Search results for: Markov Chains
55 Recognition Machine (RM) for On-line and Isolated Flight Deck Officer (FDO) Gestures
Authors: Deniz T. Sodiri, Venkat V S S Sastry
Abstract:
The paper presents an on-line recognition machine (RM) for continuous/isolated, dynamic and static gestures that arise in Flight Deck Officer (FDO) training. RM is based on generic pattern recognition framework. Gestures are represented as templates using summary statistics. The proposed recognition algorithm exploits temporal and spatial characteristics of gestures via dynamic programming and Markovian process. The algorithm predicts corresponding index of incremental input data in the templates in an on-line mode. Accumulated consistency in the sequence of prediction provides a similarity measurement (Score) between input data and the templates. The algorithm provides an intuitive mechanism for automatic detection of start/end frames of continuous gestures. In the present paper, we consider isolated gestures. The performance of RM is evaluated using four datasets - artificial (W TTest), hand motion (Yang) and FDO (tracker, vision-based ). RM achieves comparable results which are in agreement with other on-line and off-line algorithms such as hidden Markov model (HMM) and dynamic time warping (DTW). The proposed algorithm has the additional advantage of providing timely feedback for training purposes.Keywords: On-line Recognition Algorithm, IsolatedDynamic/Static Gesture Recognition, On-line Markovian/DynamicProgramming, Training in Virtual Environments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146354 The Effect on Lead Times When Normalizing a Supply Chain Process
Authors: Bassam Istanbouli
Abstract:
Organizations are living in a very competitive and dynamic environment which is constantly changing. In order to achieve a high level of service, the products and processes of these organizations need to be flexible and evolvable. If the supply chains are not modular and well designed, changes can bring combinatorial effects to most areas of a company from its management, financial, documentation, logistics and its information structure. Applying the normalized system’s concept to segments of the supply chain may help in reducing those ripple effects, but it may also increase lead times. Lead times are important and can become a decisive element in gaining customers. Industries are always under the pressure in providing good quality products, at competitive prices, when and how the customer wants them. Most of the time, the customers want their orders now, if not yesterday. The above concept will be proven by examining lead times in a manufacturing example before and after applying normalized systems concept to that segment of the chain. We will then show that although we can minimize the combinatorial effects when changes occur, the lead times will be increased.Keywords: Supply chain, lead time, normalization, modular.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60453 Effect of Atmospheric Turbulence on Hybrid FSO/RF Link Availability under Qatar Harsh Climate
Authors: Abir Touati, Syed Jawad Hussain, Farid Touati, Ammar Bouallegue
Abstract:
Although there has been a growing interest in the hybrid free-space optical link and radio frequency FSO/RF communication system, the current literature is limited to results obtained in moderate or cold environment. In this paper, using a soft switching approach, we investigate the effect of weather inhomogeneities on the strength of turbulence hence the channel refractive index under Qatar harsh environment and their influence on the hybrid FSO/RF availability. In this approach, either FSO/RF or simultaneous or none of them can be active. Based on soft switching approach and a finite state Markov Chain (FSMC) process, we model the channel fading for the two links and derive a mathematical expression for the outage probability of the hybrid system. Then, we evaluate the behavior of the hybrid FSO/RF under hazy and harsh weather. Results show that the FSO/RF soft switching renders the system outage probability less than that of each link individually. A soft switching algorithm is being implemented on FPGAs using Raptor code interfaced to the two terminals of a 1Gbps/100 Mbps FSO/RF hybrid system, the first being implemented in the region. Experimental results are compared to the above simulation results.Keywords: Atmospheric turbulence, haze, soft switching, Raptor codes, refractive index.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 257752 Application of Generalized Stochastic Petri Nets(GSPN) in Modeling and Evaluating a Resource Sharing Flexible Manufacturing System
Authors: Aryanejad Mir Bahador Goli, Zahra Honarmand Shah Zileh
Abstract:
In most study fields, a phenomenon may not be studied directly but it will be examined indirectly by phenomenon model. Making an accurate model of system, there is attained new information from modeled phenomenon without any charge, danger, etc... there have been developed more solutions for describing and analyzing the recent complicated systems but few of them have analyzed the performance in the range of system description. Petri nets are of limited solutions which may make such union. Petri nets are being applied in problems related to modeling and designing the systems. Theory of Petri nets allow a system to model mathematically by a Petri net and analyzing the Petri net can then determine main information of modeled system-s structure and dynamic. This information can be used for assessing the performance of systems and suggesting corrections in the system. In this paper, beside the introduction of Petri nets, a real case study will be studied in order to show the application of generalized stochastic Petri nets in modeling a resource sharing production system and evaluating the efficiency of its machines and robots. The modeling tool used here is SHARP software which calculates specific indicators helping to make decision.Keywords: Flexible manufacturing system, generalizedstochastic Petri nets, Markov chain, performance evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 190251 Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based On Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling
Authors: Lars Laußat, Manfred Helmus, Kamil Szczesny, Markus König
Abstract:
As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focusses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.
