Search results for: thermal water.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3492

Search results for: thermal water.

1482 An Induction Motor Drive System with Intelligent Supervisory Control for Water Networks Including Storage Tank

Authors: O. S. Ebrahim, K. O. Shawky, M. A. Badr, P. K. Jain

Abstract:

This paper describes an efficient; low-cost; high-availability; induction motor (IM) drive system with intelligent supervisory control for water distribution networks including storage tank. To increase the operational efficiency and reduce cost, the IM drive system includes main pumping unit and an auxiliary voltage source inverter (VSI) fed unit. The main unit comprises smart star/delta starter, regenerative fluid clutch, switched VAR compensator, and hysteresis liquid-level controller. Three-state energy saving mode (ESM) is defined at no-load and a logic algorithm is developed for best energetic cost reduction. To reduce voltage sag, the supervisory controller operates the switched VAR compensator upon motor starting. To provide smart star/delta starter at low cost, a method based on current sensing is developed for interlocking, malfunction detection, and life–cycles counting and used to synthesize an improved fuzzy logic (FL) based availability assessment scheme. Furthermore, a recurrent neural network (RNN) full state estimator is proposed to provide sensor fault-tolerant algorithm for the feedback control. The auxiliary unit is working at low flow rates and improves the system efficiency and flexibility for distributed generation during islanding mode. Compared with doubly-fed IM, the proposed one ensures 30% working throughput under main motor/pump fault conditions, higher efficiency, and marginal cost difference. This is critically important in case of water networks. Theoretical analysis, computer simulations, cost study, as well as efficiency evaluation, using timely cascaded energy-conservative systems, are performed on IM experimental setup to demonstrate the validity and effectiveness of the proposed drive and control.

Keywords: Artificial Neural Network, ANN, Availability Assessment, Cloud Computing, Energy Saving, Induction Machine, IM, Supervisory Control, Fuzzy Logic, FL, Pumped Storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 631
1481 Stress Analysis of Laminated Cylinders Subject to the Thermomechanical Loads

Authors: Ş. Aksoy, A. Kurşun, E. Çetin, M. R. Haboğlu

Abstract:

In this study, thermo elastic stress analysis is  performed on a cylinder made of laminated isotropic materials under  thermomechanical loads. Laminated cylinders have many  applications such as aerospace, automotive and nuclear plant in the  industry. These cylinders generally performed under  thermomechanical loads. Stress and displacement distribution of the  laminated cylinders are determined using by analytical method both  thermal and mechanical loads. Based on the results, materials  combination plays an important role on the stresses distribution along  the radius. Variation of the stresses and displacements along the  radius are presented as graphs. Calculations program are prepared  using MATLAB® by authors.

 

Keywords: Isotropic materials, laminated cylinders, thermoelastic stress, thermomechanical load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3746
1480 Heat and Mass Transfer Modelling of Industrial Sludge Drying at Different Pressures and Temperatures

Authors: L. Al Ahmad, C. Latrille, D. Hainos, D. Blanc, M. Clausse

Abstract:

A two-dimensional finite volume axisymmetric model is developed to predict the simultaneous heat and mass transfers during the drying of industrial sludge. The simulations were run using COMSOL-Multiphysics 3.5a. The input parameters of the numerical model were acquired from a preliminary experimental work. Results permit to establish correlations describing the evolution of the various parameters as a function of the drying temperature and the sludge water content. The selection and coupling of the equation are validated based on the drying kinetics acquired experimentally at a temperature range of 45-65 °C and absolute pressure range of 200-1000 mbar. The model, incorporating the heat and mass transfer mechanisms at different operating conditions, shows simulated values of temperature and water content. Simulated results are found concordant with the experimental values, only at the first and last drying stages where sludge shrinkage is insignificant. Simulated and experimental results show that sludge drying is favored at high temperatures and low pressure. As experimentally observed, the drying time is reduced by 68% for drying at 65 °C compared to 45 °C under 1 atm. At 65 °C, a 200-mbar absolute pressure vacuum leads to an additional reduction in drying time estimated by 61%. However, the drying rate is underestimated in the intermediate stage. This rate underestimation could be improved in the model by considering the shrinkage phenomena that occurs during sludge drying.

Keywords: Industrial sludge drying, heat transfer, mass transfer, mathematical modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 670
1479 Restored CO2 from Flue Gas and Utilization by Converting to Methanol by 3 Step Processes: Steam Reforming, Reverse Water Gas Shift, and Hydrogenation

Authors: R. Jitrwung, K. Krekkeitsakul, C. Kumpidet, J. Tepkeaw, K. Jaikengdee, A. Wannajampa, W. Pathaveekongka

Abstract:

Flue gas discharging from coal fired or gas combustion power plant is containing partially carbon dioxide (CO2). CO2 is a greenhouse gas which has been concerned to the global warming. Carbon Capture Storage and Utilization (CCSU) is a topic which is a tool to deal with this CO2 realization. In this paper, the Flue gas is drawn down from the chimney and filtered then it is compressed to build up the pressure until 8 barg. This compressed flue gas is sent to three stages Pressure Swing Adsorption (PSA) which is filled with activated carbon. The experiment showed the optimum adsorption pressure at 7 barg at which CO2 can be adsorbed step by step in 1st, 2nd, and 3rd stages obtaining CO2 concentration 29.8, 66.4, and 96.7% respectively. The mixed gas concentration from the last step composed of 96.7% CO2, 2.7% N2 and 0.6% O2. This mixed CO2 product gas obtained from 3 stages PSA contained high concentration of CO2 which is ready to be used for methanol synthesis. The mixed CO2 was experimented in 5-liter methanol synthesis reactor skid by 3 step processes: steam reforming, reverse water gas shift then hydrogenation. The result showed that the ratio of mixed CO2 and CH4 70/30, 50/50, 30/70 and 10/90 yielded methanol 2.4, 4.3, 5.6 and 5.3 L/day and saved 40, 30, 15, and 7% CO2 respectively. The optimum condition (positive in both methanol and CO2 consumption) was mixed CO2/CH4 ratio 47/53% by volume which yielded 4.2 L/day methanol and saved 32% CO2 compared with traditional methanol production from methane steam reforming (5 L/day) but no CO2 consumption.

