Search results for: Software Engineering
971 Systems Engineering Management Using Transdisciplinary Quality System Development Lifecycle Model
Authors: Mohamed Asaad Abdelrazek, Amir Taher El-Sheikh, M. Zayan, A.M. Elhady
Abstract:
The successful realization of complex systems is dependent not only on the technology issues and the process for implementing them, but on the management issues as well. Managing the systems development lifecycle requires technical management. Systems engineering management is the technical management. Systems engineering management is accomplished by incorporating many activities. The three major activities are development phasing, systems engineering process and lifecycle integration. Systems engineering management activities are performed across the system development lifecycle. Due to the ever-increasing complexity of systems as well the difficulty of managing and tracking the development activities, new ways to achieve systems engineering management activities are required. This paper presents a systematic approach used as a design management tool applied across systems engineering management roles. In this approach, Transdisciplinary System Development Lifecycle (TSDL) Model has been modified and integrated with Quality Function Deployment. Hereinafter, the name of the systematic approach is the Transdisciplinary Quality System Development Lifecycle (TQSDL) Model. The QFD translates the voice of customers (VOC) into measurable technical characteristics. The modified TSDL model is based on Axiomatic Design developed by Suh which is applicable to all designs: products, processes, systems and organizations. The TQSDL model aims to provide a robust structure and systematic thinking to support the implementation of systems engineering management roles. This approach ensures that the customer requirements are fulfilled as well as satisfies all the systems engineering manager roles and activities.Keywords: Axiomatic design, quality function deployment, systems engineering management, system development lifecycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1758970 Using the Transtheoretical Model to Investigate Stages of Change in Regular Volunteer Service among Seniors in Community
Authors: Pei-Ti Hsu, I-Ju Chen, Jeu-Jung Chen, Cheng-Fen Chang, Shiu-Yan Yang
Abstract:
Background: Taiwan now is an aging society. Research on the elderly should not be confined to caring for seniors, but should also be focused on ways to improve health and the quality of life. Senior citizens who participate in volunteer services could become less lonely, have new growth opportunities, and regain a sense of accomplishment. Thus, the question of how to get the elderly to participate in volunteer service is worth exploring. Objective: Apply the Transtheoretical Model to understand stages of change in regular volunteer service and voluntary service behaviour among the seniors. Methods: 1525 adults over the age of 65 from the Renai district of Keelung City were interviewed. The research tool was a self-constructed questionnaire, and individual interviews were conducted to collect data. Then the data was processed and analyzed using the IBM SPSS Statistics 20 (Windows version) statistical software program. Results: In the past six months, research subjects averaged 9.92 days of volunteer services. A majority of these elderly individuals had no intention to change their regular volunteer services. We discovered that during the maintenance stage, the self-efficacy for volunteer services was higher than during all other stages, but self-perceived barriers were less during the preparation stage and action stage. Self-perceived benefits were found to have an important predictive power for those with regular volunteer service behaviors in the previous stage, and self-efficacy was found to have an important predictive power for those with regular volunteer service behaviors in later stages. Conclusions/Implications for Practice: The research results support the conclusion that community nursing staff should group elders based on their regular volunteer services change stages and design appropriate behavioral change strategies.
Keywords: Seniors, stages of change in regular volunteer services, volunteer service behavior, self-efficacy, self-perceived benefits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1960969 Prioritization Assessment of Housing Development Risk Factors: A Fuzzy Hierarchical Process-Based Approach
Authors: Yusuf Garba Baba
Abstract:
The construction industry and housing subsector are fraught with risks that have the potential of negatively impacting on the achievement of project objectives. The success or otherwise of most construction projects depends to large extent on how well these risks have been managed. The recent paradigm shift by the subsector to use of formal risk management approach in contrast to hitherto developed rules of thumb means that risks must not only be identified but also properly assessed and responded to in a systematic manner. The study focused on identifying risks associated with housing development projects and prioritisation assessment of the identified risks in order to provide basis for informed decision. The study used a three-step identification framework: review of literature for similar projects, expert consultation and questionnaire based survey to identify potential risk factors. Delphi survey method was employed in carrying out the relative prioritization assessment of the risks factors using computer-based Analytical Hierarchical Process (AHP) software. The results show that 19 out of the 50 risks significantly impact on housing development projects. The study concludes that although significant numbers of risk factors have been identified as having relevance and impacting to housing construction projects, economic risk group and, in particular, ‘changes in demand for houses’ is prioritised by most developers as posing a threat to the achievement of their housing development objectives. Unless these risks are carefully managed, their effects will continue to impede success in these projects. The study recommends the adoption and use of the combination of multi-technique identification framework and AHP prioritization assessment methodology as a suitable model for the assessment of risks in housing development projects.
Keywords: Risk identification, risk assessment, analytical hierarchical process, multi-criteria decision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 736968 Exploring the Relationships between Job Satisfaction, Work Engagement and Loyalty of Academic Staff
Authors: I. Ludviga, A. Kalvina
Abstract:
This paper aims to link together the concepts of job satisfaction, work engagement, trust, job meaningfulness and loyalty to the organisation focusing on specific type of employment – academic jobs. The research investigates the relationships between job satisfaction, work engagement and loyalty as well as the impact of trust and job meaningfulness on the work engagement and loyalty. The survey was conducted in one of the largest Latvian higher education institutions and the sample was drawn from academic staff (n=326). Structured questionnaire with 44 reflective type questions was developed to measure the constructs. Data was analysed using SPSS and Smart-PLS software. Variance based structural equation modelling (PLS-SEM) technique was used to test the model and to predict the most important factors relevant to employee engagement and loyalty. The first order model included two endogenous constructs (loyalty and intention to stay and recommend to work in this organisation, and employee engagement), as well as six exogenous constructs (feeling of fair treatment and trust in management; career growth opportunities; compensation, pay and benefits; management; colleagues and teamwork; and finally job meaningfulness). Job satisfaction was developed as second order construct and both: first and second order models were designed for data analysis. It was found that academics are more engaged than satisfied with their work and main reason for that was found to be job meaningfulness, which is significant predictor for work engagement, but not for job satisfaction. Compensation is not significantly related to work engagement, but only to job satisfaction. Trust was not significantly related neither to engagement, nor to satisfaction, however, it appeared to be significant predictor of loyalty and intentions to stay with the University. Paper revealed academic jobs as specific kind of employment where employees can be more engaged than satisfied and highlighted the specific role of job meaningfulness in the University settings.
