Search results for: network backup system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10148

Search results for: network backup system

9968 Verification of On-Line Vehicle Collision Avoidance Warning System using DSRC

Authors: C. W. Hsu, C. N. Liang, L. Y. Ke, F. Y. Huang

Abstract:

Many accidents were happened because of fast driving, habitual working overtime or tired spirit. This paper presents a solution of remote warning for vehicles collision avoidance using vehicular communication. The development system integrates dedicated short range communication (DSRC) and global position system (GPS) with embedded system into a powerful remote warning system. To transmit the vehicular information and broadcast vehicle position; DSRC communication technology is adopt as the bridge. The proposed system is divided into two parts of the positioning andvehicular units in a vehicle. The positioning unit is used to provide the position and heading information from GPS module, and furthermore the vehicular unit is used to receive the break, throttle, and othersignals via controller area network (CAN) interface connected to each mechanism. The mobile hardware are built with an embedded system using X86 processor in Linux system. A vehicle is communicated with other vehicles via DSRC in non-addressed protocol with wireless access in vehicular environments (WAVE) short message protocol. From the position data and vehicular information, this paper provided a conflict detection algorithm to do time separation and remote warning with error bubble consideration. And the warning information is on-line displayed in the screen. This system is able to enhance driver assistance service and realize critical safety by using vehicular information from the neighbor vehicles.KeywordsDedicated short range communication, GPS, Control area network, Collision avoidance warning system.

Keywords: Dedicated short range communication, GPS, Control area network, Collision avoidance warning system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2208
9967 Apoptosis Inspired Intrusion Detection System

Authors: R. Sridevi, G. Jagajothi

Abstract:

Artificial Immune Systems (AIS), inspired by the human immune system, are algorithms and mechanisms which are self-adaptive and self-learning classifiers capable of recognizing and classifying by learning, long-term memory and association. Unlike other human system inspired techniques like genetic algorithms and neural networks, AIS includes a range of algorithms modeling on different immune mechanism of the body. In this paper, a mechanism of a human immune system based on apoptosis is adopted to build an Intrusion Detection System (IDS) to protect computer networks. Features are selected from network traffic using Fisher Score. Based on the selected features, the record/connection is classified as either an attack or normal traffic by the proposed methodology. Simulation results demonstrates that the proposed AIS based on apoptosis performs better than existing AIS for intrusion detection.

Keywords: Apoptosis, Artificial Immune System (AIS), Fisher Score, KDD dataset, Network intrusion detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2191
9966 Auto-Parking System via Intelligent Computation Intelligence

Authors: Y. J. Huang, C. H. Chang

Abstract:

In this paper, an intelligent automatic parking control method is proposed. First, the dynamical equation of the rear parking control is derived. Then a fuzzy logic control is proposed to perform the parking planning process. Further, a rear neural network is proposed for the steering control. Through the simulations and experiments, the intelligent auto-parking mode controllers have been shown to achieve the demanded goals with satisfactory control performance and to guarantee the system robustness under parametric variations and external disturbances. To improve some shortcomings and limitations in conventional parking mode control and further to reduce consumption time and prime cost.

Keywords: Auto-parking system, Fuzzy control, Neural network, Robust

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1863
9965 Application of Functional Network to Solving Classification Problems

Authors: Yong-Quan Zhou, Deng-Xu He, Zheng Nong

Abstract:

In this paper two models using a functional network were employed to solving classification problem. Functional networks are generalized neural networks, which permit the specification of their initial topology using knowledge about the problem at hand. In this case, and after analyzing the available data and their relations, we systematically discuss a numerical analysis method used for functional network, and apply two functional network models to solving XOR problem. The XOR problem that cannot be solved with two-layered neural network can be solved by two-layered functional network, which reveals a potent computational power of functional networks, and the performance of the proposed model was validated using classification problems.