Keywords: Auto-ID, Construction Logistic, Fuzzy, Monitoring, RFID, Scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177750 Biodegradable Cellulose-Based Materials for the Use in Food Packaging
Authors: Azza A. Al-Ghamdi, Abir S. Abdel-Naby
Abstract:
Cellulose acetate (CA) is a natural biodegradable polymer. It forms transparent films by the casting technique. CA suffers from high degree of water permeability as well as the low thermal stability at high temperatures. To adjust the CA polymeric films to the manufacture of food packaging, its thermal and mechanical properties should be improved. The modification of CA by grafting it with N-Amino phenyl maleimide (N-APhM) led to the construction of hydrophobic branches throughout the polymeric matrix which reduced its wettability as compared to the parent CA. The branches built onto the polymeric chains had been characterized by UV/Vis, 13C-NMR and ESEM. The improvement of the thermal properties was investigated and compared to the parent CA using thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC), differential thermal analysis (DTA), contact angle and mechanical testing measurements. The results revealed that the water-uptake was reduced by increasing the graft percentage. The thermal and mechanical properties were also improved.
Keywords: Cellulose acetate, food packaging, graft copolymerization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159349 Hand Gesture Recognition Based on Combined Features Extraction
Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Bernd Michaelis
Abstract:
Hand gesture is an active area of research in the vision community, mainly for the purpose of sign language recognition and Human Computer Interaction. In this paper, we propose a system to recognize alphabet characters (A-Z) and numbers (0-9) in real-time from stereo color image sequences using Hidden Markov Models (HMMs). Our system is based on three main stages; automatic segmentation and preprocessing of the hand regions, feature extraction and classification. In automatic segmentation and preprocessing stage, color and 3D depth map are used to detect hands where the hand trajectory will take place in further step using Mean-shift algorithm and Kalman filter. In the feature extraction stage, 3D combined features of location, orientation and velocity with respected to Cartesian systems are used. And then, k-means clustering is employed for HMMs codeword. The final stage so-called classification, Baum- Welch algorithm is used to do a full train for HMMs parameters. The gesture of alphabets and numbers is recognized using Left-Right Banded model in conjunction with Viterbi algorithm. Experimental results demonstrate that, our system can successfully recognize hand gestures with 98.33% recognition rate.Keywords: Gesture Recognition, Computer Vision & Image Processing, Pattern Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 403248 QCM-D Study on Relationship of PEG Coated Stainless Steel Surfaces to Protein Resistance
Authors: Norzita Ngadi, John Abrahamson, Conan Fee, Ken Morison
Abstract:
Nonspecific protein adsorption generally occurs on any solid surfaces and usually has adverse consequences. Adsorption of proteins onto a solid surface is believed to be the initial and controlling step in biofouling. Surfaces modified with end-tethered poly(ethylene glycol) (PEG) have been shown to be protein-resistant to some degree. In this study, the adsorption of β-casein and lysozyme was performed on 6 different types of surfaces where PEG was tethered onto stainless steel by polyethylene imine (PEI) through either OH or NHS end groups. Protein adsorption was also performed on the bare stainless steel surface as a control. The adsorption was conducted at 23 °C and pH 7.2. In situ QCM-D was used to determine PEG adsorption kinetics, plateau PEG chain densities, protein adsorption kinetics and plateau protein adsorbed quantities. PEG grafting density was the highest for a NHS coupled chain, around 0.5 chains / nm2. Interestingly, lysozyme which has smaller size than β-casein, appeared to adsorb much less mass than that of β- casein. Overall, the surface with high PEG grafting density exhibited a good protein rejection.Keywords: QCM-D, PEG, stainless steel, β-casein, lysozyme.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199047 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments
Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard
Abstract:
With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.Keywords: Activities of daily living, classification, internet of things, machine learning, smart home.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 177046 Molecular Dynamics Study on Laninamivir Inhibiting Neuraminidases of H5N1 and pH1N1 Influenza a Viruses
Authors: A. Meeprasert, W. Khuntawee, S. Hannongbua, T. Rungrotmongkol
Abstract:
Viral influenza A subtypes H5N1 and pandemic H1N1 (pH1N1) have worldwide emerged and transmitted. The most common anti-influenza drug for treatment of both seasonal and pandemic influenza viruses is oseltamivir that nowadays becomes resistance to influenza neuraminidase. The novel long-acting drug, laninamivir, was discovered for treatment of the patients infected with influenza B and influenza A viruses. In the present study, laninamivir complexed with wild-type strain of both H5N1 and pH1N1 viruses were comparatively determined the structures and drug-target interactions by means of molecular dynamics (MD) simulations. The results show that the hydrogen bonding interactions formed between laninamivir and its binding residues are likely similar for the two systems. Additionally, the presence of intermolecular interactions from laninamivir to the residues in the binding pocket is established through their side chains in accordance with hydrogen bond interactions.Keywords: Laninamivir, neuraminidase, H5N1, pandemic H1N1, wild-type, MD simulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168345 Identification and Analysis of Binding Site Residues in Protein-Protein Complexes
Authors: M. Michael Gromiha, Kiyonobu Yokota, Kazuhiko Fukui
Abstract:
We have developed an energy based approach for identifying the binding sites and important residues for binding in protein-protein complexes. We found that the residues and residuepairs with charged and aromatic side chains are important for binding. These residues influence to form cation-¤Ç, electrostatic and aromatic interactions. Our observation has been verified with the experimental binding specificity of protein-protein complexes and found good agreement with experiments. The analysis on surrounding hydrophobicity reveals that the binding residues are less hydrophobic than non-binding sites, which suggests that the hydrophobic core are important for folding and stability whereas the surface seeking residues play a critical role in binding. Further, the propensity of residues in the binding sites of receptors and ligands, number of medium and long-range contacts, and influence of neighboring residues will be discussed.
