen fueled engine (H2ICE) injection system is a very important tool that can be used for explaining or predicting the effect of advanced injection strategies on combustion and emissions. In this paper, a common rail injection system (CRIS) is proposed for 4-strokes 4-cylinders hydrogen fueled engine with port injection feeding system (PIH2ICE). For this system, a numerical one-dimensional gas dynamic model is developed considering single injection event for each injector per a cycle. One-dimensional flow equations in conservation form are used to simulate wave propagation phenomenon throughout the CR (accumulator). Using this model, the effect of common rail on the injection system characteristics is clarified. These characteristics include: rail pressure, sound velocity, rail mass flow rate, injected mass flow rate and pressure drop across injectors. The interaction effects of operational conditions (engine speed and rail pressure) and geometrical features (injector hole diameter) are illustrated; and the required compromised solutions are highlighted. The CRIS is shown to be a promising enhancement for PIH2ICE.Keywords: Common rail, hydrogen engine, port injection, wave propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590925 QoS Improvement Using Intelligent Algorithm under Dynamic Tropical Weather for Earth-Space Satellite Applications
Authors: Joseph S. Ojo, Vincent A. Akpan, Oladayo G. Ajileye, Olalekan L, Ojo
Abstract:
In this paper, the intelligent algorithm (IA) that is capable of adapting to dynamical tropical weather conditions is proposed based on fuzzy logic techniques. The IA effectively interacts with the quality of service (QoS) criteria irrespective of the dynamic tropical weather to achieve improvement in the satellite links. To achieve this, an adaptive network-based fuzzy inference system (ANFIS) has been adopted. The algorithm is capable of interacting with the weather fluctuation to generate appropriate improvement to the satellite QoS for efficient services to the customers. 5-year (2012-2016) rainfall rate of one-minute integration time series data has been used to derive fading based on ITU-R P. 618-12 propagation models. The data are obtained from the measurement undertaken by the Communication Research Group (CRG), Physics Department, Federal University of Technology, Akure, Nigeria. The rain attenuation and signal-to-noise ratio (SNR) were derived for frequency between Ku and V-band and propagation angle with respect to different transmitting power. The simulated results show a substantial reduction in SNR especially for application in the area of digital video broadcast-second generation coding modulation satellite networks.
Keywords: Fuzzy logic, intelligent algorithm, Nigeria, QoS, satellite applications, tropical weather.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 818924 Comparison of Artificial Neural Network and Multivariate Regression Methods in Prediction of Soil Cation Exchange Capacity
Authors: Ali Keshavarzi, Fereydoon Sarmadian
Abstract:
Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. Then, multivariate regression and neural network model (feedforward back propagation network) were employed to develop a pedotransfer function for predicting soil parameter using easily measurable characteristics of clay and organic carbon. The performance of the multivariate regression and neural network model was evaluated using a test data set. In order to evaluate the models, root mean square error (RMSE) was used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 respectively, while these parameters for multivariate regression model were 0.65 and 0.88 respectively. Results showed that artificial neural network with seven neurons in hidden layer had better performance in predicting soil cation exchange capacity than multivariate regression.Keywords: Easily measurable characteristics, Feed-forwardback propagation, Pedotransfer functions, CEC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2211923 Improvement of Model for SIMMER Code for SFR Corium Relocation Studies
Authors: A. Bachrata, N. Marie, F. Bertrand, J. B. Droin
Abstract:
The in-depth understanding of severe accident propagation in Generation IV of nuclear reactors is important so that appropriate risk management can be undertaken early in their design process. This paper is focused on model improvements in the SIMMER code in order to perform studies of severe accident mitigation of Sodium Fast Reactor. During the design process of the mitigation devices dedicated to extraction of molten fuel from the core region, the molten fuel propagation from the core up to the core catcher has to be studied. In this aim, analytical as well as the complex thermohydraulic simulations with SIMMER-III code are performed. The studies presented in this paper focus on physical phenomena and associated physical models that influence the corium relocation. Firstly, the molten pool heat exchange with surrounding structures is analyzed since it influences directly the instant of rupture of the dedicated tubes favoring the corium relocation for mitigation purpose. After the corium penetration into mitigation tubes, the fuel-coolant interactions result in formation of debris bed. Analyses of debris bed fluidization as well as sinking into a fluid are presented in this paper.