Keywords: Functional network, neural network, XOR problem, classification, numerical analysis method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1311
9964 Optimization of Distribution Network Configuration for Loss Reduction Using Artificial Bee Colony Algorithm

Authors: R. Srinivasa Rao, S.V.L. Narasimham, M. Ramalingaraju

Abstract:

Network reconfiguration in distribution system is realized by changing the status of sectionalizing switches to reduce the power loss in the system. This paper presents a new method which applies an artificial bee colony algorithm (ABC) for determining the sectionalizing switch to be operated in order to solve the distribution system loss minimization problem. The ABC algorithm is a new population based metaheuristic approach inspired by intelligent foraging behavior of honeybee swarm. The advantage of ABC algorithm is that it does not require external parameters such as cross over rate and mutation rate as in case of genetic algorithm and differential evolution and it is hard to determine these parameters in prior. The other advantage is that the global search ability in the algorithm is implemented by introducing neighborhood source production mechanism which is a similar to mutation process. To demonstrate the validity of the proposed algorithm, computer simulations are carried out on 14, 33, and 119-bus systems and compared with different approaches available in the literature. The proposed method has outperformed the other methods in terms of the quality of solution and computational efficiency.

Keywords: Distribution system, Network reconfiguration, Loss reduction, Artificial Bee Colony Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3765
9963 Performance Evaluation of Task Scheduling Algorithm on LCQ Network

Authors: Zaki Ahmad Khan, Jamshed Siddiqui, Abdus Samad

Abstract:

The Scheduling and mapping of tasks on a set of processors is considered as a critical problem in parallel and distributed computing system. This paper deals with the problem of dynamic scheduling on a special type of multiprocessor architecture known as Linear Crossed Cube (LCQ) network. This proposed multiprocessor is a hybrid network which combines the features of both linear types of architectures as well as cube based architectures. Two standard dynamic scheduling schemes namely Minimum Distance Scheduling (MDS) and Two Round Scheduling (TRS) schemes are implemented on the LCQ network. Parallel tasks are mapped and the imbalance of load is evaluated on different set of processors in LCQ network. The simulations results are evaluated and effort is made by means of through analysis of the results to obtain the best solution for the given network in term of load imbalance left and execution time. The other performance matrices like speedup and efficiency are also evaluated with the given dynamic algorithms.

Keywords: Dynamic algorithm, Load imbalance, Mapping, Task scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2022
9962 Parallel Computation of Data Summation for Multiple Problem Spaces on Partitioned Optical Passive Stars Network

Authors: Khin Thida Latt, Mineo Kaneko, Yoichi Shinoda

Abstract:

In Partitioned Optical Passive Stars POPS network,nodes and couplers become free after slot to slot in some computation.It is necessary to efficiently utilize free couplers and nodes to be cost effective. Improving parallelism, we present the fast data summation algorithm for multiple problem spaces on P OP S(g, g) with smaller number of nodes for the case of d =n = g. For the case of d >n > g, we simulate the calculation of large number of data items dedicated to larger system with many nodes on smaller system with smaller number of nodes. The algorithm is faster than the best know algorithm and using smaller number of nodes and groups make the system low cost and practical.

Keywords: Partitioned optical passive stars network, parallelcomputing, optical computing, data sum

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1181
9961 Avoiding Catastrophic Forgetting by a Dual-Network Memory Model Using a Chaotic Neural Network

Authors: Motonobu Hattori

Abstract:

In neural networks, when new patterns are learned by a network, the new information radically interferes with previously stored patterns. This drawback is called catastrophic forgetting or catastrophic interference. In this paper, we propose a biologically inspired neural network model which overcomes this problem. The proposed model consists of two distinct networks: one is a Hopfield type of chaotic associative memory and the other is a multilayer neural network. We consider that these networks correspond to the hippocampus and the neocortex of the brain, respectively. Information given is firstly stored in the hippocampal network with fast learning algorithm. Then the stored information is recalled by chaotic behavior of each neuron in the hippocampal network. Finally, it is consolidated in the neocortical network by using pseudopatterns. Computer simulation results show that the proposed model has much better ability to avoid catastrophic forgetting in comparison with conventional models.

