Search results for: particle contamination
692 PSO-Based Planning of Distribution Systems with Distributed Generations
Authors: Amin Hajizadeh, Ehsan Hajizadeh
Abstract:
This paper presents a multi-objective formulation for optimal siting and sizing of distributed generation (DG) resources in distribution systems in order to minimize the cost of power losses and energy not supplied. The implemented technique is based on particle swarm optimization (PSO) and weight method that employed to obtain the best compromise between these costs. Simulation results on 33-bus distribution test system are presented to demonstrate the effectiveness of the proposed procedure.Keywords: Distributed generation, distribution networks, particle swarm optimization, reliability, weight method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2047691 The Effect of Impinging WC-12Co Particles Temperature on Thickness of HVOF Thermally Sprayed Coatings
Authors: M. Jalali Azizpour, H. Mohammadi Majd
Abstract:
In this paper, the effect of WC-12Co particle temperature in HVOF thermal spraying process on the coating thickness has been studied. The statistical results show that the spray distance and oxygen-to-fuel ratio are effective factors on particle characterization and thickness of HVOF thermal spraying coatings. Spray Watch diagnostic system, scanning electron microscopy (SEM), X-ray diffraction and thickness measuring system were used for this purpose.
Keywords: HVOF, Temperature, Thickness, Velocity, WC- 12Co.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963690 Determining Cluster Boundaries Using Particle Swarm Optimization
Authors: Anurag Sharma, Christian W. Omlin
Abstract:
Self-organizing map (SOM) is a well known data reduction technique used in data mining. Data visualization can reveal structure in data sets that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOMs, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of a generic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOMs. The application of our method to unlabeled call data for a mobile phone operator demonstrates its feasibility. PSO algorithm utilizes U-matrix of SOMs to determine cluster boundaries; the results of this novel automatic method correspond well to boundary detection through visual inspection of code vectors and k-means algorithm.
Keywords: Particle swarm optimization, self-organizing maps, clustering, data mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718689 Control of Biofilm Formation and Inorganic Particle Accumulation on Reverse Osmosis Membrane by Hypochlorite Washing
Authors: Masaki Ohno, Cervinia Manalo, Tetsuji Okuda, Satoshi Nakai, Wataru Nishijima
Abstract:
Reverse osmosis (RO) membranes have been widely used for desalination to purify water for drinking and other purposes. Although at present most RO membranes have no resistance to chlorine, chlorine-resistant membranes are being developed. Therefore, direct chlorine treatment or chlorine washing will be an option in preventing biofouling on chlorine-resistant membranes. Furthermore, if particle accumulation control is possible by using chlorine washing, expensive pretreatment for particle removal can be removed or simplified. The objective of this study was to determine the effective hypochlorite washing condition required for controlling biofilm formation and inorganic particle accumulation on RO membrane in a continuous flow channel with RO membrane and spacer. In this study, direct chlorine washing was done by soaking fouled RO membranes in hypochlorite solution and fluorescence intensity was used to quantify biofilm on the membrane surface. After 48 h of soaking the membranes in high fouling potential waters, the fluorescence intensity decreased to 0 from 470 using the following washing conditions: 10 mg/L chlorine concentration, 2 times/d washing interval, and 30 min washing time. The chlorine concentration required to control biofilm formation decreased as the chlorine concentration (0.5–10 mg/L), the washing interval (1–4 times/d), or the washing time (1–30 min) increased. For the sample solutions used in the study, 10 mg/L chlorine concentration with 2 times/d interval, and 5 min washing time was required for biofilm control. The optimum chlorine washing conditions obtained from soaking experiments proved to be applicable also in controlling biofilm formation in continuous flow experiments. Moreover, chlorine washing employed in controlling biofilm with suspended particles resulted in lower amounts of organic (0.03 mg/cm2) and inorganic (0.14 mg/cm2) deposits on the membrane than that for sample water without chlorine washing (0.14 mg/cm2 and 0.33 mg/cm2, respectively). The amount of biofilm formed was 79% controlled by continuous washing with 10 mg/L of free chlorine concentration, and the inorganic accumulation amount decreased by 58% to levels similar to that of pure water with kaolin (0.17 mg/cm2) as feed water. These results confirmed the acceleration of particle accumulation due to biofilm formation, and that the inhibition of biofilm growth can almost completely reduce further particle accumulation. In addition, effective hypochlorite washing condition which can control both biofilm formation and particle accumulation could be achieved.