Keywords: Corium, mitigation tubes, SIMMER-III, sodium fast reactor (SFR).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2885922 Complex-Valued Neural Network in Signal Processing: A Study on the Effectiveness of Complex Valued Generalized Mean Neuron Model
Authors: Anupama Pande, Ashok Kumar Thakur, Swapnoneel Roy
Abstract:
A complex valued neural network is a neural network which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in signal processing. In Neural networks, generalized mean neuron model (GMN) is often discussed and studied. The GMN includes a new aggregation function based on the concept of generalized mean of all the inputs to the neuron. This paper aims to present exhaustive results of using Generalized Mean Neuron model in a complex-valued neural network model that uses the back-propagation algorithm (called -Complex-BP-) for learning. Our experiments results demonstrate the effectiveness of a Generalized Mean Neuron Model in a complex plane for signal processing over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error required on a Generalized Mean neural network model. Some inherent properties of this complex back propagation algorithm are also studied and discussed.Keywords: Complex valued neural network, Generalized Meanneuron model, Signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730921 Determination of an Efficient Differentiation Pathway of Stem Cells Employing Predictory Neural Network Model
Authors: Mughal Yar M, Israr Ul Haq, Bushra Noman
Abstract:
The stem cells have ability to differentiated themselves through mitotic cell division and various range of specialized cell types. Cellular differentiation is a way by which few specialized cell develops into more specialized.This paper studies the fundamental problem of computational schema for an artificial neural network based on chemical, physical and biological variables of state. By doing this type of study system could be model for a viable propagation of various economically important stem cells differentiation. This paper proposes various differentiation outcomes of artificial neural network into variety of potential specialized cells on implementing MATLAB version 2009. A feed-forward back propagation kind of network was created to input vector (five input elements) with single hidden layer and one output unit in output layer. The efficiency of neural network was done by the assessment of results achieved from this study with that of experimental data input and chosen target data. The propose solution for the efficiency of artificial neural network assessed by the comparatative analysis of “Mean Square Error" at zero epochs. There are different variables of data in order to test the targeted results.Keywords: Computational shcmin, meiosis, mitosis, neuralnetwork, Stem cell SOM;
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1506920 Classifier Based Text Mining for Neural Network
Authors: M. Govindarajan, R. M. Chandrasekaran
Abstract:
Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In Neural Network that address classification problems, training set, testing set, learning rate are considered as key tasks. That is collection of input/output patterns that are used to train the network and used to assess the network performance, set the rate of adjustments. This paper describes a proposed back propagation neural net classifier that performs cross validation for original Neural Network. In order to reduce the optimization of classification accuracy, training time. The feasibility the benefits of the proposed approach are demonstrated by means of five data sets like contact-lenses, cpu, weather symbolic, Weather, labor-nega-data. It is shown that , compared to exiting neural network, the training time is reduced by more than 10 times faster when the dataset is larger than CPU or the network has many hidden units while accuracy ('percent correct') was the same for all datasets but contact-lences, which is the only one with missing attributes. For contact-lences the accuracy with Proposed Neural Network was in average around 0.3 % less than with the original Neural Network. This algorithm is independent of specify data sets so that many ideas and solutions can be transferred to other classifier paradigms.Keywords: Back propagation, classification accuracy, textmining, time complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4218919 Investment Trend Analysis of Dhaka Stock Exchange: A Comparative Study
Authors: Azaz Zaman, Mirazur Rahman
Abstract:
Capital market is a crucial financial market place where companies and the government can raise long-term funds and, at the same time, investors get the opportunity to invest in the listed companies. Capital markets play a vital role not only in shifting the funds from surplus entity to deficit for investment, but also in the overall economic development of any developing country like Bangladesh. Being the first and biggest capital market of Bangladesh, Dhaka Stock Exchange (DSE) is the prime bourse of the country. The differences in the investment preference— among three broad categories of investors in DSE including individual investors, institutional investors, and government— are easily observed. Authors of this article have used five categories of investors such as sponsors or directors of the company, institutional investors, foreign investors, government, and the general public in order to present a comparative analysis of their investment patterns. Obtaining data on the percentage of investment by these five types of investors in different sectors from the DSE website, this study aims to analyze the sector-wise investment preference of these investors using August 2018 data. The study has found that the sponsors or directors of the company have the highest percentage of investment in the textile industry which is close to 16%. The Bangladesh government, as an investor, has the highest percentage of investment in the fuel & power sector, approximately 32%. It has also found that the mutual funds' sector is mostly financed by institutional investors, nearly 28%. Foreign investors have their most investments in the banking sector, which is close to 22%. It has also revealed that the textile sector is mostly financed by the general public, close to 17%. Nevertheless, general public, surprisingly, has the lowest percentage of investment in the telecommunication sector, which is 0.10%.