Keywords: Carbon capture storage and utilization, pressure swing adsorption, reforming, methanol.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 434
1478 An Optimal Control Method for Reconstruction of Topography in Dam-Break Flows

Authors: Alia Alghosoun, Nabil El Moçayd, Mohammed Seaid

Abstract:

Modeling dam-break flows over non-flat beds requires an accurate representation of the topography which is the main source of uncertainty in the model. Therefore, developing robust and accurate techniques for reconstructing topography in this class of problems would reduce the uncertainty in the flow system. In many hydraulic applications, experimental techniques have been widely used to measure the bed topography. In practice, experimental work in hydraulics may be very demanding in both time and cost. Meanwhile, computational hydraulics have served as an alternative for laboratory and field experiments. Unlike the forward problem, the inverse problem is used to identify the bed parameters from the given experimental data. In this case, the shallow water equations used for modeling the hydraulics need to be rearranged in a way that the model parameters can be evaluated from measured data. However, this approach is not always possible and it suffers from stability restrictions. In the present work, we propose an adaptive optimal control technique to numerically identify the underlying bed topography from a given set of free-surface observation data. In this approach, a minimization function is defined to iteratively determine the model parameters. The proposed technique can be interpreted as a fractional-stage scheme. In the first stage, the forward problem is solved to determine the measurable parameters from known data. In the second stage, the adaptive control Ensemble Kalman Filter is implemented to combine the optimality of observation data in order to obtain the accurate estimation of the topography. The main features of this method are on one hand, the ability to solve for different complex geometries with no need for any rearrangements in the original model to rewrite it in an explicit form. On the other hand, its achievement of strong stability for simulations of flows in different regimes containing shocks or discontinuities over any geometry. Numerical results are presented for a dam-break flow problem over non-flat bed using different solvers for the shallow water equations. The robustness of the proposed method is investigated using different numbers of loops, sensitivity parameters, initial samples and location of observations. The obtained results demonstrate high reliability and accuracy of the proposed techniques.

Keywords: Optimal control, ensemble Kalman Filter, topography reconstruction, data assimilation, shallow water equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 679
1477 Predicting Mortality among Acute Burn Patients Using BOBI Score vs. FLAMES Score

Authors: S. Moustafa El Shanawany, I. Labib Salem, F. Mohamed Magdy Badr El Dine, H. Tag El Deen Abd Allah

Abstract:

Thermal injuries remain a global health problem and a common issue encountered in forensic pathology. They are a devastating cause of morbidity and mortality in children and adults especially in developing countries, causing permanent disfigurement, scarring and grievous hurt. Burns have always been a matter of legal concern in cases of suicidal burns, self-inflicted burns for false accusation and homicidal attempts. Assessment of burn injuries as well as rating permanent disabilities and disfigurement following thermal injuries for the benefit of compensation claims represents a challenging problem. This necessitates the development of reliable scoring systems to yield an expected likelihood of permanent disability or fatal outcome following burn injuries. The study was designed to identify the risk factors of mortality in acute burn patients and to evaluate the applicability of FLAMES (Fatality by Longevity, APACHE II score, Measured Extent of burn, and Sex) and BOBI (Belgian Outcome in Burn Injury) model scores in predicting the outcome. The study was conducted on 100 adult patients with acute burn injuries admitted to the Burn Unit of Alexandria Main University Hospital, Egypt from October 2014 to October 2015. Victims were examined after obtaining informed consent and the data were collected in specially designed sheets including demographic data, burn details and any associated inhalation injury. Each burn patient was assessed using both BOBI and FLAMES scoring systems. The results of the study show the mean age of patients was 35.54±12.32 years. Males outnumbered females (55% and 45%, respectively). Most patients were accidently burnt (95%), whereas suicidal burns accounted for the remaining 5%. Flame burn was recorded in 82% of cases. As well, 8% of patients sustained more than 60% of total burn surface area (TBSA) burns, 19% of patients needed mechanical ventilation, and 19% of burnt patients died either from wound sepsis, multi-organ failure or pulmonary embolism. The mean length of hospital stay was 24.91±25.08 days. The mean BOBI score was 1.07±1.27 and that of the FLAMES score was -4.76±2.92. The FLAMES score demonstrated an area under the receiver operating characteristic (ROC) curve of 0.95 which was significantly higher than that of the BOBI score (0.883). A statistically significant association was revealed between both predictive models and the outcome. The study concluded that both scoring systems were beneficial in predicting mortality in acutely burnt patients. However, the FLAMES score could be applied with a higher level of accuracy.