Keywords: Job satisfaction, job meaningfulness, higher education, work engagement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2925967 A Design Methodology and Tool to Support Ecodesign Implementation in Induction Hobs
Authors: Anna Costanza Russo, Daniele Landi, Michele Germani
Abstract:
Nowadays, the European Ecodesign Directive has emerged as a new approach to integrate environmental concerns into the product design and related processes. Ecodesign aims to minimize environmental impacts throughout the product life cycle, without compromising performances and costs. In addition, the recent Ecodesign Directives require products which are increasingly eco-friendly and eco-efficient, preserving high-performances. It is very important for producers measuring performances, for electric cooking ranges, hobs, ovens, and grills for household use, and a low power consumption of appliances represents a powerful selling point, also in terms of ecodesign requirements. The Ecodesign Directive provides a clear framework about the sustainable design of products and it has been extended in 2009 to all energy-related products, or products with an impact on energy consumption during the use. The European Regulation establishes measures of ecodesign of ovens, hobs, and kitchen hoods, and domestic use and energy efficiency of a product has a significant environmental aspect in the use phase which is the most impactful in the life cycle. It is important that the product parameters and performances are not affected by ecodesign requirements from a user’s point of view, and the benefits of reducing energy consumption in the use phase should offset the possible environmental impact in the production stage. Accurate measurements of cooking appliance performance are essential to help the industry to produce more energy efficient appliances. The development of ecodriven products requires ecoinnovation and ecodesign tools to support the sustainability improvement. The ecodesign tools should be practical and focused on specific ecoobjectives in order to be largely diffused. The main scope of this paper is the development, implementation, and testing of an innovative tool, which could be an improvement for the sustainable design of induction hobs. In particular, a prototypical software tool is developed in order to simulate the energy performances of the induction hobs. The tool is focused on a multiphysics model which is able to simulate the energy performances and the efficiency of induction hobs starting from the design data. The multiphysics model is composed by an electromagnetic simulation and a thermal simulation. The electromagnetic simulation is able to calculate the eddy current induced in the pot, which leads to the Joule heating of material. The thermal simulation is able to measure the energy consumption during the operational phase. The Joule heating caused from the eddy currents is the output of electromagnetic simulation and the input of thermal ones. The aims of the paper are the development of integrated tools and methodologies of virtual prototyping in the context of the ecodesign. This tool could be a revolutionary instrument in the field of industrial engineering and it gives consideration to the environmental aspects of product design and focus on the ecodesign of energy-related products, in order to achieve a reduced environmental impact.
Keywords: Ecodesign, induction hobs, virtual prototyping, energy efficiency.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1274966 Influence of Dynamic Loads in the Structural Integrity of Underground Rooms
Authors: M. Inmaculada Alvarez-Fernández, Celestino González-Nicieza, M. Belén Prendes-Gero, Fernando López-Gayarre
Abstract:
Among many factors affecting the stability of mining excavations, rock-bursts and tremors play a special role. These dynamic loads occur practically always and have different sources of generation. The most important of them is the commonly used mining technique, which disintegrates a certain area of the rock mass not only in the area of the planned mining, but also creates waves that significantly exceed this area affecting the structural elements. In this work it is analysed the consequences of dynamic loads over the structural elements in an underground room and pillar mine to avoid roof instabilities. With this end, dynamic loads were evaluated through in situ and laboratory tests and simulated with numerical modelling. Initially, the geotechnical characterization of all materials was carried out by mean of large-scale tests. Then, drill holes were done on the roof of the mine and were monitored to determine possible discontinuities in it. Three seismic stations and a triaxial accelerometer were employed to measure the vibrations from blasting tests, establish the dynamic behaviour of roof and pillars and develop the transmission laws. At last, computer simulations by FLAC3D software were done to check the effect of vibrations on the stability of the roofs. The study shows that in-situ tests have a greater reliability than laboratory samples because of eliminating the effect of heterogeneities, that the pillars work decreasing the amplitude of the vibration around them, and that the tensile strength of a beam and depending on its span is overcome with waves in phase and delayed. The obtained transmission law allows designing a blasting which guarantees safety and prevents the risk of future failures.
Keywords: Dynamic modelling, long term instability risks, room and pillar, seismic collapse.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 485965 Simulation and Design of the Geometric Characteristics of the Oscillatory Thermal Cycler
Authors: Tse-Yu Hsieh, Jyh-Jian Chen
Abstract:
Since polymerase chain reaction (PCR) has been invented, it has emerged as a powerful tool in genetic analysis. The PCR products are closely linked with thermal cycles. Therefore, to reduce the reaction time and make temperature distribution uniform in the reaction chamber, a novel oscillatory thermal cycler is designed. The sample is placed in a fixed chamber, and three constant isothermal zones are established and lined in the system. The sample is oscillated and contacted with three different isothermal zones to complete thermal cycles. This study presents the design of the geometric characteristics of the chamber. The commercial software CFD-ACE+TM is utilized to investigate the influences of various materials, heating times, chamber volumes, and moving speed of the chamber on the temperature distributions inside the chamber. The chamber moves at a specific velocity and the boundary conditions with time variations are related to the moving speed. Whereas the chamber moves, the boundary is specified at the conditions of the convection or the uniform temperature. The user subroutines compiled by the FORTRAN language are used to make the numerical results realistically. Results show that the reaction chamber with a rectangular prism is heated on six faces; the effects of various moving speeds of the chamber on the temperature distributions are examined. Regarding to the temperature profiles and the standard deviation of the temperature at the Y-cut cross section, the non-uniform temperature inside chamber is found as the moving speed is larger than 0.01 m/s. By reducing the heating faces to four, the standard deviation of the temperature of the reaction chamber is under 1.4×10-3K with the range of velocities between 0.0001 m/s and 1 m/s. The nature convective boundary conditions are set at all boundaries while the chamber moves between two heaters, the effects of various moving velocities of the chamber on the temperature distributions are negligible at the assigned time duration.Keywords: Polymerase chain reaction, oscillatory thermal cycler, standard deviation of temperature, nature convective.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605964 Stress Analysis of Hexagonal Element for Precast Concrete Pavements
Authors: J. Novak, A. Kohoutkova, V. Kristek, J. Vodicka, M. Sramek
Abstract:
While the use of cast-in-place concrete for an airfield and highway pavement overlay is very common, the application of precast concrete elements is very limited today. The main reasons consist of high production costs and complex structural behavior. Despite that, several precast concrete systems have been developed and tested with the aim to provide a system with rapid construction. The contribution deals with the reinforcement design of a hexagonal element developed for a proposed airfield pavement system. The sub-base course of the system is composed of compacted recycled concrete aggregates and fiber reinforced concrete with recycled aggregates place on top of it. The selected element belongs to a group of precast concrete elements which are being considered for the construction of a surface course. Both high costs of full-scale experiments and the need to investigate various elements force to simulate their behavior in a numerical analysis software by using finite element method instead of performing expensive experiments. The simulation of the selected element was conducted on a nonlinear model in order to obtain such results which could fully compensate results from experiments. The main objective was to design reinforcement of the precast concrete element subject to quasi-static loading from airplanes with respect to geometrical imperfections, manufacturing imperfections, tensile stress in reinforcement, compressive stress in concrete and crack width. The obtained findings demonstrate that the position and the presence of imperfection in a pavement highly affect the stress distribution in the precast concrete element. The precast concrete element should be heavily reinforced to fulfill all the demands. Using under-reinforced concrete elements would lead to the formation of wide cracks and cracks permanently open.