Keywords: Stock market investment, Dhaka stock exchange, capital market, Bangladesh.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 892918 Solar Radiation Time Series Prediction
Authors: Cameron Hamilton, Walter Potter, Gerrit Hoogenboom, Ronald McClendon, Will Hobbs
Abstract:
A model was constructed to predict the amount of solar radiation that will make contact with the surface of the earth in a given location an hour into the future. This project was supported by the Southern Company to determine at what specific times during a given day of the year solar panels could be relied upon to produce energy in sufficient quantities. Due to their ability as universal function approximators, an artificial neural network was used to estimate the nonlinear pattern of solar radiation, which utilized measurements of weather conditions collected at the Griffin, Georgia weather station as inputs. A number of network configurations and training strategies were utilized, though a multilayer perceptron with a variety of hidden nodes trained with the resilient propagation algorithm consistently yielded the most accurate predictions. In addition, a modeled direct normal irradiance field and adjacent weather station data were used to bolster prediction accuracy. In later trials, the solar radiation field was preprocessed with a discrete wavelet transform with the aim of removing noise from the measurements. The current model provides predictions of solar radiation with a mean square error of 0.0042, though ongoing efforts are being made to further improve the model’s accuracy.
Keywords: Artificial Neural Networks, Resilient Propagation, Solar Radiation, Time Series Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761917 Influence of OMF Application Rates on Post Field Soil Fertility Status under Pawpaw (Carica papaya L.) Varieties
Authors: O. O. Olubode, I. O. O. Aiyelaagbe, J. G. Bodunde
Abstract:
Field study was conducted to determine the post field soil fertility status responses of pawpaw (Carica papaya L.) var. homestead selection and sunrise-solo orchards to organo-mineral fertilizer (OMF) rates applied at 10, 20 40 t/ha where both the zero t/ha OMF and NPK 15:15:15 at 50 g/plant/month served as control. The result showed that all pawpaw orchards treated with OMF rates recorded significantly (p≤0.01) higher % P, % K, Na and % organic matter in soil compared to applied NPK which recorded lower Na. However, while orchards plated with sole pawpaw were higher in soil bulk density (SBD), orchards with homestead mixture were lower in SBD and significantly lower % organic matter compared to obtainable under sunrise crop mixture which recorded lower Na and Mg. In conclusion, as a result of loosening effect on soil particles, the homestead pawpaw probably due to more rooting activities as well as the addition of organic fertilizer to soils both had significant influence leading to lower SBD.
