Search results for: Business Reference Model (BRM)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8691

Search results for: Business Reference Model (BRM)

6711 Numerical Simulations on Feasibility of Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization

Authors: Taiki Baba, Tomoaki Hashimoto

Abstract:

The random dither quantization method enables us to achieve much better performance than the simple uniform quantization method for the design of quantized control systems. Motivated by this fact, the stochastic model predictive control method in which a performance index is minimized subject to probabilistic constraints imposed on the state variables of systems has been proposed for linear feedback control systems with random dither quantization. In other words, a method for solving optimal control problems subject to probabilistic state constraints for linear discrete-time control systems with random dither quantization has been already established. To our best knowledge, however, the feasibility of such a kind of optimal control problems has not yet been studied. Our objective in this paper is to investigate the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization. To this end, we provide the results of numerical simulations that verify the feasibility of stochastic model predictive control problems for linear discrete-time control systems with random dither quantization.

Keywords: Model predictive control, stochastic systems, probabilistic constraints, random dither quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1020
6710 Sentiment Analysis of Fake Health News Using Naive Bayes Classification Models

Authors: Danielle Shackley, Yetunde Folajimi

Abstract:

As more people turn to the internet seeking health related information, there is more risk of finding false, inaccurate, or dangerous information. Sentiment analysis is a natural language processing technique that assigns polarity scores of text, ranging from positive, neutral and negative. In this research, we evaluate the weight of a sentiment analysis feature added to fake health news classification models. The dataset consists of existing reliably labeled health article headlines that were supplemented with health information collected about COVID-19 from social media sources. We started with data preprocessing, tested out various vectorization methods such as Count and TFIDF vectorization. We implemented 3 Naive Bayes classifier models, including Bernoulli, Multinomial and Complement. To test the weight of the sentiment analysis feature on the dataset, we created benchmark Naive Bayes classification models without sentiment analysis, and those same models were reproduced and the feature was added. We evaluated using the precision and accuracy scores. The Bernoulli initial model performed with 90% precision and 75.2% accuracy, while the model supplemented with sentiment labels performed with 90.4% precision and stayed constant at 75.2% accuracy. Our results show that the addition of sentiment analysis did not improve model precision by a wide margin; while there was no evidence of improvement in accuracy, we had a 1.9% improvement margin of the precision score with the Complement model. Future expansion of this work could include replicating the experiment process, and substituting the Naive Bayes for a deep learning neural network model.

Keywords: Sentiment analysis, Naive Bayes model, natural language processing, topic analysis, fake health news classification model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 489
6709 Decision Trees for Predicting Risk of Mortality using Routinely Collected Data

Authors: Tessy Badriyah, Jim S. Briggs, Dave R. Prytherch

Abstract:

It is well known that Logistic Regression is the gold standard method for predicting clinical outcome, especially predicting risk of mortality. In this paper, the Decision Tree method has been proposed to solve specific problems that commonly use Logistic Regression as a solution. The Biochemistry and Haematology Outcome Model (BHOM) dataset obtained from Portsmouth NHS Hospital from 1 January to 31 December 2001 was divided into four subsets. One subset of training data was used to generate a model, and the model obtained was then applied to three testing datasets. The performance of each model from both methods was then compared using calibration (the χ2 test or chi-test) and discrimination (area under ROC curve or c-index). The experiment presented that both methods have reasonable results in the case of the c-index. However, in some cases the calibration value (χ2) obtained quite a high result. After conducting experiments and investigating the advantages and disadvantages of each method, we can conclude that Decision Trees can be seen as a worthy alternative to Logistic Regression in the area of Data Mining.

Keywords: Decision Trees, Logistic Regression, clinical outcome, risk of mortality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2524
6708 System Identification Based on Stepwise Regression for Dynamic Market Representation

Authors: Alexander Efremov

Abstract:

A system for market identification (SMI) is presented. The resulting representations are multivariable dynamic demand models. The market specifics are analyzed. Appropriate models and identification techniques are chosen. Multivariate static and dynamic models are used to represent the market behavior. The steps of the first stage of SMI, named data preprocessing, are mentioned. Next, the second stage, which is the model estimation, is considered in more details. Stepwise linear regression (SWR) is used to determine the significant cross-effects and the orders of the model polynomials. The estimates of the model parameters are obtained by a numerically stable estimator. Real market data is used to analyze SMI performance. The main conclusion is related to the applicability of multivariate dynamic models for representation of market systems.