Keywords: Protein-protein interactions, energy based approach;binding sites, propensity, long-range contacts, hydrophobicity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 139844 High Speed Video Transmission for Telemedicine using ATM Technology
Authors: J. P. Dubois, H. M. Chiu
Abstract:
In this paper, we study statistical multiplexing of VBR video in ATM networks. ATM promises to provide high speed realtime multi-point to central video transmission for telemedicine applications in rural hospitals and in emergency medical services. Video coders are known to produce variable bit rate (VBR) signals and the effects of aggregating these VBR signals need to be determined in order to design a telemedicine network infrastructure capable of carrying these signals. We first model the VBR video signal and simulate it using a generic continuous-data autoregressive (AR) scheme. We carry out the queueing analysis by the Fluid Approximation Model (FAM) and the Markov Modulated Poisson Process (MMPP). The study has shown a trade off: multiplexing VBR signals reduces burstiness and improves resource utilization, however, the buffer size needs to be increased with an associated economic cost. We also show that the MMPP model and the Fluid Approximation model fit best, respectively, the cell region and the burst region. Therefore, a hybrid MMPP and FAM completely characterizes the overall performance of the ATM statistical multiplexer. The ramifications of this technology are clear: speed, reliability (lower loss rate and jitter), and increased capacity in video transmission for telemedicine. With migration to full IP-based networks still a long way to achieving both high speed and high quality of service, the proposed ATM architecture will remain of significant use for telemedicine.Keywords: ATM, multiplexing, queueing, telemedicine, VBR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174443 Optimal Opportunistic Maintenance Policy for a Two-Unit System
Authors: Nooshin Salari, Viliam Makis, Jane Doe
Abstract:
This paper presents a maintenance policy for a system consisting of two units. Unit 1 is gradually deteriorating and is subject to soft failure. Unit 2 has a general lifetime distribution and is subject to hard failure. Condition of unit 1 of the system is monitored periodically and it is considered as failed when its deterioration level reaches or exceeds a critical level N. At the failure time of unit 2 system is considered as failed, and unit 2 will be correctively replaced by the next inspection epoch. Unit 1 or 2 are preventively replaced when deterioration level of unit 1 or age of unit 2 exceeds the related preventive maintenance (PM) levels. At the time of corrective or preventive replacement of unit 2, there is an opportunity to replace unit 1 if its deterioration level reaches the opportunistic maintenance (OM) level. If unit 2 fails in an inspection interval, system stops operating although unit 1 has not failed. A mathematical model is derived to find the preventive and opportunistic replacement levels for unit 1 and preventive replacement age for unit 2, that minimize the long run expected average cost per unit time. The problem is formulated and solved in the semi-Markov decision process (SMDP) framework. Numerical example is provided to illustrate the performance of the proposed model and the comparison of the proposed model with an optimal policy without opportunistic maintenance level for unit 1 is carried out.Keywords: Condition-based maintenance, opportunistic maintenance, preventive maintenance, two-unit system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 101742 Counterfeit Drugs Prevention in Pharmaceutical Industry with RFID: A Framework Based On Literature Review
Authors: Zeeshan Hamid, Asher Ramish
Abstract:
The purpose of this paper is to focus on security and safety issues facing by pharmaceutical industry globally when counterfeit drugs are in question. Hence, there is an intense need to secure and authenticate pharmaceutical products in the emerging counterfeit product market. This paper will elaborate the application of radio frequency identification (RFID) in pharmaceutical industry and to identify its key benefits for patient’s care. The benefits are: help to co-ordinate the stream of supplies, accuracy in chains of supplies, maintaining trustworthy information, to manage the operations in appropriate and timely manners and finally deliver the genuine drug to patient. It is discussed that how RFID supported supply chain information sharing (SCIS) helps to combat against counterfeit drugs. And a solution how to tag pharmaceutical products; since, some products prevent RFID implementation in this industry. In this paper, a proposed model for pharma industry distribution suggested to combat against the counterfeit drugs when they are in supply chain.
Keywords: Supply chain, RFID, pharmaceutical industry, counterfeit drugs, patients care.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 465741 Deep Reinforcement Learning for Optimal Decision-making in Supply Chains
Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol
Abstract:
We propose the use of Reinforcement Learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making make it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and a statistical analysis of the results. We study generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.
Keywords: Inventory Management, Reinforcement Learning, Supply Chain Optimization, Uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38340 Deep Reinforcement Learning Approach for Trading Automation in the Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
Deep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems. The automation of profit generation in the stock market is possible using DRL, by combining the financial assets price ”prediction” step and the ”allocation” step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. This work represents a DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem as a Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. We then solved the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm and achieved a 2.68 Sharpe ratio on the test dataset. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of machine learning and proves its credibility and advantages of strategic decision-making.