Keywords: Carica papaya (L), growth and yield, organo-mineral fertilizer, soil fertility status.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048916 Low Resolution Single Neural Network Based Face Recognition
Authors: Jahan Zeb, Muhammad Younus Javed, Usman Qayyum
Abstract:
This research paper deals with the implementation of face recognition using neural network (recognition classifier) on low-resolution images. The proposed system contains two parts, preprocessing and face classification. The preprocessing part converts original images into blurry image using average filter and equalizes the histogram of those image (lighting normalization). The bi-cubic interpolation function is applied onto equalized image to get resized image. The resized image is actually low-resolution image providing faster processing for training and testing. The preprocessed image becomes the input to neural network classifier, which uses back-propagation algorithm to recognize the familiar faces. The crux of proposed algorithm is its beauty to use single neural network as classifier, which produces straightforward approach towards face recognition. The single neural network consists of three layers with Log sigmoid, Hyperbolic tangent sigmoid and Linear transfer function respectively. The training function, which is incorporated in our work, is Gradient descent with momentum (adaptive learning rate) back propagation. The proposed algorithm was trained on ORL (Olivetti Research Laboratory) database with 5 training images. The empirical results provide the accuracy of 94.50%, 93.00% and 90.25% for 20, 30 and 40 subjects respectively, with time delay of 0.0934 sec per image.Keywords: Average filtering, Bicubic Interpolation, Neurons, vectorization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750915 Power MOSFET Models Including Quasi-Saturation Effect
Authors: Abdelghafour Galadi
Abstract:
In this paper, accurate power MOSFET models including quasi-saturation effect are presented. These models have no internal node voltages determined by the circuit simulator and use one JFET or one depletion mode MOSFET transistors controlled by an “effective” gate voltage taking into account the quasi-saturation effect. The proposed models achieve accurate simulation results with an average error percentage less than 9%, which is an improvement of 21 percentage points compared to the commonly used standard power MOSFET model. In addition, the models can be integrated in any available commercial circuit simulators by using their analytical equations. A description of the models will be provided along with the parameter extraction procedure.
Keywords: Power MOSFET, drift layer, quasi-saturation effect, SPICE model, circuit simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027914 Effects of Signaling on the Performance of Directed Diffusion Routing Protocol
Authors: Apidet Booranawong
Abstract:
In an original directed diffusion routing protocol, a sink requests sensing data from a source node by flooding interest messages to the network. Then, the source finds the sink by sending exploratory data messages to all nodes that generate incoming interest messages. This protocol signaling can cause heavy traffic in the network, an interference of the radio signal, collisions, great energy consumption of sensor nodes, etc. According to this research problem, this paper investigates the effect of sending interest and exploratory data messages on the performance of directed diffusion routing protocol. We demonstrate the research problem occurred from employing directed diffusion protocol in mobile wireless environments. For this purpose, we perform a set of experiments by using NS2 (network simulator 2). The radio propagation models; Two-ray ground reflection with and without shadow fading are included to investigate the effect of signaling. The simulation results show that the number of times of sent and received protocol signaling in the case of sending interest and exploratory data messages are larger than the case of sending other protocol signals, especially in the case of shadowing model. Additionally, the number of exploratory data message is largest in one round of the protocol procedure.
Keywords: Directed diffusion, Flooding, Interest message, Exploratory data message, Radio propagation model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1784913 Restoration of Biological Function of Degraded Soil via Chemical Method
Authors: M. Chomczyńska
Abstract:
The studies concerned an effect of six variants of ion exchange substrate (nutrient carriers with a different potential impact on pH of soil solution) on vegetation of orchard grass during two different periods (42 and 84 days). In the pot experiment plants were grown on sand (model of degraded soil) and six mixtures of sand and 2% (v/v) additions of particular variants of ion exchange substrate (with pH ranged from 5.5 to 8.0). The study results showed that the addition of the substrate at pH=6.5 caused the highest increase in plant yield after shorter vegetation period whereas the addition of the substrate at pH=5.5 increased dry stem and root biomass of orchard grass after longer vegetation period. Thus, the ion exchange substrate at pH=6.5 can be recommended for restoration of exhausted soils when shorter vegetation period is planned; the ion exchange substrate at pH=5.5 can be used for the same purpose when longer periods of vegetative growth are considered.Keywords: ion exchanger, ion exchange substrate, soilrestoration
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338