Keywords: catastrophic forgetting, chaotic neural network, complementary learning systems, dual-network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2105
9960 Simulation Data Management Approach for Developing Adaptronic Systems – The W-Model Methodology

Authors: Roland S. Nattermann, Reiner Anderl

Abstract:

Existing proceeding-models for the development of mechatronic systems provide a largely parallel action in the detailed development. This parallel approach is to take place also largely independent of one another in the various disciplines involved. An approach for a new proceeding-model provides a further development of existing models to use for the development of Adaptronic Systems. This approach is based on an intermediate integration and an abstract modeling of the adaptronic system. Based on this system-model a simulation of the global system behavior, due to external and internal factors or Forces is developed. For the intermediate integration a special data management system is used. According to the presented approach this data management system has a number of functions that are not part of the "normal" PDM functionality. Therefore a concept for a new data management system for the development of Adaptive system is presented in this paper. This concept divides the functions into six layers. In the first layer a system model is created, which divides the adaptronic system based on its components and the various technical disciplines. Moreover, the parameters and properties of the system are modeled and linked together with the requirements and the system model. The modeled parameters and properties result in a network which is analyzed in the second layer. From this analysis necessary adjustments to individual components for specific manipulation of the system behavior can be determined. The third layer contains an automatic abstract simulation of the system behavior. This simulation is a precursor for network analysis and serves as a filter. By the network analysis and simulation changes to system components are examined and necessary adjustments to other components are calculated. The other layers of the concept treat the automatic calculation of system reliability, the "normal" PDM-functionality and the integration of discipline-specific data into the system model. A prototypical implementation of an appropriate data management with the addition of an automatic system development is being implemented using the data management system ENOVIA SmarTeam V5 and the simulation system MATLAB.

Keywords: Adaptronic, Data-Management, LOEWE-CentreAdRIA

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2368
9959 Comparative Analysis of the Software Effort Estimation Models

Authors: Jaswinder Kaur, Satwinder Singh, Karanjeet Singh Kahlon

Abstract:

Accurate software cost estimates are critical to both developers and customers. They can be used for generating request for proposals, contract negotiations, scheduling, monitoring and control. The exact relationship between the attributes of the effort estimation is difficult to establish. A neural network is good at discovering relationships and pattern in the data. So, in this paper a comparative analysis among existing Halstead Model, Walston-Felix Model, Bailey-Basili Model, Doty Model and Neural Network Based Model is performed. Neural Network has outperformed the other considered models. Hence, we proposed Neural Network system as a soft computing approach to model the effort estimation of the software systems.

Keywords: Effort Estimation, Neural Network, Halstead Model, Walston-Felix Model, Bailey-Basili Model, Doty Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2225
9958 Implementation of an Associative Memory Using a Restricted Hopfield Network

Authors: Tet H. Yeap

Abstract:

An analog restricted Hopfield Network is presented in this paper. It consists of two layers of nodes, visible and hidden nodes, connected by directional weighted paths forming a bipartite graph with no intralayer connection. An energy or Lyapunov function was derived to show that the proposed network will converge to stable states. By introducing hidden nodes, the proposed network can be trained to store patterns and has increased memory capacity. Training to be an associative memory, simulation results show that the associative memory performs better than a classical Hopfield network by being able to perform better memory recall when the input is noisy.

Keywords: Associative memory, Hopfield network, Lyapunov function, Restricted Hopfield network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 492
9957 Molecular Evolutionary Analysis of Yeast Protein Interaction Network

Authors: Soichi Ogishima, Takeshi Hase, So Nakagawa, Yasuhiro Suzuki, Hiroshi Tanaka

Abstract:

To understand life as biological system, evolutionary understanding is indispensable. Protein interactions data are rapidly accumulating and are suitable for system-level evolutionary analysis. We have analyzed yeast protein interaction network by both mathematical and biological approaches. In this poster presentation, we inferred the evolutionary birth periods of yeast proteins by reconstructing phylogenetic profile. It has been thought that hub proteins that have high connection degree are evolutionary old. But our analysis showed that hub proteins are entirely evolutionary new. We also examined evolutionary processes of protein complexes. It showed that member proteins of complexes were tend to have appeared in the same evolutionary period. Our results suggested that protein interaction network evolved by modules that form the functional unit. We also reconstructed standardized phylogenetic trees and calculated evolutionary rates of yeast proteins. It showed that there is no obvious correlation between evolutionary rates and connection degrees of yeast proteins.