Keywords: Biofouling control, hypochlorite, reverse osmosis, washing condition optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1189688 Multi-Objective Random Drift Particle Swarm Optimization Algorithm Based on RDPSO and Crowding Distance Sorting
Authors: Yiqiong Yuan, Jun Sun, Dongmei Zhou, Jianan Sun
Abstract:
In this paper, we presented a Multi-Objective Random Drift Particle Swarm Optimization algorithm (MORDPSO-CD) based on RDPSO and crowding distance sorting to improve the convergence and distribution with less computation cost. MORDPSO-CD makes the most of RDPSO to approach the true Pareto optimal solutions fast. We adopt the crowding distance sorting technique to update and maintain the archived optimal solutions. Introducing the crowding distance technique into MORDPSO can make the leader particles find the true Pareto solution ultimately. The simulation results reveal that the proposed algorithm has better convergence and distribution.Keywords: Multi-objective optimization, random drift particle swarm optimization, crowding distance, Pareto optimal solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470687 Relative Suitability Evaluation of Two Methods of Particle-Size Analysis for Selected Soils of Sudan Savanna of Nigeria
Authors: B. A. Lawal, B. R. Singh, G. A. Babaji, P. A. Tsado
Abstract:
The two widely used methods base on the sedimentation principle (Bouyoucos hydrometer and International pipette) for particle-size analysis were comparatively evaluated on soils collected from various locations in Sudan savanna of Nigeria particularly from Sokoto and Zamfara States. The hydrometer method under-estimated the silt and over-estimated the clay content. Also, the hydrometer reading proved difficult and tended to submerge when floated for clay reading in the suspension of very sandy soils (900g kg-1 sand). Furthermore, the results from the two methods were validated by subjecting the data to USDA soil textural triangle to determine their textural class names. The outcome was that 91.67 % of the experimental soils retained the same textural class names irrespective of the method. Thus, Bouyoucos hydrometer method may conveniently find a place in routine work in view of its simplicity, rapidity, and strong correlation with the pipette method.
Keywords: Hydrometer and pipette methods, particle-size analysis, sedimentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2371686 Global Electricity Consumption Estimation Using Particle Swarm Optimization (PSO)
Authors: E.Assareh, M.A. Behrang, R. Assareh, N. Hedayat
Abstract:
An integrated Artificial Neural Network- Particle Swarm Optimization (PSO) is presented for analyzing global electricity consumption. To aim this purpose, following steps are done: STEP 1: in the first step, PSO is applied in order to determine world-s oil, natural gas, coal and primary energy demand equations based on socio-economic indicators. World-s population, Gross domestic product (GDP), oil trade movement and natural gas trade movement are used as socio-economic indicators in this study. For each socio-economic indicator, a feed-forward back propagation artificial neural network is trained and projected for future time domain. STEP 2: in the second step, global electricity consumption is projected based on the oil, natural gas, coal and primary energy consumption using PSO. global electricity consumption is forecasted up to year 2040.
Keywords: Particle Swarm Optimization, Artificial NeuralNetworks, Fossil Fuels, Electricity, Forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504685 Optimal Design of Multimachine Power System Stabilizers Using Improved Multi-Objective Particle Swarm Optimization Algorithm
Authors: Badr M. Alshammari, T. Guesmi
Abstract:
In this paper, the concept of a non-dominated sorting multi-objective particle swarm optimization with local search (NSPSO-LS) is presented for the optimal design of multimachine power system stabilizers (PSSs). The controller design is formulated as an optimization problem in order to shift the system electromechanical modes in a pre-specified region in the s-plan. A composite set of objective functions comprising the damping factor and the damping ratio of the undamped and lightly damped electromechanical modes is considered. The performance of the proposed optimization algorithm is verified for the 3-machine 9-bus system. Simulation results based on eigenvalue analysis and nonlinear time-domain simulation show the potential and superiority of the NSPSO-LS algorithm in tuning PSSs over a wide range of loading conditions and large disturbance compared to the classic PSO technique and genetic algorithms.