Keywords: Imperfection, numerical simulation, pavement, precast concrete element, reinforcement design, stress analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 765963 Design and Development of Constant Stress Composite Cantilever Beam
Authors: Vinod B. Suryawanshi, Ajit D. Kelkar
Abstract:
Composite materials, due to their unique properties such as high strength to weight ratio, corrosion resistance, and impact resistance have huge potential as structural materials in automotive, construction and transportation applications. However, these properties often come at higher cost owing to complex design methods, difficult manufacturing processes and raw material cost. Traditionally, tapered laminated composite structures are manufactured using autoclave manufacturing process by ply drop off technique. Autoclave manufacturing though very powerful suffers from high capital investment and higher energy consumption. As per the current trends in composite manufacturing, Out of Autoclave (OoA) processes are looked as emerging technologies for manufacturing the structural composite components for aerospace and defense applications. However, there is a need for improvement among these processes to make them reliable and consistent. In this paper, feasibility of using out of autoclave process to manufacture the variable thickness cantilever beam is discussed. The minimum weight design for the composite beam is obtained using constant stress beam concept by tailoring the thickness of the beam. Ply drop off techniques was used to fabricate the variable thickness beam from glass/epoxy prepregs. Experiments were conducted to measure bending stresses along the span of the cantilever beam at different intervals by applying the concentrated load at the free end. Experimental results showed that the stresses in the bean at different intervals were constant. This proves the ability of OoA process to manufacture the constant stress beam. Finite element model for the constant stress beam was developed using commercial finite element simulation software. It was observed that the simulation results agreed very well with the experimental results and thus validated design and manufacturing approach used.
Keywords: Beams, Composites, Constant Stress, Structures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4394962 Simulation and Analysis of Passive Parameters of Building in eQuest: A Case Study in Istanbul, Turkey
Authors: Mahdiyeh Zafaranchi
Abstract:
With rapid development of urbanization and improvement of living standards in the world, energy consumption and carbon emissions of the building sector are expected to increase in the near future; because of that, energy-saving issues have become more important among the engineers. Besides, the building sector is a major contributor to energy consumption and carbon emissions. The concept of efficient building appeared as a response to the need for reducing energy demand in this sector which has the main purpose of shifting from standard buildings to low-energy buildings. Although energy-saving should happen in all steps of a building during the life cycle (material production, construction, demolition), the main concept of efficient energy building is saving energy during the life expectancy of a building by using passive and active systems, and should not sacrifice comfort and quality to reach these goals. The main aim of this study is to investigate passive strategies (do not need energy consumption or use renewable energy) to achieve energy-efficient buildings. Energy retrofit measures were explored by eQuest software using a case study as a base model. The study investigates predictive accuracy for the major factors like thermal transmittance (U-value) of the material, windows, shading devices, thermal insulation, rate of the exposed envelope, window/wall ration, lighting system in the energy consumption of the building. The base model was located in Istanbul, Turkey. The impact of eight passive parameters on energy consumption had been indicated. After analyzing the base model by eQuest, a final scenario was suggested which had a good energy performance. The results showed a decrease in the U-values of materials, the rate of exposing buildings, and windows had a significant effect on energy consumption. Finally, savings in electric consumption of about 10.5%, and gas consumption by about 8.37% in the suggested model were achieved annually.
Keywords: Efficient building, electric and gas consumption, eQuest, passive parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 776961 A Decision Support Tool for Evaluating Mobility Projects
Abstract:
Success is a European project that will implement several clean transport offers in three European cities and evaluate the environmental impacts. The goal of these measures is to improve urban mobility or the displacement of residents inside cities. For e.g. park and ride, electric vehicles, hybrid bus and bike sharing etc. A list of 28 criteria and 60 measures has been established for evaluation of these transport projects. The evaluation criteria can be grouped into: Transport, environment, social, economic and fuel consumption. This article proposes a decision support system based that encapsulates a hybrid approach based on fuzzy logic, multicriteria analysis and belief theory for the evaluation of impacts of urban mobility solutions. A web-based tool called DeSSIA (Decision Support System for Impacts Assessment) has been developed that treats complex data. The tool has several functionalities starting from data integration (import of data), evaluation of projects and finishes by graphical display of results. The tool development is based on the concept of MVC (Model, View, and Controller). The MVC is a conception model adapted to the creation of software's which impose separation between data, their treatment and presentation. Effort is laid on the ergonomic aspects of the application. It has codes compatible with the latest norms (XHTML, CSS) and has been validated by W3C (World Wide Web Consortium). The main ergonomic aspect focuses on the usability of the application, ease of learning and adoption. By the usage of technologies such as AJAX (XML and Java Script asynchrones), the application is more rapid and convivial. The positive points of our approach are that it treats heterogeneous data (qualitative, quantitative) from various information sources (human experts, survey, sensors, model etc.).