Keywords: Protein interaction network, evolution, modularity, evolutionary rate, connection degrees.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1365
9956 Adaptive Fuzzy Routing in Opportunistic Network (AFRON)

Authors: Payam Nabhani, Sima Radmanesh

Abstract:

Opportunistic network is a kind of Delay Tolerant Networks (DTN) where the nodes in this network come into contact with each other opportunistically and communicate wirelessly and, an end-to-end path between source and destination may have never existed, and disconnection and reconnection is common in the network. In such a network, because of the nature of opportunistic network, perhaps there is no a complete path from source to destination for most of the time and even if there is a path; the path can be very unstable and may change or break quickly. Therefore, routing is one of the main challenges in this environment and, in order to make communication possible in an opportunistic network, the intermediate nodes have to play important role in the opportunistic routing protocols. In this paper we proposed an Adaptive Fuzzy Routing in opportunistic network (AFRON). This protocol is using the simple parameters as input parameters to find the path to the destination node. Using Message Transmission Count, Message Size and Time To Live parameters as input fuzzy to increase delivery ratio and decrease the buffer consumption in the all nodes of network.

Keywords: Opportunistic Routing, Fuzzy Routing, Opportunistic Network, Message Routing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
9955 An Hybrid Approach for Loss Reduction in Distribution Systems using Harmony Search Algorithm

Authors: R. Srinivasa Rao

Abstract:

Individually Network reconfiguration or Capacitor control perform well in minimizing power loss and improving voltage profile of the distribution system. But for heavy reactive power loads network reconfiguration and for heavy active power loads capacitor placement can not effectively reduce power loss and enhance voltage profiles in the system. In this paper, an hybrid approach that combine network reconfiguration and capacitor placement using Harmony Search Algorithm (HSA) is proposed to minimize power loss reduction and improve voltage profile. The proposed approach is tested on standard IEEE 33 and 16 bus systems. Computational results show that the proposed hybrid approach can minimize losses more efficiently than Network reconfiguration or Capacitor control. The results of proposed method are also compared with results obtained by Simulated Annealing (SA). The proposed method has outperformed in terms of the quality of solution compared to SA.

Keywords: Capacitor Control, Network Reconfiguration, HarmonySearch Algorithm, Loss Reduction, Voltage Profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170
9954 ATC in Competitive Electricity Market Using TCSC

Authors: S. K. Gupta, Richa Bansal

Abstract:

In a deregulated power system structure, power producers and customers share a common transmission network for wheeling power from the point of generation to the point of consumption. All parties in this open access environment may try to purchase the energy from the cheaper source for greater profit margins, which may lead to overloading and congestion of certain corridors of the transmission network. This may result in violation of line flow, voltage and stability limits and thereby undermine the system security. Utilities therefore need to determine adequately their available transfer capability (ATC) to ensure that system reliability is maintained while serving a wide range of bilateral and multilateral transactions. This paper presents power transfer distribution factor based on AC load flow for the determination and enhancement of ATC. The study has been carried out for IEEE 24 bus Reliability Test System.

Keywords: Available Transfer Capability, FACTS devices, Power Transfer Distribution Factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2359
9953 A Multiclass BCMP Queueing Modeling and Simulation-Based Road Traffic Flow Analysis

Authors: Jouhra Dad, Mohammed Ouali, Yahia Lebbah

Abstract:

Urban road network traffic has become one of the most studied research topics in the last decades. This is mainly due to the enlargement of the cities and the growing number of motor vehicles traveling in this road network. One of the most sensitive problems is to verify if the network is congestion-free. Another related problem is the automatic reconfiguration of the network without building new roads to alleviate congestions. These problems require an accurate model of the traffic to determine the steady state of the system. An alternative is to simulate the traffic to see if there are congestions and when and where they occur. One key issue is to find an adequate model for road intersections. Once the model established, either a large scale model is built or the intersection is represented by its performance measures and simulation for analysis. In both cases, it is important to seek the queueing model to represent the road intersection. In this paper, we propose to model the road intersection as a BCMP queueing network and we compare this analytical model against a simulation model for validation.