Keywords: Multi-objective optimization, particle swarm optimization, power system stabilizer, low frequency oscillations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1232684 Study of Compaction in Hot-Mix Asphalt Using Computer Simulations
Authors: Kasthurirangan Gopalakrishnan, Naga Shashidhar, Xiaoxiong Zhong
Abstract:
During the process of compaction in Hot-Mix Asphalt (HMA) mixtures, the distance between aggregate particles decreases as they come together and eliminate air-voids. By measuring the inter-particle distances in a cut-section of a HMA sample the degree of compaction can be estimated. For this, a calibration curve is generated by computer simulation technique when the gradation and asphalt content of the HMA mixture are known. A two-dimensional cross section of HMA specimen was simulated using the mixture design information (gradation, asphalt content and air-void content). Nearest neighbor distance methods such as Delaunay triangulation were used to study the changes in inter-particle distance and area distribution during the process of compaction in HMA. Such computer simulations would enable making several hundreds of repetitions in a short period of time without the necessity to compact and analyze laboratory specimens in order to obtain good statistics on the parameters defined. The distributions for the statistical parameters based on computer simulations showed similar trends as those of laboratory specimens.Keywords: Computer simulations, Hot-Mix Asphalt (HMA), inter-particle distance, image analysis, nearest neighbor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1892683 Velocity Distribution in Open Channels with Sand: An Experimental Study
Authors: E. Keramaris
Abstract:
In this study, laboratory experiments in open channel flows over a sand bed were conducted. A porous bed (sand bed) with porosity of ε=0.70 and porous thickness of s΄=3 cm was tested. Vertical distributions of velocity were evaluated by using a two-dimensional (2D) Particle Image Velocimetry (PIV). Velocity profiles are measured above the impermeable bed and above the sand bed for the same different total water heights (h= 6, 8, 10 and 12 cm) and for the same slope S=1.5. Measurements of mean velocity indicate the effects of the bed material used (sand bed) on the flow characteristics (Velocity distribution and Reynolds number) in comparison with those above the impermeable bed.
Keywords: Particle image velocimetry, sand bed, velocity distribution, Reynolds number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710682 Investigation of the Effect of Pressure Changes on the Gas Proportional Detector
Authors: S. M. Golgoun, S. M. Taheri
Abstract:
Investigation of radioactive contamination of personnel working in radiation centers to identify radioactive materials and then measure the potential contamination and eliminate it has always been considered. Various ways have been proposed to detect radiation so far and different detectors have been designed. A gas sealed proportional counter is one of these detectors which has special working conditions. In this research, a gas sealed detector of proportional counter type was made and then its various parameters were investigated. Some parameters are influential on their working conditions and one of these most important parameters is the internal pressure of the proportional gas-filled detector. In this experimental research, we produced software for examination and altering high voltage, registering data, and calculating efficiency of the detector. By this, we investigated different gas pressure effects on detector efficiency and proposed optimizing working conditions of this detector. After reviewing the results, we suggested a range between 20-30 mbar pressure for this gas sealed detector.
Keywords: Gas sealed detector, proportional detector, gas pressure measurement, counter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 349681 Numerical and Experimental Investigation of Airflow inside a Car Cabin
Authors: Mokhtar Djeddou, Amine Mehel, Georges Fokoua, Anne Tanière, Patrick Chevrier
Abstract:
Commuters’ exposure to air pollution, particularly to particle matter inside vehicles, is a significant health issue. Assessing particle concentrations and characterizing their distribution is an important first step in understanding and proposing solutions to improve car cabin air quality. It is known that particle dynamics is intimately driven by particle-turbulence interactions. In order to analyze and model pollutants distribution inside car cabins, it is crucial to examine first the single-phase flow topology and its associated turbulence characteristics. Within this context, Computational Fluid Dynamics (CFD) simulations were conducted to model airflow inside a full-scale car cabin using Reynolds Averaged Navier-Stokes (RANS) approach combined with the first order Realizable k-ε model to close the RANS equations. To assess the numerical model, a campaign of velocity field measurements at different locations in the front and back of the car cabin has been carried out using hot-wire anemometry technique. Comparison between numerical and experimental results shows a good agreement of velocity profiles. Additionally, visualization of streamlines shows the formation of jet flow developing out of the dashboard air vents and the formation of large vortex structures, particularly between the front and back-seat compartments. These vortical structures could play a key role in the accumulation and clustering of particles in a turbulent flow.