Keywords: Decision support tool, hybrid approach, urban mobility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1996960 IRIS: An Interactive Video Game for Children with Long-Term Illness in Hospitals
Authors: Ganetsou Evanthia, Koutsikos Emmanouil, Austin Anna Maria
Abstract:
Information technology has long served the needs of individuals for learning and entertainment, but much less for children in sickness. The aim of the proposed online video game is to provide immersive learning opportunities as well as essential social and emotional scenarios for hospital-bound children with long-term illness. Online self-paced courses on chosen school subjects, including specialized software and multisensory assessments, aim at enhancing children’s academic achievement and sense of inclusion, while doctor minigames familiarize and educate young patients on their medical conditions. Online ethical dilemmas will offer children opportunities to contemplate on the importance of medical procedures and following assigned medication, often challenging for young patients; they will therefore reflect on their condition, re-evaluate their perceptions about hospitalization, and assume greater personal responsibility for their progress. Children’s emotional and psychosocial needs are addressed by engaging in social conventions, such as interactive, daily, collaborative mini games with other hospitalized peers, like virtual competitive sports games, weekly group psychodrama sessions, and online birthday parties or sleepovers. Social bonding is also fostered by having a virtual pet to interact with and take care of, as well as a virtual nurse to discuss and reflect on the mood of the day, engage in constructive dialogue and perspective-taking, and offer reminders. Access to the platform will be available throughout the day depending on the patient’s health status. The program is designed to minimize escapism and feelings of exclusion and can flexibly be adapted to offer post-treatment and a support online system at home.
Keywords: Hospitalized children, interactive games, long-term illness, cognitive enhancement, socioemotional development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 191959 Value Index, a Novel Decision Making Approach for Waste Load Allocation
Authors: E. Feizi Ashtiani, S. Jamshidi, M.H Niksokhan, A. Feizi Ashtiani
Abstract:
Waste load allocation (WLA) policies may use multiobjective optimization methods to find the most appropriate and sustainable solutions. These usually intend to simultaneously minimize two criteria, total abatement costs (TC) and environmental violations (EV). If other criteria, such as inequity, need for minimization as well, it requires introducing more binary optimizations through different scenarios. In order to reduce the calculation steps, this study presents value index as an innovative decision making approach. Since the value index contains both the environmental violation and treatment costs, it can be maximized simultaneously with the equity index. It implies that the definition of different scenarios for environmental violations is no longer required. Furthermore, the solution is not necessarily the point with minimized total costs or environmental violations. This idea is testified for Haraz River, in north of Iran. Here, the dissolved oxygen (DO) level of river is simulated by Streeter-Phelps equation in MATLAB software. The WLA is determined for fish farms using multi-objective particle swarm optimization (MOPSO) in two scenarios. At first, the trade-off curves of TC-EV and TC-Inequity are plotted separately as the conventional approach. In the second, the Value-Equity curve is derived. The comparative results show that the solutions are in a similar range of inequity with lower total costs. This is due to the freedom of environmental violation attained in value index. As a result, the conventional approach can well be replaced by the value index particularly for problems optimizing these objectives. This reduces the process to achieve the best solutions and may find better classification for scenario definition. It is also concluded that decision makers are better to focus on value index and weighting its contents to find the most sustainable alternatives based on their requirements.Keywords: Waste load allocation (WLA), Value index, Multi objective particle swarm optimization (MOPSO), Haraz River, Equity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2031958 Numerical Modelling of Effective Diffusivity in Bone Tissue Engineering
Authors: Ayesha Sohail, Khadija Maqbool, Anila Asif, Haroon Ahmad
Abstract:
These days, the field of tissue engineering is getting serious attention due to its usefulness. Bone tissue engineering helps to address and sort-out the critical sized and non-healing orthopedic problems by the creation of manmade bone tissue. We will design and validate an efficient numerical model, which will simulate the effective diffusivity in bone tissue engineering. Our numerical model will be based on the finite element analysis of the diffusion-reaction equations. It will have the ability to optimize the diffusivity, even at multi-scale, with the variation of time. It will also have a special feature “parametric sweep”, with which we will be able to predict the oxygen, glucose and cell density dynamics, more accurately. We will fix these problems by modifying the governing equations, by selecting appropriate spatio-temporal finite element schemes and by transient analysis.
Keywords: Bone tissue engineering, Transient Analysis, Scaffolds, fabrication techniques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2464957 Towards an Enhanced Quality of IPTV Media Server Architecture over Software Defined Networking
Authors: Esmeralda Hysenbelliu
Abstract:
The aim of this paper is to present the QoE (Quality of Experience) IPTV SDN-based media streaming server enhanced architecture for configuring, controlling, management and provisioning the improved delivery of IPTV service application with low cost, low bandwidth, and high security. Furthermore, it is given a virtual QoE IPTV SDN-based topology to provide an improved IPTV service based on QoE Control and Management of multimedia services functionalities. Inside OpenFlow SDN Controller there are enabled in high flexibility and efficiency Service Load-Balancing Systems; based on the Loading-Balance module and based on GeoIP Service. This two Load-balancing system improve IPTV end-users Quality of Experience (QoE) with optimal management of resources greatly. Through the key functionalities of OpenFlow SDN controller, this approach produced several important features, opportunities for overcoming the critical QoE metrics for IPTV Service like achieving incredible Fast Zapping time (Channel Switching time) < 0.1 seconds. This approach enabled Easy and Powerful Transcoding system via FFMPEG encoder. It has the ability to customize streaming dimensions bitrates, latency management and maximum transfer rates ensuring delivering of IPTV streaming services (Audio and Video) in high flexibility, low bandwidth and required performance. This QoE IPTV SDN-based media streaming architecture unlike other architectures provides the possibility of Channel Exchanging between several IPTV service providers all over the word. This new functionality brings many benefits as increasing the number of TV channels received by end –users with low cost, decreasing stream failure time (Channel Failure time < 0.1 seconds) and improving the quality of streaming services.