Keywords: market identification, dynamic models, stepwise regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
6707 Numerical Simulation of the Aerodynamic Loads acting on top of the SMART Centre for PV Applications

Authors: M. Raciti Castelli, S. Toniato, E. Benini

Abstract:

The flow filed around a flatted-roof compound has been investigated by means of 2D and 3D numerical simulations. A constant wind velocity profile, based both on the maximum reference wind speed in the building site (peak gust speed worked out for a 50- year return period) and on the local roughness coefficient, has been simulated in order to determine the wind-induced loads on top of the roof. After determining the influence of the incoming wind directions on the induced roof loads, a 2D analysis of the most severe load condition has been performed, achieving a numerical quantification of the expected wind-induced forces on the PV panels on top of the roof.

Keywords: CFD, wind-induced loads, flow around buildings, photovoltaic system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
6706 A Robust Redundant Residue Representation in Residue Number System with Moduli Set(rn-2,rn-1,rn)

Authors: Hossein Khademolhosseini, Mehdi Hosseinzadeh

Abstract:

The residue number system (RNS), due to its properties, is used in applications in which high performance computation is needed. The carry free nature, which makes the arithmetic, carry bounded as well as the paralleling facility is the reason of its capability of high speed rendering. Since carry is not propagated between the moduli in this system, the performance is only restricted by the speed of the operations in each modulus. In this paper a novel method of number representation by use of redundancy is suggested in which {rn- 2,rn-1,rn} is the reference moduli set where r=2k+1 and k =1, 2,3,.. This method achieves fast computations and conversions and makes the circuits of them much simpler.

Keywords: Binary to RNS converter, Carry save adder, Computer arithmetic, Residue number system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1371
6705 Fuzzy Trust for Peer-to-Peer Based Systems

Authors: Farag Azzedin, Ahmad Ridha, Ali Rizvi

Abstract:

Trust management is one of the drawbacks in Peer-to-Peer (P2P) system. Lack of centralized control makes it difficult to control the behavior of the peers. Reputation system is one approach to provide trust assessment in P2P system. In this paper, we use fuzzy logic to model trust in a P2P environment. Our trust model combines first-hand (direct experience) and second-hand (reputation)information to allow peers to represent and reason with uncertainty regarding other peers' trustworthiness. Fuzzy logic can help in handling the imprecise nature and uncertainty of trust. Linguistic labels are used to enable peers assign a trust level intuitively. Our fuzzy trust model is flexible such that inference rules are used to weight first-hand and second-hand accordingly.

Keywords: P2P Systems; Trust, Reputation, Fuzzy Logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159
6704 Structural Parsing of Natural Language Text in Tamil Using Phrase Structure Hybrid Language Model

Authors: Selvam M, Natarajan. A M, Thangarajan R

Abstract:

Parsing is important in Linguistics and Natural Language Processing to understand the syntax and semantics of a natural language grammar. Parsing natural language text is challenging because of the problems like ambiguity and inefficiency. Also the interpretation of natural language text depends on context based techniques. A probabilistic component is essential to resolve ambiguity in both syntax and semantics thereby increasing accuracy and efficiency of the parser. Tamil language has some inherent features which are more challenging. In order to obtain the solutions, lexicalized and statistical approach is to be applied in the parsing with the aid of a language model. Statistical models mainly focus on semantics of the language which are suitable for large vocabulary tasks where as structural methods focus on syntax which models small vocabulary tasks. A statistical language model based on Trigram for Tamil language with medium vocabulary of 5000 words has been built. Though statistical parsing gives better performance through tri-gram probabilities and large vocabulary size, it has some disadvantages like focus on semantics rather than syntax, lack of support in free ordering of words and long term relationship. To overcome the disadvantages a structural component is to be incorporated in statistical language models which leads to the implementation of hybrid language models. This paper has attempted to build phrase structured hybrid language model which resolves above mentioned disadvantages. In the development of hybrid language model, new part of speech tag set for Tamil language has been developed with more than 500 tags which have the wider coverage. A phrase structured Treebank has been developed with 326 Tamil sentences which covers more than 5000 words. A hybrid language model has been trained with the phrase structured Treebank using immediate head parsing technique. Lexicalized and statistical parser which employs this hybrid language model and immediate head parsing technique gives better results than pure grammar and trigram based model.