Keywords: Car cabin, CFD, hot-wire anemometry, vortical flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 468680 Effect of Fly Ash Fineness on Sorption Properties of Geopolymers Based On Liquid Glass
Authors: M. Zelinkova, M. Ondova
Abstract:
Fly ash (FA) thanks to the significant presence of SiO2 and Al2O3 as the main components is a potential raw material for geopolymers production. Mechanical activation is a method for improving FA reactivity and also the porosity of final mixture; those parameters can be analysed through sorption properties. They have direct impact on the durability of fly ash based geopolymer mortars. In the paper, effect of FA fineness on sorption properties of geopolymers based on sodium silicate, as well as relationship between fly ash fineness and apparent density, compressive and flexural strength of geopolymers are presented. The best results in the evaluated area reached the sample H1, which contents the highest portion of particle under 20μm (100% of GFA). The interdependence of individual tested properties was confirmed for geopolymer mixtures corresponding to those in the cement based mixtures: higher is portion of fine particles < 20μm, higher is strength, density and lower are sorption properties. The compressive strength as well as sorption parameters of the geopolymer can be reasonably controlled by grinding process and also ensured by the higher share of fine particle (to 20μm) in total mass of the material.Keywords: Alkali activation, geopolymers, fly ash, particle fineness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2060679 Neural Networks and Particle Swarm Optimization Based MPPT for Small Wind Power Generator
Authors: Chun-Yao Lee, Yi-Xing Shen, Jung-Cheng Cheng, Yi-Yin Li, Chih-Wen Chang
Abstract:
This paper proposes the method combining artificial neural network (ANN) with particle swarm optimization (PSO) to implement the maximum power point tracking (MPPT) by controlling the rotor speed of the wind generator. First, the measurements of wind speed, rotor speed of wind power generator and output power of wind power generator are applied to train artificial neural network and to estimate the wind speed. Second, the method mentioned above is applied to estimate and control the optimal rotor speed of the wind turbine so as to output the maximum power. Finally, the result reveals that the control system discussed in this paper extracts the maximum output power of wind generator within the short duration even in the conditions of wind speed and load impedance variation.Keywords: Maximum power point tracking, artificial neuralnetwork, particle swarm optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208678 Rotary Entrainment in Two Phase Stratified Gas-Liquid Layers: An Experimental Study
Authors: Yagya Sharma, Basanta K. Rana, Arup K. Das
Abstract:
Rotary entrainment is a phenomenon in which the interface of two immiscible fluids are subjected to external flux by means of rotation. Present work reports the experimental study on rotary motion of a horizontal cylinder between the interface of air and water to observe the penetration of gas inside the liquid. Experiments have been performed to establish entrainment of air mass in water alongside the cylindrical surface. The movement of tracer and seeded particles has been tracked to calculate the speed and path of the entrained air inside water. Simplified particle image velocimetry technique has been used to trace the movement of particles/tracers at the moment they are injected inside the entrainment zone and suspended beads have been used to replicate the particle movement with respect to time in order to determine the flow dynamics of the fluid along the cylinder. Present paper establishes a thorough experimental analysis of the rotary entrainment phenomenon between air and water keeping in interest the extent to which we can intermix the two and also to study its entrainment trajectories.Keywords: Entrainment, gas-liquid flow, particle image velocimetry, stratified layer mixing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833677 Environmental Consequences of Metal Concentrations in Stream Sediments of Atoyac River Basin, Central Mexico: Natural and Industrial Influences
Authors: V. C. Shruti, P. F. Rodríguez-Espinosa, D. C. Escobedo-Urías, Estefanía Martinez Tavera, M. P. Jonathan
Abstract:
Atoyac River, a major south-central river flowing through the states of Puebla and Tlaxcala in Mexico is significantly impacted by the natural volcanic inputs in addition with wastewater discharges from urban, agriculture and industrial zones. In the present study, core samples were collected from R. Atoyac and analyzed for sediment granularity, major (Al, Fe, Ca, Mg, K, P and S) and trace elemental concentrations (Ba, Cr, Cd, Mn, Pb, Sr, V, Zn, Zr). The textural studies reveal that the sediments are mostly sand sized particles exceeding 99% and with very few to no presence of mud fractions. It is observed that most of the metals like (avg: all values in μg g-1) Ca (35,528), Mg (10,789), K (7453), S (1394), Ba (203), Cr (30), Cd (4), Pb (11), Sr (435), Zn (76) and Zr (88) are enriched throughout the sediments mainly sourced from volcanic inputs, source rock composition of Atoyac River basin and industrial influences from the Puebla city region. Contamination indices, such as anthropogenic factor (AF), enrichment factor (EF) and geoaccumulation index (Igeo), were used to investigate the level of contamination and toxicity as well as quantitatively assess the influences of human activities on metal concentrations. The AF values (>1) for Ba, Ca, Mg, Na, K, P and S suggested volcanic inputs from the study region, where as Cd and Zn are attributed to the impacts of industrial inputs in this zone. The EF and Igeo values revealed an extreme enrichment of S and Cd. The ecological risks were evaluated using potential ecological risk index (RI) and the results indicate that the metals Cd and V pose a major hazard for the biological community.Keywords: Atoyac River, contamination indices, metal concentrations, Mexico, textural studies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1148676 Optimized Fuzzy Control by Particle Swarm Optimization Technique for Control of CSTR