Keywords: BOBI, Burns, FLAMES, scoring systems, outcome.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1173
1476 Cercarial Diversity in Freshwater Snails from Selected Freshwater Bodies and Its Implication for Veterinary and Public Health in Kaduna State, Nigeria

Authors: Fatima Muhammad Abdulkadir, D. B. Maikaje, Y. A. Umar

Abstract:

A study conducted to determine cercariae diversity and prevalence of trematode infection in freshwater snails from six freshwater bodies selected by systematic random sampling in Kaduna State was carried from January 2013 to December 2013. Freshwater snails and cercariae harvested from the study sites were morphologically identified. A total of 23,823 freshwater snails were collected from the six freshwater bodies: Bagoma dam, Gimbawa dam, Kangimi dam, Kubacha dam, Manchok water intake and Saminaka water intake. The observed freshwater snail species were: Melanoides tuberculata, Biomphalaria pfeifferi, Bulinus globosus, Lymnaea natalensis, Physa sp., Cleopatra bulimoides, Bellamya unicolor and Lanistes varicus. The freshwater snails were exposed to artificial bright light from a 100 Watt electric bulb in the laboratory to induce cercarial shedding. Of the total freshwater snails collected, 10.55% released one or more types of cercariae. Seven morphological types of cercariae were shed by six freshwater snail species namely: Brevifurcate-apharyngeate distome, Amphistome, Gymnocephalus, Longifurcate-pharyngeate monostome, Longifurcate-pharyngeate distome, Echinostome and Xiphidio cercariae. Infection was monotype in most of the freshwater snails collected; however, Physa species presented a mixed infection with Gymnocephalus and Longifurcate-pharyngeate distome cercariae. B. globosus and B. pfeifferi were the most preferred intermediate hosts with the prevalence of 13.48% and 13.46%, respectively. The diversity and prevalence of cercariae varied among the six freshwater bodies with Manchok water intake having the highest infestation (14.3%) and the least recorded in Kangimi dam (3.9%). There was a correlation trend between the number of freshwater snails and trematode infection with Manchok exhibiting the highest and Bagoma none. The highest cercarial diversity was observed in B. pfeifferi and B. globosus with four morphotypes each, and the lowest was in M. tuberculata with one morphotype. The general distribution of freshwater snails and the trematode cercariae they shed suggests the risk of human and animals to trematodiasis in Manchok community. Public health education to raise awareness on individual and communal action that may control snail breeding sites, prevent transmission and provide access to treatment should be intensified.

Keywords: Cercariae, diversity, freshwater snails, prevalence, trematodiasis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
1475 Unsteady Rayleigh-Bénard Convection of Nanoliquids in Enclosures

Authors: P. G. Siddheshwar, B. N. Veena

Abstract:

Rayleigh-B´enard convection of a nanoliquid in shallow, square and tall enclosures is studied using the Khanafer-Vafai-Lightstone single-phase model. The thermophysical properties of water, copper, copper-oxide, alumina, silver and titania at 3000 K under stagnant conditions that are collected from literature are used in calculating thermophysical properties of water-based nanoliquids. Phenomenological laws and mixture theory are used for calculating thermophysical properties. Free-free, rigid-rigid and rigid-free boundary conditions are considered in the study. Intractable Lorenz model for each boundary combination is derived and then reduced to the tractable Ginzburg-Landau model. The amplitude thus obtained is used to quantify the heat transport in terms of Nusselt number. Addition of nanoparticles is shown not to alter the influence of the nature of boundaries on the onset of convection as well as on heat transport. Amongst the three enclosures considered, it is found that tall and shallow enclosures transport maximum and minimum energy respectively. Enhancement of heat transport due to nanoparticles in the three enclosures is found to be in the range 3% - 11%. Comparison of results in the case of rigid-rigid boundaries is made with those of an earlier work and good agreement is found. The study has limitations in the sense that thermophysical properties are calculated by using various quantities modelled for static condition.

Keywords: Enclosures, free-free, rigid-rigid and rigid-free boundaries, Ginzburg-Landau model, Lorenz model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 854
1474 Prediction of Compressive Strength of Concrete from Early Age Test Result Using Design of Experiments (RSM)

Authors: Salem Alsanusi, Loubna Bentaher

Abstract:

Response Surface Methods (RSM) provide statistically validated predictive models that can then be manipulated for finding optimal process configurations. Variation transmitted to responses from poorly controlled process factors can be accounted for by the mathematical technique of propagation of error (POE), which facilitates ‘finding the flats’ on the surfaces generated by RSM. The dual response approach to RSM captures the standard deviation of the output as well as the average. It accounts for unknown sources of variation. Dual response plus propagation of error (POE) provides a more useful model of overall response variation. In our case, we implemented this technique in predicting compressive strength of concrete of 28 days in age. Since 28 days is quite time consuming, while it is important to ensure the quality control process. This paper investigates the potential of using design of experiments (DOE-RSM) to predict the compressive strength of concrete at 28th day. Data used for this study was carried out from experiment schemes at university of Benghazi, civil engineering department. A total of 114 sets of data were implemented. ACI mix design method was utilized for the mix design. No admixtures were used, only the main concrete mix constituents such as cement, coarseaggregate, fine aggregate and water were utilized in all mixes. Different mix proportions of the ingredients and different water cement ratio were used. The proposed mathematical models are capable of predicting the required concrete compressive strength of concrete from early ages.