Keywords: Hybrid Language Model, Immediate Head Parsing, Lexicalized and Statistical Parsing, Natural Language Processing, Parts of Speech, Probabilistic Context Free Grammar, Tamil Language, Tree Bank.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3643
6703 An Implementation of Data Reusable MPEG Video Coding Scheme

Authors: Vasily G. Moshnyaga

Abstract:

This paper presents an optimized MPEG2 video codec implementation, which drastically reduces the number of computations and memory accesses required for video compression. Unlike traditional scheme, we reuse data stored in frame memory to omit unnecessary coding operations and memory read/writes for unchanged macroblocks. Due to dynamic memory sharing among reference frames, data-driven macroblock characterization and selective macroblock processing, we perform less than 15% of the total operations required by a conventional coder while maintaining high picture quality.

Keywords: Data reuse, adaptive processing, video coding, MPEG

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1266
6702 Dynamics and Control of a Chaotic Electromagnetic System

Authors: Shun-Chang Chang

Abstract:

In this paper, different nonlinear dynamics analysis techniques are employed to unveil the rich nonlinear phenomena of the electromagnetic system. In particular, bifurcation diagrams, time responses, phase portraits, Poincare maps, power spectrum analysis, and the construction of basins of attraction are all powerful and effective tools for nonlinear dynamics problems. We also employ the method of Lyapunov exponents to show the occurrence of chaotic motion and to verify those numerical simulation results. Finally, two cases of a chaotic electromagnetic system being effectively controlled by a reference signal or being synchronized to another nonlinear electromagnetic system are presented.

Keywords: bifurcation, Poincare map, Lyapunov exponent, chaotic motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1599
6701 Emotions in Health Tweets: Analysis of American Government Official Accounts

Authors: García López

Abstract:

The Government Departments of Health have the task of informing and educating citizens about public health issues. For this, they use channels like Twitter, key in the search for health information and the propagation of content. The tweets, important in the virality of the content, may contain emotions that influence the contagion and exchange of knowledge. The goal of this study is to perform an analysis of the emotional projection of health information shared on Twitter by official American accounts: the disease control account CDCgov, National Institutes of Health, NIH, the government agency HHSGov, and the professional organization PublicHealth. For this, we used Tone Analyzer, an International Business Machines Corporation (IBM) tool specialized in emotion detection in text, corresponding to the categorical model of emotion representation. For 15 days, all tweets from these accounts were analyzed with the emotional analysis tool in text. The results showed that their tweets contain an important emotional load, a determining factor in the success of their communications. This exposes that official accounts also use subjective language and contain emotions. The predominance of emotion joy over sadness and the strong presence of emotions in their tweets stimulate the virality of content, a key in the work of informing that government health departments have.

Keywords: Emotions in tweets emotion detection in text, health information on Twitter, American health official accounts, emotions on Twitter, emotions and content.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 697
6700 Torrefaction of Biomass Pellets: Modeling of the Process in a Fixed Bed Reactor

Authors: Ekaterina Artiukhina, Panagiotis Grammelis

Abstract:

Torrefaction of biomass pellets is considered as a useful pretreatment technology in order to convert them into a high quality solid biofuel that is more suitable for pyrolysis, gasification, combustion, and co-firing applications. In the course of torrefaction, the temperature varies across the pellet, and therefore chemical reactions proceed unevenly within the pellet. However, the uniformity of the thermal distribution along the pellet is generally assumed. The torrefaction process of a single cylindrical pellet is modeled here, accounting for heat transfer coupled with chemical kinetics. The drying sub-model was also introduced. The nonstationary process of wood pellet decomposition is described by the system of non-linear partial differential equations over the temperature and mass. The model captures well the main features of the experimental data.

Keywords: Torrefaction, biomass pellets, model, heat and mass transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
6699 A Convolutional Deep Neural Network Approach for Skin Cancer Detection Using Skin Lesion Images

Authors: Firas Gerges, Frank Y. Shih

Abstract:

Malignant Melanoma, known simply as Melanoma, is a type of skin cancer that appears as a mole on the skin. It is critical to detect this cancer at an early stage because it can spread across the body and may lead to the patient death. When detected early, Melanoma is curable. In this paper we propose a deep learning model (Convolutional Neural Networks) in order to automatically classify skin lesion images as Malignant or Benign. Images underwent certain pre-processing steps to diminish the effect of the normal skin region on the model. The result of the proposed model showed a significant improvement over previous work, achieving an accuracy of 97%.