Keywords: Queueing theory, transportation systems, BCMPqueueing network, performance measures, modeling, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2443
9952 Simulation Study for Performance Comparison of Routing Protocols in Mobile Adhoc Network

Authors: Ahmad Anzaar, Husain Shahnawaz, Chand Mukesh, S. C. Gupta, R. Gowri, H. L. Mandoria

Abstract:

Due to insufficient frequency band and tremendous growth of the mobile users, complex computation is needed for the use of resources. Long distance communication began with the introduction of telegraphs and simple coded pulses, which were used to transmit short messages. Since then numerous advances have rendered reliable transfer of information both easier and quicker. Wireless network refers to any type of computer network that is wireless, and is commonly associated with a telecommunications network whose interconnections between nodes is implemented without the use of wires. Wireless network can be broadly categorized in infrastructure network and infrastructure less network. Infrastructure network is one in which we have a base station to serve the mobile users and in the infrastructure less network is one in which no infrastructure is available to serve the mobile users this kind of networks are also known as mobile Adhoc networks. In this paper we have simulated the result for different scenarios with protocols like AODV and DSR; we simulated the result for throughput, delay and receiving traffic in the given scenario.

Keywords: Adhoc network, AODV, DSR. mobility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2110
9951 An Agent-based Model for Analyzing Interaction of Two Stable Social Networks

Authors: Masatora Daito, Hisashi Kojima

Abstract:

In this research, the authors analyze network stability using agent-based simulation. Firstly, the authors focus on analyzing large networks (eight agents) by connecting different two stable small social networks (A small stable network is consisted on four agents.). Secondly, the authors analyze the network (eight agents) shape which is added one agent to a stable network (seven agents). Thirdly, the authors analyze interpersonal comparison of utility. The “star-network "was not found on the result of interaction among stable two small networks. On the other hand, “decentralized network" was formed from several combination. In case of added one agent to a stable network (seven agents), if the value of “c"(maintenance cost of per a link) was larger, the number of patterns of stable network was also larger. In this case, the authors identified the characteristics of a large stable network. The authors discovered the cases of decreasing personal utility under condition increasing total utility.

Keywords: Social Network, Symmetric Situation, Network Stability, Agent-Based Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
9950 Sensor Network Based Emergency Response and Navigation Support Architecture

Authors: Dilusha Weeraddana, Ashanie Gunathillake, Samiru Gayan

Abstract:

In an emergency, combining Wireless Sensor Network's data with the knowledge gathered from various other information sources and navigation algorithms, could help safely guide people to a building exit while avoiding the risky areas. This paper presents an emergency response and navigation support architecture for data gathering, knowledge manipulation, and navigational support in an emergency situation. At normal state, the system monitors the environment. When an emergency event detects, the system sends messages to first responders and immediately identifies the risky areas from safe areas to establishing escape paths. The main functionalities of the system include, gathering data from a wireless sensor network which is deployed in a multi-story indoor environment, processing it with information available in a knowledge base, and sharing the decisions made, with first responders and people in the building. The proposed architecture will act to reduce risk of losing human lives by evacuating people much faster with least congestion in an emergency environment. 

Keywords: Emergency response, Firefighters, Navigation, Wireless sensor network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006
9949 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System

Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid

Abstract:

Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.