Keywords: Mix proportioning, response surface methodology, compressive strength, optimal design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
1473 Embodied Carbon Footprint of Existing Malaysian Green Homes

Authors: Fahanim Abdul Rashid, Muhammad Azzam Ismail

Abstract:

Part and parcel of building green homes (GHs) with favorable thermal comfort (TC) is to design and build with reduced carbon footprint (CF) from embodied energy in the building envelope and reduced operational CF overall. Together, the environmental impact of GHs can be reduced significantly. Nevertheless, there is still a need to identify the base CF value for Malaysian GHs and this can be done by assessing existing ones which can then be compared to conventional and vernacular houses which are built differently with different building materials. This paper underlines the research design and introduces the case studies. For now, the operational CF of the case studies is beyond the scope of this study. Findings from this research could identify the best building material and construction technique combination to build GHs depending on the available skills, financial constraints and the condition of the immediate environment.

Keywords: Embodied carbon footprint, Malaysian green homes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
1472 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning

Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond

Abstract:

Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.

Keywords: Time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205
1471 Analytical Model for Brine Discharges from a Sea Outfall with Multiport Diffusers

Authors: Anton Purnama

Abstract:

Multiport diffusers are the effective engineering devices installed at the modern marine outfalls for the steady discharge of effluent streams from the coastal plants, such as municipal sewage treatment, thermal power generation and seawater desalination. A mathematical model using a two-dimensional advection-diffusion equation based on a flat seabed and incorporating the effect of a coastal tidal current is developed to calculate the compounded concentration following discharges of desalination brine from a sea outfall with multiport diffusers. The analytical solutions are computed graphically to illustrate the merging of multiple brine plumes in shallow coastal waters, and further approximation will be made to the maximum shoreline's concentration to formulate dilution of a multiport diffuser discharge.

Keywords: Desalination brine discharge, mathematical model, multiport diffuser, two sea outfalls.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2995
1470 Free Convection in a Darcy Thermally Stratified Porous Medium That Embeds a Vertical Wall of Constant Heat Flux and Concentration

Authors: Maria Neagu

Abstract:

This paper presents the heat and mass driven natural convection succession in a Darcy thermally stratified porous medium that embeds a vertical semi-infinite impermeable wall of constant heat flux and concentration. The scale analysis of the system determines the two possible maps of the heat and mass driven natural convection sequence along the wall as a function of the process parameters. These results are verified using the finite differences method applied to the conservation equations.

Keywords: Finite difference method, natural convection, porous medium, scale analysis, thermal stratification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
1469 Carcass Characteristics and Qualities of Philippine White Mallard (Anas boschas L.) and Pekin (Anas platyrhynchos L.) Duck

Authors: Jerico M. Consolacion, Maria Cynthia R. Oliveros

Abstract:

The Philippine White Mallard duck was compared with Pekin duck for potential meat production. A total of 50 ducklings were randomly assigned to five (5) pens per treatment after one month of brooding. Each pen containing five (5) ducks was considered as a replicate. The ducks were raised until 12 weeks of age and slaughtered at the end of the growing period. Meat from both breeds was analyzed. The data were subjected to the Independent-Sample T-test at 5% level of confidence. Results showed that post-mortem pH (0, 20 minutes, 50 minutes, 1 hour and 20 minutes, 1 hour and 50 minutes, and 24 hours ) did not differ significantly (P>0.05) between breeds. However, Pekin ducks (89.84±0.71) had a significantly higher water-holding capacity than Philippine White Mallard ducks (87.93±0.63) (P<0.05). Also, meat color (CIE L, a, b) revealed that no significant differences among the lightness, redness, and yellowness of the skin (breast) in both breeds (P>0.05) except for the yellowness of the lean muscles of the Pekin duck breast. Pekin duck meat (1.15±0.04) had significantly higher crude fat content than Philippine White Mallard (0.47±0.58). The study clearly showed that breed is a factor and provided some pronounced effects among the parameters. However, these results are considered as preliminary information on the meat quality of Philippine White Mallard duck. Hence, further studies are needed to understand and fully utilize it for meat production and develop different meat products from this breed.

Keywords: Crude fat, meat quality, water-holding capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1171
1468 Effect of Fat Percentage and Prebiotic Composition on Proteolysis, ACE-Inhibitory and Antioxidant Activity of Probiotic Yogurt

Authors: Mohammad B. HabibiNajafi, Saeideh Sadat Fatemizadeh, Maryam Tavakoli

Abstract:

In recent years, the consumption of functional foods, including foods containing probiotic bacteria, has come to notice. Milk proteins have been identified as a source of angiotensin-I-converting enzyme )ACE( inhibitory peptides and are currently the best-known class of bioactive peptides. In this study, the effects of adding prebiotic ingredients (inulin and wheat fiber) and fat percentage (0%, 2% and 3.5%) in yogurt containing probiotic Lactobacillus casei on physicochemical properties, degree of proteolysis, antioxidant and ACE-inhibitory activity within 21 days of storage at 5 ± 1 °C were evaluated. The results of statistical analysis showed that the application of prebiotic compounds led to a significant increase in water holding capacity, proteolysis and ACE-inhibitory of samples. The degree of proteolysis in yogurt increases as storage time elapses (P < 0.05) but when proteolysis exceeds a certain threshold, this trend begins to decline. Also, during storage time, water holding capacity reduced initially but increased thereafter. Moreover, based on our findings, the survival of Lactobacillus casei in samples treated with inulin and wheat fiber increased significantly in comparison to the control sample (P < 0.05) whereas the effect of fat percentage on the survival of probiotic bacteria was not significant (P = 0.095). Furthermore, the effect of prebiotic ingredients and the presence of probiotic cultures on the antioxidant activity of samples was significant (P < 0.05).