Keywords: Deep learning, skin cancer, image processing, melanoma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1542
6698 Species Spreading due to Environmental Hostility, Dispersal Adaptation and Allee Effects

Authors: Sanjeeva Balasuriya

Abstract:

A phenomenological model for species spreading which incorporates the Allee effect, a species- maximum attainable growth rate, collective dispersal rate and dispersal adaptability is presented. This builds on a well-established reaction-diffusion model for spatial spreading of invading organisms. The model is phrased in terms of the “hostility" (which quantifies the Allee threshold in relation to environmental sustainability) and dispersal adaptability (which measures how a species is able to adapt its migratory response to environmental conditions). The species- invading/retreating speed and the sharpness of the invading boundary are explicitly characterised in terms of the fundamental parameters, and analysed in detail.

Keywords: Allee effect, dispersal, migration speed, diffusion, invasion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265
6697 Modeling of a Novel Dual-Belt Continuously Variable Transmission for Automobiles

Authors: Y. Q. Chen, P. K. Wong, Z. C. Xie, H. W. Wu, K. U. Chan, J., L. Huang

Abstract:

It is believed that continuously variable transmission (CVT) will dominate the automotive transmissions in the future. The most popular design is Van Doorne-s CVT with single metal pushing V-belt. However, it is only applicable to low power passenger cars because its major limitation is low torque capacity. Therefore, this research studies a novel dual-belt CVT system to overcome the limitation of traditional single-belt CVT, such that it can be applicable to the heavy-duty vehicles. This paper presents the mathematical model of the design and its experimental verification. Experimental and simulated results show that the model developed is valid and the proposed dual-belt CVT can really overcome the traditional limitation of single-belt Van Doorne-s CVT.

Keywords: Analytical model, CVT, Dual belts, Torque capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2147
6696 Using the Technology Acceptance Model to Examine Seniors’ Attitudes toward Facebook

Authors: Chien-Jen Liu, Shu Ching Yang

Abstract:

Using the technology acceptance model (TAM), this study examined the external variables of technological complexity (TC) to acquire a better understanding of the factors that influence the acceptance of computer application courses by learners at Active Aging Universities. After the learners in this study had completed a 27-hour Facebook course, 44 learners responded to a modified TAM survey. Data were collected to examine the path relationships among the variables that influence the acceptance of Facebook-mediated community learning. The partial least squares (PLS) method was used to test the measurement and the structural model. The study results demonstrated that attitudes toward Facebook use directly influence behavioral intentions (BI) with respect to Facebook use, evincing a high prediction rate of 58.3%. In addition to the perceived usefulness (PU) and perceived ease of use (PEOU) measures that are proposed in the TAM, other external variables, such as TC, also indirectly influence BI. These four variables can explain 88% of the variance in BI and demonstrate a high level of predictive ability. Finally, limitations of this investigation and implications for further research are discussed.

Keywords: Technology acceptance model (TAM), technological complexity, partial least squares (PLS), perceived usefulness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3196
6695 Intelligent Modeling of the Electrical Activity of the Human Heart

Authors: Lambros V. Skarlas, Grigorios N. Beligiannis, Efstratios F. Georgopoulos, Adam V. Adamopoulos

Abstract:

The aim of this contribution is to present a new approach in modeling the electrical activity of the human heart. A recurrent artificial neural network is being used in order to exhibit a subset of the dynamics of the electrical behavior of the human heart. The proposed model can also be used, when integrated, as a diagnostic tool of the human heart system. What makes this approach unique is the fact that every model is being developed from physiological measurements of an individual. This kind of approach is very difficult to apply successfully in many modeling problems, because of the complexity and entropy of the free variables describing the complex system. Differences between the modeled variables and the variables of an individual, measured at specific moments, can be used for diagnostic purposes. The sensor fusion used in order to optimize the utilization of biomedical sensors is another point that this paper focuses on. Sensor fusion has been known for its advantages in applications such as control and diagnostics of mechanical and chemical processes.