Keywords: Autonomous agent, deep reinforcement learning, MDP, sentiment analysis, stock market, technical indicators, twin delayed deep deterministic policy gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52439 Requirements Engineering via Controlling Actors Definition for the Organizations of European Critical Infrastructure
Authors: Jiri F. Urbanek, Jiri Barta, Oldrich Svoboda, Jiri J. Urbanek
Abstract:
The organizations of European and Czech critical infrastructure have specific position, mission, characteristics and behaviour in European Union and Czech state/business environments, regarding specific requirements for regional and global security environments. They must respect policy of national security and global rules, requirements and standards in all their inherent and outer processes of supply - customer chains and networks. A controlling is generalized capability to have control over situational policy. This paper aims and purposes are to introduce the controlling as quite new necessary process attribute providing for critical infrastructure is environment the capability and profit to achieve its commitment regarding to the effectiveness of the quality management system in meeting customer/ user requirements and also the continual improvement of critical infrastructure organization’s processes overall performance and efficiency, as well as its societal security via continual planning improvement via DYVELOP modelling.
Keywords: Added Value, DYVELOP, Controlling, Environments, Process Approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175638 Model Development for Allocation of Raw Material in Timber Processing Industry in Indonesia
Authors: Muh. Hisjam, Nancy Oktyajati, Wakhid A. Jauhari, Wahyudi Sutopo
Abstract:
This research is intended to develop a raw material allocation model in timber processing industry in Perum Perhutani Unit I, Central Java, Indonesia. The model can be used to determine the quantity of allocation of timber between chain in the supply chain to select supplier considering factors that are log price and the distance. In determining the quantity of allocation of timber between chains in the supply chain, the model considers the optimal inventory in each chain. Whilst the optimal inventory is determined based on demand forecast, the capacity and safety stock. Problem solving allocation is conducted by developing linear programming model that aims to minimize the total cost of the purchase, transportation cost and storage costs at each chain. The results of numerical examples show that the proposed model can generate savings of the purchase cost of 20.84% and select suppliers with mileage closer.
Keywords: Allocation model, linear programming, purchase costs, storage costs, suppliers, transportation costs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 148637 Influence of Radio Frequency Identification Technology in Logistic, Inventory Control and Supply Chain Optimization
Authors: H. Amoozad-khalili, R. Tavakkoli-Moghaddam, N.Shahab-Dehkordi
Abstract:
The main aim of Supply Chain Management (SCM) is to produce, distribute, logistics and deliver goods and equipment in right location, right time, right amount to satisfy costumers, with minimum time and cost waste. So implementing techniques that reduce project time and cost, and improve productivity and performance is very important. Emerging technologies such as the Radio Frequency Identification (RFID) are now making it possible to automate supply chains in a real time manner and making them more efficient than the simple supply chain of the past for tracing and monitoring goods and products and capturing data on movements of goods and other events. This paper considers concepts, components and RFID technology characteristics by concentration of warehouse and inventories management. Additionally, utilization of RFID in the role of improving information management in supply chain is discussed. Finally, the facts of installation and this technology-s results in direction with warehouse and inventory management and business development will be presented.Keywords: Logistics, Supply Chain Management, RFIDTechnology, Inventory Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 183536 A Modular On-line Profit Sharing Approach in Multiagent Domains
Authors: Pucheng Zhou, Bingrong Hong
Abstract:
How to coordinate the behaviors of the agents through learning is a challenging problem within multi-agent domains. Because of its complexity, recent work has focused on how coordinated strategies can be learned. Here we are interested in using reinforcement learning techniques to learn the coordinated actions of a group of agents, without requiring explicit communication among them. However, traditional reinforcement learning methods are based on the assumption that the environment can be modeled as Markov Decision Process, which usually cannot be satisfied when multiple agents coexist in the same environment. Moreover, to effectively coordinate each agent-s behavior so as to achieve the goal, it-s necessary to augment the state of each agent with the information about other existing agents. Whereas, as the number of agents in a multiagent environment