Keywords: Improved QoE, OpenFlow SDN controller, IPTV service application, softwarization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1030956 Development of Manufacturing Simulation Model for Semiconductor Fabrication
Authors: Syahril Ridzuan Ab Rahim, Ibrahim Ahmad, Mohd Azizi Chik, Ahmad Zafir Md. Rejab, and U. Hashim
Abstract:
This research presents the development of simulation modeling for WIP management in semiconductor fabrication. Manufacturing simulation modeling is needed for productivity optimization analysis due to the complex process flows involved more than 35 percent re-entrance processing steps more than 15 times at same equipment. Furthermore, semiconductor fabrication required to produce high product mixed with total processing steps varies from 300 to 800 steps and cycle time between 30 to 70 days. Besides the complexity, expansive wafer cost that potentially impact the company profits margin once miss due date is another motivation to explore options to experiment any analysis using simulation modeling. In this paper, the simulation model is developed using existing commercial software platform AutoSched AP, with customized integration with Manufacturing Execution Systems (MES) and Advanced Productivity Family (APF) for data collections used to configure the model parameters and data source. Model parameters such as processing steps cycle time, equipment performance, handling time, efficiency of operator are collected through this customization. Once the parameters are validated, few customizations are made to ensure the prior model is executed. The accuracy for the simulation model is validated with the actual output per day for all equipments. The comparison analysis from result of the simulation model compared to actual for achieved 95 percent accuracy for 30 days. This model later was used to perform various what if analysis to understand impacts on cycle time and overall output. By using this simulation model, complex manufacturing environment like semiconductor fabrication (fab) now have alternative source of validation for any new requirements impact analysis.Keywords: Advanced Productivity Family (APF), Complementary Metal Oxide Semiconductor (CMOS), Manufacturing Execution Systems (MES), Work In Progress (WIP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3224955 A Methodology for Creating Energy Sustainability in an Enterprise
Authors: John Lamb, Robert Epstein, Vasundhara L. Bhupathi, Sanjeev Kumar Marimekala
Abstract:
As we enter the new era of Artificial Intelligence (AI) and cloud computing, we mostly rely on the machine and natural language processing capabilities of AI, and energy efficient hardware and software devices in almost every industry sector. In these industry sectors, much emphasis is on developing new and innovative methods for producing and conserving energy and to sustain the depletion of natural resources. The core pillars of sustainability are Economic, Environmental, and Social, which are also informally referred to as 3 P's (People, Planet and Profits). The 3 P's play a vital role in creating a core sustainability model in the enterprise. Natural resources are continually being depleted, so there is more focus and growing demand for renewable energy. With this growing demand there is also a growing concern in many industries on how to reduce carbon emission and conserve natural resources while adopting sustainability in the corporate business models and policies. In our paper, we would like to discuss the driving forces such as climate changes, natural disasters, pandemic, disruptive technologies, corporate policies, scaled business models and emerging social media and AI platforms that influence the 3 main pillars of sustainability (3P’s). Through this paper, we would like to bring an overall perspective on enterprise strategies and the primary focus on bringing cultural shifts in adapting energy efficient operational models. Overall, many industries across the globe are incorporating core sustainability principles such as reducing energy costs, reducing greenhouse gas (GHG) emissions, reducing waste and increase recycling, adopting advanced monitoring and metering infrastructure, reducing server footprint and compute resources (shared IT services, cloud computing and application modernization) with the vision for a sustainable environment.
Keywords: AI, cloud computing, machine learning, social media platform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 207954 Minimizing the Drilling-Induced Damage in Fiber Reinforced Polymeric Composites
Authors: S. D. El Wakil, M. Pladsen
Abstract:
Fiber reinforced polymeric (FRP) composites are finding wide-spread industrial applications because of their exceptionally high specific strength and specific modulus of elasticity. Nevertheless, it is very seldom to get ready-for-use components or products made of FRP composites. Secondary processing by machining, particularly drilling, is almost always required to make holes for fastening components together to produce assemblies. That creates problems since the FRP composites are neither homogeneous nor isotropic. Some of the problems that are encountered include the subsequent damage in the region around the drilled hole and the drilling – induced delamination of the layer of ply, that occurs both at the entrance and the exit planes of the work piece. Evidently, the functionality of the work piece would be detrimentally affected. The current work was carried out with the aim of eliminating or at least minimizing the work piece damage associated with drilling of FPR composites. Each test specimen involves a woven reinforced graphite fiber/epoxy composite having a thickness of 12.5 mm (0.5 inch). A large number of test specimens were subjected to drilling operations with different combinations of feed rates and cutting speeds. The drilling induced damage was taken as the absolute value of the difference between the drilled hole diameter and the nominal one taken as a percentage of the nominal diameter. The later was determined for each combination of feed rate and cutting speed, and a matrix comprising those values was established, where the columns indicate varying feed rate while and rows indicate varying cutting speeds. Next, the analysis of variance (ANOVA) approach was employed using Minitab software, in order to obtain the combination that would improve the drilling induced damage. Experimental results show that low feed rates coupled with low cutting speeds yielded the best results.
Keywords: Drilling of Composites, dimensional accuracy of holes drilled in composites, delamination and charring, graphite-epoxy composites.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 807953 Partnering with Stakeholders to Secure Digitization of Water
Authors: Sindhu Govardhan, Kenneth G. Crowther
Abstract:
Modernisation of the water sector is leading to increased connectivity and integration of emerging technologies with traditional ones, leading to new security risks. The convergence of Information Technology (IT) with Operation Technology (OT) results in solutions that are spread across larger geographic areas, increasingly consist of interconnected Industrial Internet of Things (IIOT) devices and software, rely on the integration of legacy with modern technologies, use of complex supply chain components leading to complex architectures and communication paths. The result is that multiple parties collectively own and operate these emergent technologies, threat actors find new paths to exploit, and traditional cybersecurity controls are inadequate. Our approach is to explicitly identify and draw data flows that cross trust boundaries between owners and operators of various aspects of these emerging and interconnected technologies. On these data flows, we layer potential attack vectors to create a frame of reference for evaluating possible risks against connected technologies. Finally, we identify where existing controls, mitigations, and other remediations exist across industry partners (e.g., suppliers, product vendors, integrators, water utilities, and regulators). From these, we are able to understand potential gaps in security, the roles in the supply chain that are most likely to effectively remediate those security gaps, and test cases to evaluate and strengthen security across these partners. This informs a “shared responsibility” solution that recognises that security is multi-layered and requires collaboration to be successful. This shared responsibility security framework improves visibility, understanding, and control across the entire supply chain, and particularly for those water utilities that are accountable for safe and continuous operations.