Authors: Saeed Vaneshani, Hooshang Jazayeri-Rad
Abstract:
Fuzzy logic control (FLC) systems have been tested in many technical and industrial applications as a useful modeling tool that can handle the uncertainties and nonlinearities of modern control systems. The main drawback of the FLC methodologies in the industrial environment is challenging for selecting the number of optimum tuning parameters. In this paper, a method has been proposed for finding the optimum membership functions of a fuzzy system using particle swarm optimization (PSO) algorithm. A synthetic algorithm combined from fuzzy logic control and PSO algorithm is used to design a controller for a continuous stirred tank reactor (CSTR) with the aim of achieving the accurate and acceptable desired results. To exhibit the effectiveness of proposed algorithm, it is used to optimize the Gaussian membership functions of the fuzzy model of a nonlinear CSTR system as a case study. It is clearly proved that the optimized membership functions (MFs) provided better performance than a fuzzy model for the same system, when the MFs were heuristically defined.Keywords: continuous stirred tank reactor (CSTR), fuzzy logiccontrol (FLC), membership function(MF), particle swarmoptimization (PSO)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3201675 Effect of Impact Angle on Erosive Abrasive Wear of Ductile and Brittle Materials
Authors: Ergin Kosa, Ali Göksenli
Abstract:
Erosion and abrasion are wear mechanisms reducing the lifetime of machine elements like valves, pump and pipe systems. Both wear mechanisms are acting at the same time, causing a “Synergy” effect, which leads to a rapid damage of the surface. Different parameters are effective on erosive abrasive wear rate. In this study effect of particle impact angle on wear rate and wear mechanism of ductile and brittle materials was investigated. A new slurry pot was designed for experimental investigation. As abrasive particle, silica sand was used. Particle size was ranking between 200- 500 μm. All tests were carried out in a sand-water mixture of 20% concentration for four hours. Impact velocities of the particles were 4.76 m/s. As ductile material steel St 37 with Vickers Hardness Number (VHN) of 245 and quenched St 37 with 510 VHN was used as brittle material. After wear tests, morphology of the eroded surfaces were investigated for better understanding of the wear mechanisms acting at different impact angles by using Scanning Electron Microscope. The results indicated that wear rate of ductile material was higher than brittle material. Maximum wear rate was observed by ductile material at a particle impact angle of 300 and decreased further by an increase in attack angle. Maximum wear rate by brittle materials was by impact angle of 450 and decreased further up to 900. Ploughing was the dominant wear mechanism by ductile material. Microcracks on the surface were detected by ductile materials, which are nucleation centers for crater formation. Number of craters decreased and depth of craters increased by ductile materials by attack angle higher than 300. Deformation wear mechanism was observed by brittle materials. Number and depth of pits decreased by brittle materials by impact angles higher than 450. At the end it is concluded that wear rate could not be directly related to impact angle of particles due to the different reaction of ductile and brittle materials.Keywords: Erosive wear, particle impact angle, silica sand, wear rate, ductile-brittle material.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3023674 Analysis of Self Excited Induction Generator using Particle Swarm Optimization
Authors: Hassan E. A. Ibrahim, Mohamed F. Serag
Abstract:
In this paper, Novel method, Particle Swarm Optimization (PSO) algorithm, based technique is proposed to estimate and analyze the steady state performance of self-excited induction generator (SEIG). In this novel method the tedious job of deriving the complex coefficients of a polynomial equation and solving it, as in previous methods, is not required. By comparing the simulation results obtained by the proposed method with those obtained by the well known mathematical methods, a good agreement between these results is obtained. The comparison validates the effectiveness of the proposed technique.
Keywords: Evolution theory, MATLAB, optimization, PSO, SEIG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2464673 Numerical Simulation of Fluid-Structure Interaction on Wedge Slamming Impact Using Particle Method
Authors: Sung-Chul Hwang, Di Ren, Sang-Moon Yoon, Jong-Chun Park, Abbas Khayyer, Hitoshi Gotoh
Abstract:
This paper presents a fully Lagrangian coupled Fluid-Structure Interaction (FSI) solver for simulations of fluid-structure interactions, which is based on the Moving Particle Semi-implicit (MPS) method to solve the governing equations corresponding to incompressible flows as well as elastic structures. The developed solver is verified by reproducing the high velocity impact loads of deformable thin wedges with three different materials such as mild steel, aluminium and tin during water entry. The present simulation results for aluminium are compared with analytical solution derived from the hydrodynamic Wagner model and linear Wan’s theory. And also, the impact pressure and strain on the water entry wedge with three different materials, such as mild steel, aluminium and tin, are simulated and the effects of hydro-elasticity are discussed.Keywords: Fluid-structure interaction (FSI), Moving Particle Semi-implicit (MPS) method, Elastic structure, Incompressible fluid Wedge slamming impact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100672 A Failure Criterion for Unsupported Boreholes in Poorly Cemented Granular Formations
Authors: Sam S. Hashemi
Abstract:
The breakage of bonding between sand particles and their dislodgment from the borehole wall are among the main factors resulting in a borehole failure in poorly cemented granular formations. The grain debonding usually precedes the borehole failure and it can be considered as a sign that the onset of the borehole collapse is imminent. Detecting the bonding breakage point and introducing an appropriate failure criterion will play an important role in borehole stability analysis. To study the influence of different factors on the initiation of sand bonding breakage at the borehole wall, a series of laboratory tests was designed and conducted on poorly cemented sand samples. The total absorbed strain energy per volume of material up to the point of the observed particle debonding was computed. The results indicated that the particle bonding breakage point at the borehole wall was reached both before and after the peak strength of the thick-walled hollow cylinder specimens depending on the stress path and cement content. Three different cement contents and two borehole sizes were investigated to study the influence of the bonding strength and scale on the particle dislodgment. Test results showed that the stress path has a significant influence on the onset of the sand bonding breakage. It was shown that for various stress paths, there is a near linear relationship between the absorbed energy and the normal effective mean stress.Keywords: Borehole stability, experimental studies, total strain energy, poorly cemented sands, particle bonding breakage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311671 Performance Comparison of Particle Swarm Optimization with Traditional Clustering Algorithms used in Self-Organizing Map
Authors: Anurag Sharma, Christian W. Omlin
Abstract:
Self-organizing map (SOM) is a well known data reduction technique used in data mining. It can reveal structure in data sets through data visualization that is otherwise hard to detect from raw data alone. However, interpretation through visual inspection is prone to errors and can be very tedious. There are several techniques for the automatic detection of clusters of code vectors found by SOM, but they generally do not take into account the distribution of code vectors; this may lead to unsatisfactory clustering and poor definition of cluster boundaries, particularly where the density of data points is low. In this paper, we propose the use of an adaptive heuristic particle swarm optimization (PSO) algorithm for finding cluster boundaries directly from the code vectors obtained from SOM. The application of our method to several standard data sets demonstrates its feasibility. PSO algorithm utilizes a so-called U-matrix of SOM to determine cluster boundaries; the results of this novel automatic method compare very favorably to boundary detection through traditional algorithms namely k-means and hierarchical based approach which are normally used to interpret the output of SOM.Keywords: cluster boundaries, clustering, code vectors, data mining, particle swarm optimization, self-organizing maps, U-matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1909670 The Effect of Forest Fires on Physical Properties and Magnetic Susceptibility of Semi-Arid Soils in North-Eastern, Libya
Authors: G. S. Eldiabani, W. H. G. Hale, C. P. Heron
Abstract:
Forest areas are particularly susceptible to fires, which are often manmade. One of the most fire affected forest regions in the world is the Mediterranean. Libya, in the Mediterranean region, has soils that are considered to be arid except in a small area called Aljabal Alakhdar (Green mountain), which is the geographic area covered by this study. Like other forests in the Mediterranean it has suffered extreme degradation. This is mainly due to people removing fire wood, or sometimes converting forested areas to agricultural use, as well as fires which may alter several soil chemical and physical properties. The purpose of this study was to evaluate the effects of fires on the physical properties of soil of Aljabal Alakhdar forest in the north-east of Libya. The physical properties of soil following fire in two geographic areas have been determined, with those subjected to the fire compared to those in adjacent unburned areas in one coastal and one mountain site. Physical properties studied were: soil particle size (soil texture), soil water content, soil porosity and soil particle density. For the first time in Libyan soils, the effect of burning on the magnetic susceptibility properties of soils was also tested. The results showed that the soils in both study sites, irrespective of burning or depth fell into the category of a silt loam texture, low water content, homogeneity of porosity of the soil profiles, relatively high soil particle density values and there is a much greater value of the soil magnetic susceptibility in the top layer from both sites except for the soil water content and magnetic susceptibility, fire has not had a clear effect on the soils’ physical properties.
Keywords: Aljabal Alakhdar, the coastal site, the mountain site, fire effect, soil particle size, soil water content, soil porosity, soil particle density, soil magnetic susceptibility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2650669 Residue and Temporal Trend of Polychlorinated Biphenyls (PCBs) in Surface Soils from Bacninh, Vietnam
Authors: Toan Vu Duc, Son Ha Viet
Abstract:
An evaluation of the PCBs residues in the surface soils from Bacninh, Vietnam was carried out. Sixty representative soil samples were collected from the centre of Bacninh and three surrounding districts. The analyzed results indicated the wide extent of contamination of total PCBs in Bacninh. In industrial and urban zones, total PCBs concentrations ranged from ranged from <0.02 to 32.68ng g-1 (mean 19.89 ±15.64ng g-1) dry weight, while those in agricultural zones ranged from <0.02 to 13.26ng g-1 (mean 8.14 ± 4.89ng g-1) dry weight. The mean percentages of PCB28, PCB52, PCB101, PCB138, PCB153 and PCB180 compared with Σ6PCBs in the analyzed soil samples are 3.1%, 13.9%, 21.7%, 30.7%, 25.8% and 4.8%, respectively. These values can be explained by the chemical properties as well as the compositions of PCBs mixture which probably escaped from dielectric oil. An increasing trend and the long-time release of PCBs are observed.