Keywords: Yogurt, proteolysis, ACE-inhibitory, antioxidant activity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1036
1467 Evaluation of Green Roof System for Green Building Projects in Malaysia

Authors: Muhammad Ashraf Fauzi, Nurhayati Abdul Malek, Jamilah Othman

Abstract:

The implementations of green roof have been widely used in the developed countries such as Germany, United Kingdom, United States and Canada. Green roof have many benefits such as aesthetic and economic value, ecological gain which are optimization of storm water management, urban heat island mitigation and energy conservation. In term of pollution, green roof can control the air and noise pollution in urban cities. The application of green roof in Malaysian building has been studied with the previous work of green roof either in Malaysia or other Asian region as like Indonesia, Singapore, Thailand, Taiwan and several other countries that have similar climate and environment as in Malaysia. These technologies of adapting green roof have been compared to the Green Building Index (GBI) of Malaysian buildings. The study has concentrated on the technical aspect of green roof system having focused on i) waste & recyclable materials ii) types of plants and method of planting and iii) green roof as tool to reduce storm water runoff. The finding of these areas will be compared to the suitability in achieving good practice of the GBI in Malaysia. Results show that most of the method are based on the countries own climate and environment. This suggests that the method of using green roof must adhere to the tropical climate of Malaysia. Suggestion of this research will be viewed in term of the sustainability of the green roof. Further research can be developed to implement the best method and application in Malaysian climate especially in urban cities and township.

Keywords: Green roofs, vegetation, plants, material, stormwater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5405
1466 A Study on the Effect of Valve Timing on the Combustion and Emission Characteristics for a 4-cylinder PCCI Diesel Engine

Authors: Joonsup Han, Jaehyeon Lee, Hyungmin Kim, Kihyung Lee

Abstract:

PCCI engines can reduce NOx and PM emissions simultaneously without sacrificing thermal efficiency, but a low combustion temperature resulting from early fuel injection, and ignition occurring prior to TDC, can cause higher THC and CO emissions and fuel consumption. In conclusion, it was found that the PCCI combustion achieved by the 2-stage injection strategy with optimized calibration factors (e.g. EGR rate, injection pressure, swirl ratio, intake pressure, injection timing) can reduce NOx and PM emissions simultaneously. This research works are expected to provide valuable information conducive to a development of an innovative combustion engine that can fulfill upcoming stringent emission standards.

Keywords: Atkinson cycle, Diesel Engine, LIVC (Late intakevalve closing), PCCI (premixed charge compression ignition)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2598
1465 Mechanical Properties of Cement Slurry by Partially Substitution of Industry Waste Natural Pozzolans

Authors: R. Ziaie Moayed, S. P. Emadoleslami Oskoei, S. D. Beladi Mousavi, A. Taleb Beydokhti

Abstract:

There have been many reports of the destructive effects of cement on the environment in recent years. In the present research, it has been attempted to reduce the destructive effects of cement by replacing silica fume as adhesive materials instead of cement. The present study has attempted to improve the mechanical properties of cement slurry by using waste material from a glass production factory, located in Qazvin city of Iran, in which accumulation volume has become an environmental threat. The chemical analysis of the waste material indicates that this material contains about 94% of SiO2 and AL2O3 and has a close structure to silica fume. Also, the particle grain size test was performed on the mentioned waste. Then, the unconfined compressive strength test of the slurry was performed by preparing a mixture of water and adhesives with different percentages of cement and silica fume. The water to an adhesive ratio of this mixture is 1:3, and the curing process last 28 days. It was found that the sample had an unconfined compressive strength of about 300 kg/cm2 in a mixture with equal proportions of cement and silica fume. Besides, the sample had a brittle fracture in the slurry sample made of pure cement, however, the fracture in cement-silica fume slurry mixture is flexible and the structure of the specimen remains coherent after fracture. Therefore, considering the flexibility that is achieved by replacing this waste, it can be used to stabilize soils with cracking potential.

Keywords: Cement replacement, cement slurry, environmental threat, natural pozzolan, silica fume, waste material.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 671
1464 Concrete Mix Design Using Neural Network

Authors: Rama Shanker, Anil Kumar Sachan

Abstract:

Basic ingredients of concrete are cement, fine aggregate, coarse aggregate and water. To produce a concrete of certain specific properties, optimum proportion of these ingredients are mixed. The important factors which govern the mix design are grade of concrete, type of cement and size, shape and grading of aggregates. Concrete mix design method is based on experimentally evolved empirical relationship between the factors in the choice of mix design. Basic draw backs of this method are that it does not produce desired strength, calculations are cumbersome and a number of tables are to be referred for arriving at trial mix proportion moreover, the variation in attainment of desired strength is uncertain below the target strength and may even fail. To solve this problem, a lot of cubes of standard grades were prepared and attained 28 days strength determined for different combination of cement, fine aggregate, coarse aggregate and water. An artificial neural network (ANN) was prepared using these data. The input of ANN were grade of concrete, type of cement, size, shape and grading of aggregates and output were proportions of various ingredients. With the help of these inputs and outputs, ANN was trained using feed forward back proportion model. Finally trained ANN was validated, it was seen that it gave the result with/ error of maximum 4 to 5%. Hence, specific type of concrete can be prepared from given material properties and proportions of these materials can be quickly evaluated using the proposed ANN.