Keywords: Cyber security, shared responsibility, IIOT, threat modelling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175952 Efficiency Validation of Hybrid Cooling Application in Hot and Humid Climate Houses of KSA
Authors: Jamil Hijazi, Stirling Howieson
Abstract:
Reducing energy consumption and CO2 emissions are probably the greatest challenge now facing mankind. From considerations surrounding global warming and CO2 production, it has to be recognized that oil is a finite resource and the KSA like many other oil-rich countries will have to start to consider a horizon where hydro-carbons are not the dominant energy resource. The employment of hybrid ground-cooling pipes in combination with the black body solar collection and radiant night cooling systems may have the potential to displace a significant proportion of oil currently used to run conventional air conditioning plant. This paper presents an investigation into the viability of such hybrid systems with the specific aim of reducing cooling load and carbon emissions while providing all year-round thermal comfort in a typical Saudi Arabian urban housing block. Soil temperatures were measured in the city of Jeddah. A parametric study then was carried out by computational simulation software (DesignBuilder) that utilized the field measurements and predicted the cooling energy consumption of both a base case and an ideal scenario (typical block retro-fitted with insulation, solar shading, ground pipes integrated with hypocaust floor slabs/stack ventilation and radiant cooling pipes embed in floor). Initial simulation results suggest that careful ‘ecological design’ combined with hybrid radiant and ground pipe cooling techniques can displace air conditioning systems, producing significant cost and carbon savings (both capital and running) without appreciable deprivation of amenity.
Keywords: Cooling load, energy efficiency, ground pipe cooling, hybrid cooling strategy, hydronic radiant systems, low carbon emission, passive designs, thermal comfort.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 947951 The CEO Mission II, Rescue Robot with Multi-Joint Mechanical Arm
Authors: Amon Tunwannarux, Supanunt Tunwannarux
Abstract:
This paper presents design features of a rescue robot, named CEO Mission II. Its body is designed to be the track wheel type with double front flippers for climbing over the collapse and the rough terrain. With 125 cm. long, 5-joint mechanical arm installed on the robot body, it is deployed not only for surveillance from the top view but also easier and faster access to the victims to get their vital signs. Two cameras and sensors for searching vital signs are set up at the tip of the multi-joint mechanical arm. The third camera is at the back of the robot for driving control. Hardware and software of the system, which controls and monitors the rescue robot, are explained. The control system is used for controlling the robot locomotion, the 5-joint mechanical arm, and for turning on/off devices. The monitoring system gathers all information from 7 distance sensors, IR temperature sensors, 3 CCD cameras, voice sensor, robot wheels encoders, yawn/pitch/roll angle sensors, laser range finder and 8 spare A/D inputs. All sensors and controlling data are communicated with a remote control station via IEEE 802.11b Wi-Fi. The audio and video data are compressed and sent via another IEEE 802.11g Wi-Fi transmitter for getting real-time response. At remote control station site, the robot locomotion and the mechanical arm are controlled by joystick. Moreover, the user-friendly GUI control program is developed based on the clicking and dragging method to easily control the movement of the arm. Robot traveling map is plotted from computing the information of wheel encoders and the yawn/pitch data. 2D Obstacle map is plotted from data of the laser range finder. The concept and design of this robot can be adapted to suit many other applications. As the Best Technique awardee from Thailand Rescue Robot Championship 2006, all testing results are satisfied.Keywords: Controlling, monitoring, rescue robot, mechanicalarm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1974950 Modeling of Bio Scaffolds: Structural and Fluid Transport Characterization
Authors: Sahba Sadir, M. R. A. Kadir, A. Öchsner, M. N. Harun
Abstract:
Scaffolds play a key role in tissue engineering and can be produced in many different ways depending on the applications and the materials used. Most researchers used an experimental trialand- error approach into new biomaterials but computer simulation applied to tissue engineering can offer a more exhaustive approach to test and screen out biomaterials. This paper develops the model of scaffolds and Computational Fluid Dynamics that show the value of computer simulations in determining the influence of the geometrical scaffold parameter porosity, pore size and shape on the permeability of scaffolds, magnitude of velocity, drop pressure, shear stress distribution and level and the proper design of the geometry of the scaffold. This creates a need for more advanced studies that include aspects of dynamic conditions of a micro fluid passing through the scaffold were characterized for tissue engineering applications and differentiation of tissues within scaffolds.
Keywords: Scaffold engineering, Tissue engineering, Cellularstructure, Biomaterial, Computational fluid dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040949 Ethnobotanical Study on the Usage of Toxic Plants in Traditional Medicine in the City Center of Tlemcen, Algeria
Authors: Nassima Elyebdri, Asma Boumediou, Soumia Addoun
Abstract:
Traditional medicine has been part of the Algerian culture for decades. In particular, the city of Tlemcen still retains practices based on phytotherapy to the present day, as this kind of medicine fulfills the needs of its followers among the local population. The toxic plants contain diverse natural substances which supplied a lot of medicine in the pharmaceutical industry. In order to explore new medicinal sources among toxic plants, an ethnobotanical study was carried out on the use of these plants by the population, at Emir Abdelkader Square of the city of Tlemcen, a rather busy place with a high number of traditional health practitioners and herbalists. This is a descriptive and transversal study aimed at estimating the frequency of using toxic plants among the studied population, for a period of 4 months. The information was collected, using self-anonymous questionnaires, and analyzed by the IBM SPSS Statistics software used for statistical analysis. A sample of 200 people, including 120 women and 80 men, were interviewed. The mean age was 41 ± 16 years. Among those questioned, 83.5% used plants; 8% of them used toxic plants and 35% used plants that can be toxic under certain conditions. Some improvements were observed in 88% of the cases where toxic plants were used. 80 medicinal plants, belonging to 36 botanical families, were listed, identified and classified. The most frequent indications for these plants were for respiratory diseases in 64.7% of cases, and for digestive disorders in 51.5% of cases. 11% of these plants are toxic, 26% could be toxic under certain conditions. Among toxics plants, the most common ones are Berberis vulgaris with 5.4%, indicated in the treatment of uterine fibroids and thyroid, Rhamnus alaternus with 4.8% for hepatic jaundice, Nerium oleander with 3% for hemorrhoids, Ruta chalepensis with 1.2%, indicated for digestive disorders and dysmenorrhea, and Viscum album with 1.2%, indicated for respiratory diseases. The most common plants that could be toxic are Mentha pulegium (15.6%), Eucalyptus globulus (11.4%), and Pimpinella anisum (10.2%). This study revealed interesting results on the use of toxic plants, which are likely to serve as a basis for further ethno-pharmacological investigations in order to get new drug sources.