Keywords: Contamination, PCBs, soil, temporal trend.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453668 The Optimization of Sun Collector Parameters
Authors: István Patkó, Hosam Bayoumi Hamuda, András Medve, András Szeder
Abstract:
In order to efficiently solve the problems created by the deepening energy crisis affecting Europe and the world, governments cannot neglect the opportunities of using the energy produced by sun collectors. In many of the EU countries there are sun collectors producing heat energy, e.g. in 2011 in the area of EU27 (countries which belong to European Union) + Switzerland altogether 37519126 m2 were operated, which are capable of producing 26.3 GWh heat energy. The energy produced by these sun collectors is utilized at the place of production. In the near future governments will have to focus more on spreading and using sun collectors. Among the complex problems of operating sun collectors, this article deals with determining the optimal tilt angle, directions of sun collectors. We evaluate the contamination of glass surface of sun collector to the produced energy. Our theoretically results are confirmed by laboratory measurements. The purpose of our work is to help users and engineers in determination of optimal operation parameters of sun collectors.
Keywords: Heat energy, tilt angle, direction of sun collector, contamination of surface.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757667 Effect of the Cross-Sectional Geometry on Heat Transfer and Particle Motion of Circulating Fluidized Bed Riser for CO2 Capture
Authors: Seungyeong Choi, Namkyu Lee, Dong Il Shim, Young Mun Lee, Yong-Ki Park, Hyung Hee Cho
Abstract:
Effect of the cross-sectional geometry on heat transfer and particle motion of circulating fluidized bed riser for CO2 capture was investigated. Numerical simulation using Eulerian-eulerian method with kinetic theory of granular flow was adopted to analyze gas-solid flow consisting in circulating fluidized bed riser. Circular, square, and rectangular cross-sectional geometry cases of the same area were carried out. Rectangular cross-sectional geometries were analyzed having aspect ratios of 1: 2, 1: 4, 1: 8, and 1:16. The cross-sectional geometry significantly influenced the particle motion and heat transfer. The downward flow pattern of solid particles near the wall was changed. The gas-solid mixing degree of the riser with the rectangular cross section of the high aspect ratio was the lowest. There were differences in bed-to-wall heat transfer coefficient according to rectangular geometry with different aspect ratios.
Keywords: Bed geometry, computational fluid dynamics, circulating fluidized bed riser, heat transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331666 Human Health Risk Assessment from Metals Present in a Soil Contaminated by Crude Oil
Authors: M. A. Stoian, D. M. Cocarta, A. Badea
Abstract:
The main sources of soil pollution due to petroleum contaminants are industrial processes involve crude oil. Soil polluted with crude oil is toxic for plants, animals, and humans. Human exposure to the contaminated soil occurs through different exposure pathways: Soil ingestion, diet, inhalation, and dermal contact. The present study research is focused on soil contamination with heavy metals as a consequence of soil pollution with petroleum products. Human exposure pathways considered are: Accidentally ingestion of contaminated soil and dermal contact. The purpose of the paper is to identify the human health risk (carcinogenic risk) from soil contaminated with heavy metals. The human exposure and risk were evaluated for five contaminants of concern of the eleven which were identified in soil. Two soil samples were collected from a bioremediation platform from Muntenia Region of Romania. The soil deposited on the bioremediation platform was contaminated through extraction and oil processing. For the research work, two average soil samples from two different plots were analyzed: The first one was slightly contaminated with petroleum products (Total Petroleum Hydrocarbons (TPH) in soil was 1420 mg/kgd.w.), while the second one was highly contaminated (TPH in soil was 24306 mg/kgd.w.). In order to evaluate risks posed by heavy metals due soil pollution with petroleum products, five metals known as carcinogenic were investigated: Arsenic (As), Cadmium (Cd), ChromiumVI (CrVI), Nickel (Ni), and Lead (Pb). Results of the chemical analysis performed on samples collected from the contaminated soil evidence soil contamination with heavy metals as following: As in Site 1 = 6.96 mg/kgd.w; As in Site 2 = 11.62 mg/kgd.w, Cd in Site 1 = 0.9 mg/kgd.w; Cd in Site 2 = 1 mg/kgd.w; CrVI was 0.1 mg/kgd.w for both sites; Ni in Site 1 = 37.00 mg/kgd.w; Ni in Site 2 = 42.46 mg/kgd.w; Pb in Site 1 = 34.67 mg/kgd.w; Pb in Site 2 = 120.44 mg/kgd.w. The concentrations for these metals exceed the normal values established in the Romanian regulation, but are smaller than the alert level for a less sensitive use of soil (industrial). Although, the concentrations do not exceed the thresholds, the next step was to assess the human health risk posed by soil contamination with these heavy metals. Results for risk were compared with the acceptable one (10-6, according to World Human Organization). As, expected, the highest risk was identified for the soil with a higher degree of contamination: Individual Risk (IR) was 1.11×10-5 compared with 8.61×10-6.