Keywords: Artificial neural network, bending angle, fuzzy logic, laser forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
9948 A Local Decisional Algorithm Using Agent- Based Management in Constrained Energy Environment

Authors: C. Adam, G. Henri, T. Levent, J-B Mauro, A-L Mayet

Abstract:

Energy Efficiency Management is the heart of a worldwide problem. The capability of a multi-agent system as a technology to manage the micro-grid operation has already been proved. This paper deals with the implementation of a decisional pattern applied to a multi-agent system which provides intelligence to a distributed local energy network considered at local consumer level. Development of multi-agent application involves agent specifications, analysis, design, and realization. Furthermore, it can be implemented by following several decisional patterns. The purpose of present article is to suggest a new approach for a decisional pattern involving a multi-agent system to control a distributed local energy network in a decentralized competitive system. The proposed solution is the result of a dichotomous approach based on environment observation. It uses an iterative process to solve automatic learning problems and converges monotonically very fast to system attracting operation point.

Keywords: Energy Efficiency Management, Distributed Smart- Grid, Multi-Agent System, Decisional Decentralized Competitive System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
9947 Computationally Efficient Signal Quality Improvement Method for VoIP System

Authors: H. P. Singh, S. Singh

Abstract:

The voice signal in Voice over Internet protocol (VoIP) system is processed through the best effort policy based IP network, which leads to the network degradations including delay, packet loss jitter. The work in this paper presents the implementation of finite impulse response (FIR) filter for voice quality improvement in the VoIP system through distributed arithmetic (DA) algorithm. The VoIP simulations are conducted with AMR-NB 6.70 kbps and G.729a speech coders at different packet loss rates and the performance of the enhanced VoIP signal is evaluated using the perceptual evaluation of speech quality (PESQ) measurement for narrowband signal. The results show reduction in the computational complexity in the system and significant improvement in the quality of the VoIP voice signal.

Keywords: VoIP, Signal Quality, Distributed Arithmetic, Packet Loss, Speech Coder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1832
9946 Diesel Fault Prediction Based on Optimized Gray Neural Network

Authors: Han Bing, Yin Zhenjie

Abstract:

In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.

Keywords: Fault prediction, Neural network, GM (1.5), Genetic algorithm, GBPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
9945 Ontology-Based Backpropagation Neural Network Classification and Reasoning Strategy for NoSQL and SQL Databases

Authors: Hao-Hsiang Ku, Ching-Ho Chi

Abstract:

Big data applications have become an imperative for many fields. Many researchers have been devoted into increasing correct rates and reducing time complexities. Hence, the study designs and proposes an Ontology-based backpropagation neural network classification and reasoning strategy for NoSQL big data applications, which is called ON4NoSQL. ON4NoSQL is responsible for enhancing the performances of classifications in NoSQL and SQL databases to build up mass behavior models. Mass behavior models are made by MapReduce techniques and Hadoop distributed file system based on Hadoop service platform. The reference engine of ON4NoSQL is the ontology-based backpropagation neural network classification and reasoning strategy. Simulation results indicate that ON4NoSQL can efficiently achieve to construct a high performance environment for data storing, searching, and retrieving.

Keywords: Hadoop, NoSQL, ontology, backpropagation neural network, and high distributed file system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 999
9944 Using Mixed Methods in Studying Classroom Social Network Dynamics

Authors: Nashrawan N. Taha, Andrew M. Cox

Abstract:

In a multi-cultural learning context, where ties are weak and dynamic, combining qualitative with quantitative research methods may be more effective. Such a combination may also allow us to answer different types of question, such as about people’s perception of the network. In this study the use of observation, interviews and photos were explored as ways of enhancing data from social network questionnaires. Integrating all of these methods was found to enhance the quality of data collected and its accuracy, also providing a richer story of the network dynamics and the factors that shaped these changes over time.

Keywords: Mixed Methods, Social Network Analysis, multi-cultural learning, Social Network Dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
9943 Dual-Network Memory Model for Temporal Sequences

Authors: Motonobu Hattori, Rina Suzuki

Abstract:

In neural networks, when new patters are learned by a network, they radically interfere with previously stored patterns. This drawback is called catastrophic forgetting. We have already proposed a biologically inspired dual-network memory model which can much reduce this forgetting for static patterns. In this model, information is first stored in the hippocampal network, and thereafter, it is transferred to the neocortical network using pseudopatterns. Because temporal sequence learning is more important than static pattern learning in the real world, in this study, we improve our conventional  dual-network memory model so that it can deal with temporal sequences without catastrophic forgetting. The computer simulation results show the effectiveness of the proposed dual-network memory model.  