Keywords: Ethnobotany, phytotherapy, Tlemcen, toxic plants.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1379948 Reduction of Plants Biodiversity in Hyrcanian Forest by Coal Mining Activities
Authors: Mahsa Tavakoli, Seyed Mohammad Hojjati, Yahya Kooch
Abstract:
Considering that coal mining is one of the important industrial activities, it may cause damages to environment. According to the author’s best knowledge, the effect of traditional coal mining activities on plant biodiversity has not been investigated in the Hyrcanian forests. Therefore, in this study, the effect of coal mining activities on vegetation and tree diversity was investigated in Hyrcanian forest, North Iran. After filed visiting and determining the mine, 16 plots (20×20 m2) were established by systematic-randomly (60×60 m2) in an area of 4 ha (200×200 m2-mine entrance placed at center). An area adjacent to the mine was not affected by the mining activity, and it is considered as the control area. In each plot, the data about trees such as number and type of species were recorded. The biodiversity of vegetation cover was considered 5 square sub-plots (1 m2) in each plot. PAST software and Ecological Methodology were used to calculate Biodiversity indices. The value of Shannon Wiener and Simpson diversity indices for tree cover in control area (1.04±0.34 and 0.62±0.20) was significantly higher than mining area (0.78±0.27 and 0.45±0.14). The value of evenness indices for tree cover in the mining area was significantly lower than that of the control area. The value of Shannon Wiener and Simpson diversity indices for vegetation cover in the control area (1.37±0.06 and 0.69±0.02) was significantly higher than the mining area (1.02±0.13 and 0.50±0.07). The value of evenness index in the control area was significantly higher than the mining area. Plant communities are a good indicator of the changes in the site. Study about changes in vegetation biodiversity and plant dynamics in the degraded land can provide necessary information for forest management and reforestation of these areas.
Keywords: Vegetation biodiversity, species composition, traditional coal mining, caspian forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 900947 Calibration of 2D and 3D Optical Measuring Instruments in Industrial Environments at Submillimeter Range
Authors: A. Mínguez-Martínez, J. de Vicente
Abstract:
Modern manufacturing processes have led to the miniaturization of systems and, as a result, parts at the micro and nanoscale are produced. This trend seems to become increasingly important in the near future. Besides, as a requirement of Industry 4.0, the digitalization of the models of production and processes makes it very important to ensure that the dimensions of newly manufactured parts meet the specifications of the models. Therefore, it is possible to reduce the scrap and the cost of non-conformities, ensuring the stability of the production at the same time. To ensure the quality of manufactured parts, it becomes necessary to carry out traceable measurements at scales lower than one millimeter. Providing adequate traceability to the SI unit of length (the meter) to 2D and 3D measurements at this scale is a problem that does not have a unique solution in industrial environments. Researchers in the field of dimensional metrology all around the world are working on this issue. A solution for industrial environments, even if it is not complete, will enable working with some traceability. At this point, we believe that the study of the surfaces could provide us with a first approximation to a solution. In this paper, we propose a calibration procedure for the scales of optical measuring instruments, particularizing for a confocal microscope, using material standards easy to find and calibrate in metrology and quality laboratories in industrial environments. Confocal microscopes are measuring instruments capable of filtering the out-of-focus reflected light so that when it reaches the detector, it is possible to take pictures of the part of the surface that is focused. Varying and taking pictures at different Z levels of the focus, a specialized software interpolates between the different planes, and it could reconstruct the surface geometry into a 3D model. As it is easy to deduce, it is necessary to give traceability to each axis. As a complementary result, the roughness Ra parameter will be traced to the reference. Although the solution is designed for a confocal microscope, it may be used for the calibration of other optical measuring instruments, by applying minor changes.
Keywords: Industrial environment, confocal microscope, optical measuring instrument, traceability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 417946 The Influence of Project-Based Learning and Outcome-Based Education: Interior Design Tertiary Students in Focus
Authors: Omneya Messallam
Abstract:
Technology has been developed dramatically in most of the educational disciplines. For instance, digital rendering subject, which is being taught in both Interior and Architecture fields, is witnessing almost annually updated software versions. A lot of students and educators argued that there will be no need for manual rendering techniques to be learned. Therefore, the Interior Design Visual Presentation 1 course (ID133) has been chosen from the first level of the Interior Design (ID) undergraduate program, as it has been taught for six years continually. This time frame will facilitate sound observation and critical analysis of the use of appropriate teaching methodologies. Furthermore, the researcher believes in the high value of the manual rendering techniques. The course objectives are: to define the basic visual rendering principles, to recall theories and uses of various types of colours and hatches, to raise the learners’ awareness of the value of studying manual render techniques, and to prepare them to present their work professionally. The students are female Arab learners aged between 17 and 20. At the outset of the course, the majority of them demonstrated negative attitude, lacking both motivation and confidence in manual rendering skills. This paper is a reflective appraisal of deploying two student-centred teaching pedagogies which are: Project-based learning (PBL) and Outcome-based education (OBE) on ID133 students. This research aims of developing some teaching strategies to enhance the quality of teaching in this given course over an academic semester. The outcome of this research emphasized the positive influence of applying such educational methods on improving the quality of students’ manual rendering skills in terms of: materials, textiles, textures, lighting, and shade and shadow. Furthermore, it greatly motivated the students and raised the awareness of the importance of learning the manual rendering techniques.