Keywords: Aggregate Proportions, Artificial Neural Network, Concrete Grade, Concrete Mix Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2638
1463 The Adsorption of Lead from Aqueous Solutions Using Coal Fly Ash : Effect of Crystallinity

Authors: Widi Astuti, Agus Prasetya, Endang Tri Wahyuni, I Made Bendiyasa

Abstract:

Coal fly ash (CFA) generated by coal-based thermal power plants is mainly composed of some oxides having high crystallinity, like quartz and mullite. In this study, the effect of CFA crystallinity toward lead adsorption capacity was investigated. To get solid with various crystallinity, the solution of sodium hydroxide (NaOH) of 1-7 M was used to treat CFA at various temperature and reflux time. Furthermore, to evaluate the effect of NaOH-treated CFA with respect to adsorption capacity, the treated CFA were examine as adsorbent for removing lead in the solution. The result shows that using NaOH to treat CFA causes crystallinity of quartz and mullite decrease. At higher NaOH concentration (>3M), in addition the damage of quartz and mullite crystallinity is followed by crystal formation called hydroxysodalite. The lower crystalllinity, the higher adsorption capacity.

Keywords: Coal fly ash, crystallinity, lead, adsorption capacity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2136
1462 The Influence of Meteorological Properties on the Power of Night Radiation Cooling

Authors: Othmane Fahim, Naoual Belouaggadia. Charifa David, Mohamed Ezzine

Abstract:

To make better use of cooling resources, systems have been derived on the basis of the use of night radiator systems for heat pumping. Using the TRNSYS tool we determined the influence of the climatic characteristics of the two zones in Morocco on the temperature of the outer surface of a Photovoltaic Thermal Panel “PVT” made of aluminum. The proposal to improve the performance of the panel allowed us to have little heat absorption during the day and give the same performance of a panel made of aluminum at night. The variation in the granite-based panel temperature recorded a deviation from the other materials of 0.5 °C, 2.5 °C on the first day respectively in Marrakech and Casablanca, and 0.2 °C and 3.2 °C on the second night. Power varied between 110.16 and 32.01 W/m² marked in Marrakech, to be the most suitable area to practice night cooling by night radiation.

Keywords: Morocco, TRANSYS, radiative cooling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 627
1461 Impacts of Climate Change under the Threat of Global Warming for an Agricultural Watershed of the Kangsabati River

Authors: Sujana Dhar, Asis Mazumdar

Abstract:

The effects of global warming on India vary from the submergence of low-lying islands and coastal lands to the melting of glaciers in the Indian Himalayas, threatening the volumetric flow rate of many of the most important rivers of India and South Asia. In India, such effects are projected to impact millions of lives. As a result of ongoing climate change, the climate of India has become increasingly volatile over the past several decades; this trend is expected to continue. Climate change is one of the most important global environmental challenges, with implications for food production, water supply, health, energy, etc. Addressing climate change requires a good scientific understanding as well as coordinated action at national and global level. The climate change issue is part of the larger challenge of sustainable development. As a result, climate policies can be more effective when consistently embedded within broader strategies designed to make national and regional development paths more sustainable. The impact of climate variability and change, climate policy responses, and associated socio-economic development will affect the ability of countries to achieve sustainable development goals. A very well calibrated Soil and Water Assessment Tool (R2 = 0.9968, NSE = 0.91) was exercised over the Khatra sub basin of the Kangsabati River watershed in Bankura district of West Bengal, India, in order to evaluate projected parameters for agricultural activities. Evapotranspiration, Transmission Losses, Potential Evapotranspiration and Lateral Flow to reach are evaluated from the years 2041-2050 in order to generate a picture for sustainable development of the river basin and its inhabitants. India has a significant stake in scientific advancement as well as an international understanding to promote mitigation and adaptation. This requires improved scientific understanding, capacity building, networking and broad consultation processes. This paper is a commitment towards the planning, management and development of the water resources of the Kangsabati River by presenting detailed future scenarios of the Kangsabati river basin, Khatra sub basin, over the mentioned time period. India-s economy and societal infrastructures are finely tuned to the remarkable stability of the Indian monsoon, with the consequence that vulnerability to small changes in monsoon rainfall is very high. In 2002 the monsoon rains failed during July, causing profound loss of agricultural production with a drop of over 3% in India-s GDP. Neither the prolonged break in the monsoon nor the seasonal rainfall deficit was predicted. While the general features of monsoon variability and change are fairly well-documented, the causal mechanisms and the role of regional ecosystems in modulating the changes are still not clear. Current climate models are very poor at modelling the Asian monsoon: this is a challenging and critical region where the ocean, atmosphere, land surface and mountains all interact. The impact of climate change on regional ecosystems is likewise unknown. The potential for the monsoon to become more volatile has major implications for India itself and for economies worldwide. Knowledge of future variability of the monsoon system, particularly in the context of global climate change, is of great concern for regional water and food security. The major findings of this paper were that of all the chosen projected parameters, transmission losses, soil water content, potential evapotranspiration, evapotranspiration and lateral flow to reach, display an increasing trend over the time period of years 2041- 2050.

Keywords: Change, future water availability scenario, modeling, SWAT, global warming, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2595
1460 Spectroscopic and SEM Investigation of TCPP in Titanium Matrix

Authors: R.Rahimi, F.Moharrami

Abstract:

Titanium gels doped with water-soluble cationic porphyrin were synthesized by the sol–gel polymerization of Ti (OC4H9)4. In this work we investigate the spectroscopic properties along with SEM images of tetra carboxyl phenyl porphyrin when incorporated into porous matrix produced by the sol–gel technique.