increases, the state space of each agent grows exponentially, which will cause the combinational explosion problem. Profit sharing is one of the reinforcement learning methods that allow agents to learn effective behaviors from their experiences even within non-Markovian environments. In this paper, to remedy the drawback of the original profit sharing approach that needs much memory to store each state-action pair during the learning process, we firstly address a kind of on-line rational profit sharing algorithm. Then, we integrate the advantages of modular learning architecture with on-line rational profit sharing algorithm, and propose a new modular reinforcement learning model. The effectiveness of the technique is demonstrated using the pursuit problem.Keywords: Multi-agent learning; reinforcement learning; rationalprofit sharing; modular architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 144635 Diversity of Short-Horned Grasshoppers (Orthoptera: Caelifera) from Forested Region of Kolhapur District, Maharashtra, India of Northern Western Ghats
Authors: Sunil M. Gaikwad, Yogesh J. Koli, Gopal A. Raut, Ganesh P. Bhawane
Abstract:
The present investigation was directed to study the diversity of short-horned grasshoppers from a forested area of Kolhapur district, Maharashtra, India, which is spread along the hilly terrain of the Northern Western Ghats. The collection was made during 2013 to 2015, and identified with the help of a reference collection of ZSI, Kolkata, and recent literature and dry preserved. The study resulted in the enumeration of 40 species of short-horned grasshoppers belonging to four families of suborder: Caelifera. The family Acrididae was dominant (27 species) followed by Tetrigidae (eight species), Pyrgomorphidae (four species) and Chorotypidae (one species). The report of 40 species from the forest habitat of the study region highlights the significance of the Western Ghats. Ecologically, short-horned grasshoppers are integral to food chains, being consumed by a wide variety of animals. The observations of the present investigation may prove useful for conservation of the Diversity in Northern Western Ghats.Keywords: Diversity, Kolhapur, Northern Western Ghats, Short-horned grasshoppers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 113934 Achieving Environmentally Sustainable Supply Chain in Textile and Apparel Industries
Authors: Faisal Bin Alam
Abstract:
Most of the manufacturing entities cause negative footprint to nature that demand due attention. Textile industries have one of the longest supply chains and bear the liability of significant environmental impact to our planet. Issues of environmental safety, scarcity of energy and resources, and demand for eco-friendly products have driven research to search for safe and suitable alternatives in apparel processing. Consumer awareness, increased pressure from fashion brands and actions from local legislative authorities have somewhat been able to improve the practices. Objective of this paper is to reveal the best selection of raw materials and methods of production, taking environmental sustainability into account. Methodology used in this study is exploratory in nature based on personal experience, field visits in the factories of Bangladesh and secondary sources. Findings are limited to exploring better alternatives to conventional operations of a Readymade Garment manufacturing, from fibre selection to final product delivery, therefore showing some ways of achieving greener environment in the supply chain of a clothing industry.Keywords: Textile and apparel, environment, sustainability, supply chain, production, clothing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153833 The Trend of Injuries in Building Fire in Tehran from 2002 to 2012
Authors: Mohammadreza Ashouri, Majid Bayatian
Abstract:
Analysis of fire data is a way for the implementation of any plan to improve the level of safety in cities. Such an analysis is able to reveal signs of changes in a given period and can be used as a measure of safety. The information of about 66,341 fires (from 2002 to 2012) released by Tehran Safety Services and Fire-Fighting Organization and data on the population and the number of households provided by Tehran Municipality and the Statistical Yearbook of Iran were extracted. Using the data, the fire changes, the rate of injuries, and mortality rate were determined and analyzed. The rate of injuries and mortality rate of fires per one million population of Tehran were 59.58% and 86.12%, respectively. During the study period, the number of fires and fire stations increased by 104.38% and 102.63%, respectively. Most fires (9.21%) happened in the 4th District of Tehran. The results showed that the recorded fire data have not been systematically planned for fire prevention since one of the ways to reduce injuries caused by fires is to develop a systematic plan for necessary actions in emergency situations. To determine a reliable source for fire prevention, the stages, definitions of working processes and the cause and effect chains should be considered. Therefore, a comprehensive statistical system should be developed for reported and recorded fire data.