Keywords: Catastrophic forgetting, dual-network, temporal sequences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1426
9942 Misleading Node Detection and Response Mechanism in Mobile Ad-Hoc Network

Authors: Earleen Jane Fuentes, Regeene Melarese Lim, Franklin Benjamin Tapia, Alexis Pantola

Abstract:

Mobile Ad-hoc Network (MANET) is an infrastructure-less network of mobile devices, also known as nodes. These nodes heavily rely on each other’s resources such as memory, computing power, and energy. Thus, some nodes may become selective in forwarding packets so as to conserve their resources. These nodes are called misleading nodes. Several reputation-based techniques (e.g. CORE, CONFIDANT, LARS, SORI, OCEAN) and acknowledgment-based techniques (e.g. TWOACK, S-TWOACK, EAACK) have been proposed to detect such nodes. These techniques do not appropriately punish misleading nodes. Hence, this paper addresses the limitations of these techniques using a system called MINDRA.

Keywords: Mobile ad-hoc network, selfish nodes, reputation-based techniques, acknowledgment-based techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
9941 Segmentation and Recognition of Handwritten Numeric Chains

Authors: Salim Ouchtati, Bedda Mouldi, Abderrazak Lachouri

Abstract:

In this paper we present an off line system for the recognition of the handwritten numeric chains. Our work is divided in two big parts. The first part is the realization of a recognition system of the isolated handwritten digits. In this case the study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the digits by several methods: the distribution sequence, the Barr features and the centred moments of the different projections and profiles. The second part is the extension of our system for the reading of the handwritten numeric chains constituted of a variable number of digits. The vertical projection is used to segment the numeric chain at isolated digits and every digit (or segment) will be presented separately to the entry of the system achieved in the first part (recognition system of the isolated handwritten digits). The result of the recognition of the numeric chain will be displayed at the exit of the global system.

Keywords: Optical Characters Recognition, Neural networks, Barr features, Image processing, Pattern Recognition, Featuresextraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
9940 Network Coding with Buffer Scheme in Multicast for Broadband Wireless Network

Authors: Gunasekaran Raja, Ramkumar Jayaraman, Rajakumar Arul, Kottilingam Kottursamy

Abstract:

Broadband Wireless Network (BWN) is the promising technology nowadays due to the increased number of smartphones. Buffering scheme using network coding considers the reliability and proper degree distribution in Worldwide interoperability for Microwave Access (WiMAX) multi-hop network. Using network coding, a secure way of transmission is performed which helps in improving throughput and reduces the packet loss in the multicast network. At the outset, improved network coding is proposed in multicast wireless mesh network. Considering the problem of performance overhead, degree distribution makes a decision while performing buffer in the encoding / decoding process. Consequently, BuS (Buffer Scheme) based on network coding is proposed in the multi-hop network. Here the encoding process introduces buffer for temporary storage to transmit packets with proper degree distribution. The simulation results depend on the number of packets received in the encoding/decoding with proper degree distribution using buffering scheme.

Keywords: Encoding and decoding, buffer, network coding, degree distribution, broadband wireless networks, multicast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1741
9939 Distance Transmission Line Protection Based on Radial Basis Function Neural Network

Authors: Anant Oonsivilai, Sanom Saichoomdee

Abstract:

To determine the presence and location of faults in a transmission by the adaptation of protective distance relay based on the measurement of fixed settings as line impedance is achieved by several different techniques. Moreover, a fast, accurate and robust technique for real-time purposes is required for the modern power systems. The appliance of radial basis function neural network in transmission line protection is demonstrated in this paper. The method applies the power system via voltage and current signals to learn the hidden relationship presented in the input patterns. It is experiential that the proposed technique is competent to identify the particular fault direction more speedily. System simulations studied show that the proposed approach is able to distinguish the direction of a fault on a transmission line swiftly and correctly, therefore suitable for the real-time purposes.

Keywords: radial basis function neural network, transmission lines protection, relaying, power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2365