Keywords: TCPP, Titanium matrix, UV/Vis spectroscopy, SEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1575
1459 An Assessment of the Small Hydropower Potential of Sisakht Region of Yasuj

Authors: F. Boustani

Abstract:

Energy generated by the force of water in hydropower can provide a more sustainable, non-polluting alternative to fossil fuels, along with other renewable sources of energy, such as wind, solar and tidal power, bio energy and geothermal energy. Small scale hydroelectricity in Iran is well suited for “off-grid" rural electricity applications, while other renewable energy sources, such as wind, solar and biomass, can be beneficially used as fuel for pumping groundwater for drinking and small scale irrigation in remote rural areas or small villages. Small Hydro Power plants in Iran have very low operating and maintenance costs because they consume no fossil or nuclear fuel and do not involve high temperature processes. The equipment is relatively simple to operate and maintain. Hydropower equipment can adjust rapidly to load changes. The extended equipment life provides significant economic advantages. Some hydroelectric plants installed 100 years ago still operate reliably. The Polkolo river is located on Karun basin at southwest of Iran. Situation and conditions of Polkolo river are evaluated for construction of small hydropower in this article. The topographical conditions and the existence of permanent water from springs provide the suitability to install hydroelectric power plants on the river Polkolo. The cascade plant consists of 9 power plants connected with each other and is having the total head as 1100m and discharge about 2.5cubic meter per second. The annual production of energy is 105.5 million kwh.

Keywords: Hydropower potential, Iran, SHP, Yasuj.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
1458 Smart Technology for Hygrothermal Performance of Low Carbon Material Using an Artificial Neural Network Model

Authors: Manal Bouasria, Mohammed-Hichem Benzaama, Valérie Pralong, Yassine El Mendili

Abstract:

Reducing the quantity of cement in cementitious composites can help to reduce the environmental effect of construction materials. Byproducts such as ferronickel slags (FNS), fly ash (FA), and waste as Crepidula fornicata shells (CR) are promising options for cement replacement. In this work, we investigated the relevance of substituting cement with FNS-CR and FA-CR on the mechanical properties of mortar and on the thermal properties of concrete. Foraging intervals ranging from 2 days to 28 days, the mechanical properties are obtained by 3-point bending and compression tests. The chosen mix is used to construct a prototype in order to study the material’s hygrothermal performance. The data collected by the sensors placed on the prototype were utilized to build an artificial neural network.

Keywords: Artificial neural network, cement, circular economy, concrete, byproducts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 355
1457 Influence of Silica Fume on Ultrahigh Performance Concrete

Authors: Vitoldas Vaitkevičius, Evaldas Šerelis

Abstract:

Silica fume, also known as microsilica (MS) or  condensed silica fume is a by-product of the production of silicon  metal or ferrosilicon alloys. Silica fume is one of the most effective  pozzolanic additives which could be used for ultrahigh performance  and other types of concrete. Despite the fact, however is not entirely  clear, which amount of silica fume is most optimal for UHPC. Main  objective of this experiment was to find optimal amount of silica  fume for UHPC with and without thermal treatment, when different  amount of quartz powder is substituted by silica fume. In this work  were investigated four different composition of UHPC with different  amount of silica fume. Silica fume were added 0, 10, 15 and 20% of  cement (by weight) to UHPC mixture. Optimal amount of silica fume  was determined by slump, viscosity, qualitative and quantitative  XRD analysis and compression strength tests methods.

Keywords: Compressive strength, silica fume, ultrahigh performance concrete, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4607
1456 3D Modeling of Temperature by Finite Element in Machining with Experimental Authorization

Authors: P. Mottaghizadeh, M. Bagheri

Abstract:

In the present paper, the three-dimensional temperature field of tool is determined during the machining and compared with experimental work on C45 workpiece using carbide cutting tool inserts. During the metal cutting operations, high temperature is generated in the tool cutting edge which influence on the rate of tool wear. Temperature is most important characteristic of machining processes; since many parameters such as cutting speed, surface quality and cutting forces depend on the temperature and high temperatures can cause high mechanical stresses which lead to early tool wear and reduce tool life. Therefore, considerable attention is paid to determine tool temperatures. The experiments are carried out for dry and orthogonal machining condition. The results show that the increase of tool temperature depends on depth of cut and especially cutting speed in high range of cutting conditions.

Keywords: Finite element method, Machining, Temperature measurement, Thermal fields

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2075
1455 A Close Study on the Nitrate Fertilizer Use and Environmental Pollution for Human Health in Iran

Authors: Saeed Rezaeian, M. Rezaee Boroon

Abstract:

Nitrogen accumulates in soils during the process of fertilizer addition to promote the plant growth. When the organic matter decomposes, the form of available nitrogen produced is in the form of nitrate, which is highly mobile. The most significant health effect of nitrate ingestion is methemoglobinemia in infants under six months of age (blue baby syndrome). The mobile nutrients, like nitrate nitrogen, are not stored in the soil as the available forms for the long periods and in large amounts. It depends on the needs for the crops such as vegetables. On the other hand, the vegetables will compete actively for nitrate nitrogen as a mobile nutrient and water. The mobile nutrients must be shared. The fewer the plants, the larger this share is for each plant. Also, this nitrate nitrogen is poisonous for the people who use these vegetables. Nitrate is converted to nitrite by the existing bacteria in the stomach and the Gastro-Intestinal (GI) tract. When nitrite is entered into the blood cells, it converts the hemoglobin to methemoglobin, which causes the anoxemia and cyanosis. The increasing use of pesticides and chemical fertilizers, especially the fertilizers with nitrates compounds, which have been common for the increased production of agricultural crops, has caused the nitrate pollution in the (soil, water, and environment). They have caused a lot of damage to humans and animals. In this research, the nitrate accumulation in different kind of vegetables such as; green pepper, tomatoes, egg plants, watermelon, cucumber, and red pepper were observed in the suburbs of Mashhad, Neisabour, and Sabzevar cities. In some of these cities, the information forms of agronomical practices collected were such as; different vegetable crops fertilizer recommendations, varieties, pesticides, irrigation schedules, etc., which were filled out by some of our colleagues in the research areas mentioned above. Analysis of the samples was sent to the soil and water laboratory in our department in Mashhad. The final results from the chemical analysis of samples showed that the mean levels of nitrates from the samples of the fruit crops in the mentioned cities above were all lower than the critical levels. These fruit crop samples were in the order of: 35.91, 8.47, 24.81, 6.03, 46.43, 2.06 mg/kg dry matter, for the following crops such as; tomato, cucumber, eggplant, watermelon, green pepper, and red pepper. Even though, this study was conducted with limited samples and by considering the mean levels, the use of these crops from the nutritional point of view will not cause the poisoning of humans.

Keywords: Environmental pollution, human health, nitrate accumulations, nitrate fertilizers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184
1454 Structural Characterization and Physical Properties of Antimicrobial (AM) Starch-Based Films

Authors: Eraricar Salleh, Ida Idayu Muhamad, Nozieanna Khairuddin

Abstract:

Antimicrobial (AM) starch-based films were developed by incorporating chitosan and lauric acid as antimicrobial agent into starch-based film. Chitosan has wide range of applications as a biomaterial, but barriers still exist to its broader use due to its physical and chemical limitations. In this work, a series of starch/chitosan (SC) blend films containing 8% of lauric acid was prepared by casting method. The structure of the film was characterized by Fourier transform infrared spectroscopy (FTIR), Xray diffraction (XRD), and scanning electron microscopy (SEM). The results indicated that there were strong interactions were present between the hydroxyl groups of starch and the amino groups of chitosan resulting in a good miscibility between starch and chitosan in the blend films. Physical properties and optical properties of the AM starch-based film were evaluated. The AM starch-based films incorporated with chitosan and lauric acid showed an improvement in water vapour transmission rate (WVTR) and addition of starch content provided more transparent films while the yellowness of the film attributed to the higher chitosan content. The improvement in water barrier properties was mainly attributed to the hydrophobicity of lauric acid and optimum chitosan or starch content. AM starch based film also showed excellent oxygen barrier. Obtaining films with good oxygen permeability would be an indication of the potential use of these antimicrobial packaging as a natural packaging and an alternative packaging to the synthetic polymer to protect food from oxidation reactions

Keywords: Antimicrobial starch-based films, chitosan, lauric acid, starch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2808
1453 The Gravitational Impact of the Sun and the Moon on Heavy Mineral Deposits and Dust Particles in Low Gravity Regions of the Earth

Authors: T. B. Karu Jayasundara

Abstract:

The Earth’s gravity is not uniform. The satellite imageries of the Earth’s surface from NASA reveal a number of different gravity anomaly regions all over the globe. When the moon rotates around the earth, its gravity has a major physical influence on a number of regions on the earth. This physical change can be seen by the tides. The tides make sea levels high and low in coastal regions. During high tide, the gravitational force of the Moon pulls the Earth’s gravity so that the total gravitational intensity of Earth is reduced; it is further reduced in the low gravity regions of Earth. This reduction in gravity helps keep the suspended particles such as dust in the atmosphere, sand grains in the sea water for longer. Dramatic differences can be seen from the floating dust in the low gravity regions when compared with other regions. The above phenomena can be demonstrated from experiments. The experiments have to be done in high and low gravity regions of the earth during high and low tide, which will assist in comparing the final results. One of the experiments that can be done is by using a water filled cylinder about 80 cm tall, a few particles, which have the same density and same diameter (about 1 mm) and a stop watch. The selected particles were dropped from the surface of the water in the cylinder and the time taken for the particles to reach the bottom of the cylinder was measured using the stop watch. The times of high and low tide charts can be obtained from the regional government authorities. This concept is demonstrated by the particle drop times taken at high and low tides. The result of the experiment shows that the particle settlement time is less in low tide and high in high tide. The experiment for dust particles in air can be collected on filters, which are cellulose ester membranes and using a vacuum pump. The dust on filters can be used to make slides according to the NOHSC method. Counting the dust particles on the slides can be done using a phase contrast microscope. The results show that the concentration of dust is high at high tide and low in low tide. As a result of the high tides, a high concentration of heavy minerals deposit on placer deposits and dust particles retain in the atmosphere for longer in low gravity regions. These conditions are remarkably exhibited in the lowest low gravity region of the earth, mainly in the regions of India, Sri Lanka and in the middle part of the Indian Ocean. The biggest heavy mineral placer deposits are found in coastal regions of India and Sri Lanka and heavy dust particles are found in the atmosphere of India, particularly in the Delhi region.

Keywords: Dust particles, high and low tides, heavy minerals. low gravity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 624