Keywords: Carcinogenic risk, heavy metals, human health risk assessment, soil pollution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1314665 An Integrated Design Evaluation and Assembly Sequence Planning Model using a Particle Swarm Optimization Approach
Authors: Feng-Yi Huang, Yuan-Jye Tseng
Abstract:
In the traditional concept of product life cycle management, the activities of design, manufacturing, and assembly are performed in a sequential way. The drawback is that the considerations in design may contradict the considerations in manufacturing and assembly. The different designs of components can lead to different assembly sequences. Therefore, in some cases, a good design may result in a high cost in the downstream assembly activities. In this research, an integrated design evaluation and assembly sequence planning model is presented. Given a product requirement, there may be several design alternative cases to design the components for the same product. If a different design case is selected, the assembly sequence for constructing the product can be different. In this paper, first, the designed components are represented by using graph based models. The graph based models are transformed to assembly precedence constraints and assembly costs. A particle swarm optimization (PSO) approach is presented by encoding a particle using a position matrix defined by the design cases and the assembly sequences. The PSO algorithm simultaneously performs design evaluation and assembly sequence planning with an objective of minimizing the total assembly costs. As a result, the design cases and the assembly sequences can both be optimized. The main contribution lies in the new concept of integrated design evaluation and assembly sequence planning model and the new PSO solution method. The test results show that the presented method is feasible and efficient for solving the integrated design evaluation and assembly planning problem. In this paper, an example product is tested and illustrated.
Keywords: assembly sequence planning, design evaluation, design for assembly, particle swarm optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827664 Primer Design with Specific PCR Product using Particle Swarm Optimization
Authors: Cheng-Hong Yang, Yu-Huei Cheng, Hsueh-Wei Chang, Li-Yeh Chuang
Abstract:
Before performing polymerase chain reactions (PCR), a feasible primer set is required. Many primer design methods have been proposed for design a feasible primer set. However, the majority of these methods require a relatively long time to obtain an optimal solution since large quantities of template DNA need to be analyzed. Furthermore, the designed primer sets usually do not provide a specific PCR product. In recent years, evolutionary computation has been applied to PCR primer design and yielded promising results. In this paper, a particle swarm optimization (PSO) algorithm is proposed to solve primer design problems associated with providing a specific product for PCR experiments. A test set of the gene CYP1A1, associated with a heightened lung cancer risk was analyzed and the comparison of accuracy and running time with the genetic algorithm (GA) and memetic algorithm (MA) was performed. A comparison of results indicated that the proposed PSO method for primer design finds optimal or near-optimal primer sets and effective PCR products in a relatively short time.
Keywords: polymerase chain reaction (PCR), primer design, evolutionary computation, particle swarm optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880663 Effect of Humidity on in-Process Crystallization of Lactose during Spray Drying
Authors: Amirali Ebrahimi, T. A. G. Langrish
Abstract:
The effect of various humidities on process yields and degrees of crystallinity for spray-dried powders from spray drying of lactose with humid air in a straight-through system have been studied. It has been suggested by Williams–Landel–Ferry kinetics (WLF) that a higher particle temperature and lower glass-transition temperature would increase the crystallization rate of the particles during the spray-drying process. Freshly humidified air produced by a Buchi-B290 spray dryer as a humidifier attached to the main spray dryer decreased the particle glass-transition temperature (Tg), while allowing the particle temperature (Tp) to reach higher values by using an insulated drying chamber. Differential scanning calorimetry (DSC) and moisture sorption analysis were used to measure the degree of crystallinity for the spray-dried lactose powders. The results showed that higher Tp-Tg, as a result of applying humid air, improved the process yield from 21 ± 4 to 26 ± 2% and crystallinity of the particles by decreasing the latent heat of crystallization from 43 ± 1 to 30 ± 11 J/g and the sorption peak height from 7.3 ± 0.7% to 6 ± 0.7%.
Keywords: Lactose, crystallization, spray drying, humid air.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3439