Keywords: Fire statistics, fire analysis, accident prevention, Tehran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 76932 Dynamic Bayesian Networks Modeling for Inferring Genetic Regulatory Networks by Search Strategy: Comparison between Greedy Hill Climbing and MCMC Methods
Authors: Huihai Wu, Xiaohui Liu
Abstract:
Using Dynamic Bayesian Networks (DBN) to model genetic regulatory networks from gene expression data is one of the major paradigms for inferring the interactions among genes. Averaging a collection of models for predicting network is desired, rather than relying on a single high scoring model. In this paper, two kinds of model searching approaches are compared, which are Greedy hill-climbing Search with Restarts (GSR) and Markov Chain Monte Carlo (MCMC) methods. The GSR is preferred in many papers, but there is no such comparison study about which one is better for DBN models. Different types of experiments have been carried out to try to give a benchmark test to these approaches. Our experimental results demonstrated that on average the MCMC methods outperform the GSR in accuracy of predicted network, and having the comparable performance in time efficiency. By proposing the different variations of MCMC and employing simulated annealing strategy, the MCMC methods become more efficient and stable. Apart from comparisons between these approaches, another objective of this study is to investigate the feasibility of using DBN modeling approaches for inferring gene networks from few snapshots of high dimensional gene profiles. Through synthetic data experiments as well as systematic data experiments, the experimental results revealed how the performances of these approaches can be influenced as the target gene network varies in the network size, data size, as well as system complexity.
Keywords: Genetic regulatory network, Dynamic Bayesian network, GSR, MCMC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188631 Evaluating Alternative Fuel Vehicles from Technical, Environmental and Economic Perspectives: Case of Light-Duty Vehicles in Iran
Authors: Vahid Aryanpur , Ehsan Shafiei
Abstract:
This paper presents an environmental and technoeconomic evaluation of light duty vehicles in Iran. A comprehensive well-to-wheel (WTW) analysis is applied to compare different automotive fuel chains, conventional internal combustion engines and innovative vehicle powertrains. The study examines the competitiveness of 15 various pathways in terms of energy efficiencies, GHG emissions, and levelized cost of different energy carriers. The results indicate that electric vehicles including battery electric vehicles (BEV), fuel cell vehicles (FCV) and plug-in hybrid electric vehicles (PHEV) increase the WTW energy efficiency by 54%, 51% and 46%, respectively, compared to common internal combustion engines powered by gasoline. On the other hand, greenhouse gas (GHG) emissions per kilometer of FCV and BEV would be 48% lower than that of gasoline engines. It is concluded that BEV has the lowest total cost of energy consumption and external cost of emission, followed by internal combustion engines (ICE) fueled by CNG. Conventional internal combustion engines fueled by gasoline, on the other hand, would have the highest costs.Keywords: Well-to-Wheel analysis, Energy Efficiency, GHG emissions, Levelized cost of energy, Alternative fuel vehicles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 174930 Formant Tracking Linear Prediction Model using HMMs for Noisy Speech Processing
Authors: Zaineb Ben Messaoud, Dorra Gargouri, Saida Zribi, Ahmed Ben Hamida
Abstract:
This paper presents a formant-tracking linear prediction (FTLP) model for speech processing in noise. The main focus of this work is the detection of formant trajectory based on Hidden Markov Models (HMM), for improved formant estimation in noise. The approach proposed in this paper provides a systematic framework for modelling and utilization of a time- sequence of peaks which satisfies continuity constraints on parameter; the within peaks are modelled by the LP parameters. The formant tracking LP model estimation is composed of three stages: (1) a pre-cleaning multi-band spectral subtraction stage to reduce the effect of residue noise on formants (2) estimation stage where an initial estimate of the LP model of speech for each frame is obtained (3) a formant classification using probability models of formants and Viterbi-decoders. The evaluation results for the estimation of the formant tracking LP model tested in Gaussian white noise background, demonstrate that the proposed combination of the initial noise reduction stage with formant tracking and LPC variable order analysis, results in a significant reduction in errors and distortions. The performance was evaluated with noisy natual vowels extracted from international french and English vocabulary speech signals at SNR value of 10dB. In each case, the estimated formants are compared to reference formants.Keywords: Formants Estimation, HMM, Multi Band Spectral Subtraction, Variable order LPC coding, White Gauusien Noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 196229 Budget Optimization for Maintenance of Bridges in Egypt
Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham
Abstract:
Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.Keywords: Bridge Management Systems (BMS), cost optimization condition assessment, fund allocation, Markov chain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 195828 On the Mathematical Structure and Algorithmic Implementation of Biochemical Network Models
Authors: Paola Lecca
Abstract:
Modeling and simulation of biochemical reactions is of great interest in the context of system biology. The central dogma of this re-emerging area states that it is system dynamics and organizing principles of complex biological phenomena that give rise to functioning and function of cells. Cell functions, such as growth, division, differentiation and apoptosis are temporal processes, that can be understood if they are treated as dynamic systems. System biology focuses on an understanding of functional activity from a system-wide perspective and, consequently, it is defined by two hey questions: (i) how do the components within a cell interact, so as to bring about its structure and functioning? (ii) How do cells interact, so as to develop and maintain higher levels of organization and functions? In recent years, wet-lab biologists embraced mathematical modeling and simulation as two essential means toward answering the above questions. The credo of dynamics system theory is that the behavior of a biological system is given by the temporal evolution of its state. Our understanding of the time behavior of a biological system can be measured by the extent to which a simulation mimics the real behavior of that system. Deviations of a simulation indicate either limitations or errors in our knowledge. The aim of this paper is to summarize and review the main conceptual frameworks in which models of biochemical networks can be developed. In particular, we review the stochastic molecular modelling approaches, by reporting the principal conceptualizations suggested by A. A. Markov, P. Langevin, A. Fokker, M. Planck, D. T. Gillespie, N. G. van Kampfen, and recently by D. Wilkinson, O. Wolkenhauer, P. S. Jöberg and by the author.
Keywords: Mathematical structure, algorithmic implementation, biochemical network models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 155727 Modular Hybrid Robots for Safe Human-Robot Interaction
Authors: J. Radojicic, D. Surdilovic, G. Schreck
Abstract:
The paper considers a novel modular and intrinsically safe redundant robotic system with biologically inspired actuators (pneumatic artificial muscles and rubber bellows actuators). Similarly to the biological systems, the stiffness of the internal parallel modules, representing 2 DOF joints in the serial robotic chains, is controlled by co-activation of opposing redundant actuator groups in the null-space of the module Jacobian, without influencing the actual robot position. The decoupled position/stiffness control allows the realization of variable joint stiffness according to different force-displacement relationships. The variable joint stiffness, as well as limited pneumatic muscle/bellows force ability, ensures internal system safety that is crucial for development of human-friendly robots intended for human-robot collaboration. The initial experiments with the system prototype demonstrate the capabilities of independently, simultaneously controlling both joint (Cartesian) motion and joint stiffness. The paper also presents the possible industrial applications of snake-like robots built using the new modules.
Keywords: bellows actuator, human-robot interaction, hyper redundant robot, pneumatic muscle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 200226 A New Suburb Renovation Concept
Authors: A. Soikkeli, L. Sorri
Abstract:
Finnish national research project, User- and Business-oriented Suburb Renovation Concept (KLIKK), was started in January 2012 and will end in June 2014. The perspective of energy efficiency is emphasised in the project, but also it addresses what improving the energy efficiency of suburban apartment buildings means from the standpoint of architecturally valuable buildings representing different periods. The project will also test the impacts of stricter energy efficiency requirements on renovation projects.
The primary goal of the project is to develop a user-oriented, industrial, economic renovation concept for suburban apartment building renovation, extension and construction of additional storeys. The concept will make it possible to change from performance- and cost-based operation to novel service- and user-oriented, site-specifically tailored renovation methods utilizing integrated order and delivery chains.
The present project is collaborating with Ministry of the Environment and participating cities in developing a new type of lighter town planning model for suburban renovations and in-fill construction. To support this, the project will simultaneously develop practices for environmental impact assessment tools in renovation and suburban supplementary and in-fill construction.
Keywords: Energy efficiency, Prefabrication, Renovation concept, Suburbs, Sustainability, User-Orientated.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037