Keywords: Manual renders, outcome-based education, project-based learning, personal competences, and visual presentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 852945 Examination of Self-Efficacy and Life Satisfaction Levels of Students Receiving Education in Schools of Physical Education and Sports
Authors: Hasan Şahan, Murat Tekin, Mustafa Yıldız, Meriç Eraslan, Mevlüt Yıldız, Hatice Sim, Demet Neriman Yarar
Abstract:
The purpose of this study is to examine the selfefficacy and life satisfaction levels of students receiving education in schools of physical education and sports. The population of the study consisted 263 students, among which 154 were male and 109 were female ( X age=19,4905 + 2,5605), that received education in the schools of physical education and sports of Selcuk University, Inonu University, Gazi University and Karamanoglu Mehmetbey University. In order to achieve the purpose of the study, the selfefficacy scale, which was developed by Jarrusselam and Shwarzer (1981) [1] and adapted to Turkish by Yesillay (1993) [2], and the life satisfaction scale, developed by Diener, Emmos, Larsen and Griffin (1985) [3] and adapted to Turkish by Kokler (1991) [4], were utilized.For analyzing and interpreting data Kolmogorov-Smirnov test, t-test and one way anova test were used, while for determining the difference between the groups Tukey test and Multiple Linear Regression test were employed and significance was accepted at P<0,05. SPSS (Statistical package for social sciences) package software was used for evaluating the data and finding out the calculated values.In conclusion of this study, it was determined that female students have higher life satisfaction levels than male students, while students attending to the second grade had higher life satisfaction levels than fourth grade students. On the other hand, general self-efficacy levels of male students were found out to be higher than that of female students. It was also determined that students attending to the fourth grade had higher general self-efficacy levels than those receiving education in the first grade. Availability of a significant relation was determined between life satisfaction levels and self-efficacy levels.Keywords: Physical Education And Sports, Student, Life Satisfaction, Self-Efficacy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2996944 The Attitude towards Sustainable Development Issues among Malaysian Engineering Undergraduates
Authors: Balamuralithara Balakrishnan
Abstract:
This paper reports the findings of the perception and attitude towards Sustainable Development among Malaysian undergraduates. The study was carried out involving 86 engineering undergraduates from three universities in Malaysia. This research was conducted based on a survey whereby the respondents were given a questionnaire to gauge their attitude towards sustainable development. The output of the analyses showed that the respondents have an appropriate attitude towards the sustainability issues expect for economic and social equality aspects. These findings suggest that the engineering educators involved in sustainable development education need to educate undergraduate students on this important issue. This investigation serves as a cornerstone to which the current paradigm of sustainable development education can be examined for further improvement by related stakeholders.
Keywords: Sustainable development, engineering education, Malaysia, attitude.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 981943 Extraction of Forest Plantation Resources in Selected Forest of San Manuel, Pangasinan, Philippines Using LiDAR Data for Forest Status Assessment
Authors: Mark Joseph Quinto, Roan Beronilla, Guiller Damian, Eliza Camaso, Ronaldo Alberto
Abstract:
Forest inventories are essential to assess the composition, structure and distribution of forest vegetation that can be used as baseline information for management decisions. Classical forest inventory is labor intensive and time-consuming and sometimes even dangerous. The use of Light Detection and Ranging (LiDAR) in forest inventory would improve and overcome these restrictions. This study was conducted to determine the possibility of using LiDAR derived data in extracting high accuracy forest biophysical parameters and as a non-destructive method for forest status analysis of San Manual, Pangasinan. Forest resources extraction was carried out using LAS tools, GIS, Envi and .bat scripts with the available LiDAR data. The process includes the generation of derivatives such as Digital Terrain Model (DTM), Canopy Height Model (CHM) and Canopy Cover Model (CCM) in .bat scripts followed by the generation of 17 composite bands to be used in the extraction of forest classification covers using ENVI 4.8 and GIS software. The Diameter in Breast Height (DBH), Above Ground Biomass (AGB) and Carbon Stock (CS) were estimated for each classified forest cover and Tree Count Extraction was carried out using GIS. Subsequently, field validation was conducted for accuracy assessment. Results showed that the forest of San Manuel has 73% Forest Cover, which is relatively much higher as compared to the 10% canopy cover requirement. On the extracted canopy height, 80% of the tree’s height ranges from 12 m to 17 m. CS of the three forest covers based on the AGB were: 20819.59 kg/20x20 m for closed broadleaf, 8609.82 kg/20x20 m for broadleaf plantation and 15545.57 kg/20x20m for open broadleaf. Average tree counts for the tree forest plantation was 413 trees/ha. As such, the forest of San Manuel has high percent forest cover and high CS.
Keywords: Carbon stock, forest inventory, LiDAR, tree count.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1281942 Eco-Agriculture for Effective Solid Waste Management in Minna, Nigeria
Authors: A. Abdulkadir, Y. M. Bello, A. A. Okhimamhe, H. Ibrahim, M. B. Matazu, L. S. Barau
Abstract:
The increasing volume of solid waste generated, collected and disposed daily complicate adequate management of solid waste by relevant agency like Niger State Environmental Protection Agency (NISEPA). In addition, the impacts of solid waste on the natural environment and human livelihood require identification of cost-effective ways for sustainable municipal waste management in Nigeria. These signal the need for identifying environment-friendly initiative and local solution to address the problem of municipal solid waste. A research field was secured at Pago, Minna, Niger State which is located in the guinea savanna belt of Nigeria, within longitude 60 361 4311 - 4511 and latitude 90 291 37.6111 - .6211 N. Poultry droppings, decomposed household waste manure and NPK treatments were used. The experimental field was divided into three replications and four (4) treatments on each replication making a total of twelve (12) plots. The treatments were allotted using Randomized Complete Block Design (RCBD) and Data collected was analyzed using SPSS software and RCBD. The result depicts variation in plant height and number of leaves at 50% flowering; Poultry dropping records the highest height while the number of leaves for waste manure competes fairly well with NPK treatment. Similarly, the varying treatments significantly increase vegetable yield, as the control (non-treatment) records the least yield for the three vegetable samples. Adoption of this organic manure for cultivation does not only enhance environment quality and attainment of food security but will contribute to local economic development, poverty alleviation as well as social inclusion.Keywords: Environmental issues, food security, NISEPA, solid waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374