Keywords: Artificial Neural Networks, Diagnostic System, Health Condition Modeling Tool, Heart Diagnostics Model, Heart Electricity Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1827
6694 Edge Segmentation of Satellite Image using Phase Congruency Model

Authors: Ahmed Zaafouri, Mounir Sayadi, Farhat Fnaiech

Abstract:

In this paper, we present a method for edge segmentation of satellite images based on 2-D Phase Congruency (PC) model. The proposed approach is composed by two steps: The contextual non linear smoothing algorithm (CNLS) is used to smooth the input images. Then, the 2D stretched Gabor filter (S-G filter) based on proposed angular variation is developed in order to avoid the multiple responses in the previous work. An assessment of our proposed method performance is provided in terms of accuracy of satellite image edge segmentation. The proposed method is compared with others known approaches.

Keywords: Edge segmentation, Phase congruency model, Satellite images, Stretched Gabor filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2667
6693 Simulation of a Multi-Component Transport Model for the Chemical Reaction of a CVD-Process

Authors: J. Geiser, R. Röhle

Abstract:

In this paper we present discretization and decomposition methods for a multi-component transport model of a chemical vapor deposition (CVD) process. CVD processes are used to manufacture deposition layers or bulk materials. In our transport model we simulate the deposition of thin layers. The microscopic model is based on the heavy particles, which are derived by approximately solving a linearized multicomponent Boltzmann equation. For the drift-process of the particles we propose diffusionreaction equations as well as for the effects of heat conduction. We concentrate on solving the diffusion-reaction equation with analytical and numerical methods. For the chemical processes, modelled with reaction equations, we propose decomposition methods and decouple the multi-component models to simpler systems of differential equations. In the numerical experiments we present the computational results of our proposed models.

Keywords: Chemical reactions, chemical vapor deposition, convection-diffusion-reaction equations, decomposition methods, multi-component transport.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1411
6692 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model

Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin

Abstract:

Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.

Keywords: Anomaly detection, autoencoder, data centers, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 744
6691 Jeffrey's Prior for Unknown Sinusoidal Noise Model via Cramer-Rao Lower Bound

Authors: Samuel A. Phillips, Emmanuel A. Ayanlowo, Rasaki O. Olanrewaju, Olayode Fatoki

Abstract:

This paper employs the Jeffrey's prior technique in the process of estimating the periodograms and frequency of sinusoidal model for unknown noisy time variants or oscillating events (data) in a Bayesian setting. The non-informative Jeffrey's prior was adopted for the posterior trigonometric function of the sinusoidal model such that Cramer-Rao Lower Bound (CRLB) inference was used in carving-out the minimum variance needed to curb the invariance structure effect for unknown noisy time observational and repeated circular patterns. An average monthly oscillating temperature series measured in degree Celsius (0C) from 1901 to 2014 was subjected to the posterior solution of the unknown noisy events of the sinusoidal model via Markov Chain Monte Carlo (MCMC). It was not only deduced that two minutes period is required before completing a cycle of changing temperature from one particular degree Celsius to another but also that the sinusoidal model via the CRLB-Jeffrey's prior for unknown noisy events produced a miniature posterior Maximum A Posteriori (MAP) compare to a known noisy events.

Keywords: Cramer-Rao Lower Bound (CRLB), Jeffrey's prior, Sinusoidal, Maximum A Posteriori (MAP), Markov Chain Monte Carlo (MCMC), Periodograms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 658
6690 A Very High Speed, High Resolution Current Comparator Design

Authors: Neeraj K. Chasta

Abstract:

This paper presents an idea for analog current comparison which compares input signal and reference currents with high speed and accuracy. Proposed circuit utilizes amplification properties of common gate configuration, where voltage variations of input current are amplified and a compared output voltage is developed. Cascaded inverter stages are used to generate final CMOS compatible output voltage. Power consumption of circuit can be controlled by the applied gate bias voltage. The comparator is designed and studied at 180nm CMOS process technology for a supply voltage of 3V.

Keywords: Current Mode, Comparator, High Resolution, High Speed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4707
6689 Bifurcation Analysis of a Delayed Predator-prey Fishery Model with Prey Reserve in Frequency Domain

Authors: Changjin Xu

Abstract:

In this paper, applying frequency domain approach, a delayed predator-prey fishery model with prey reserve is investigated. By choosing the delay τ as a bifurcation parameter, It is found that Hopf bifurcation occurs as the bifurcation parameter τ passes a sequence of critical values. That is, a family of periodic solutions bifurcate from the equilibrium when the bifurcation parameter exceeds a critical value. The length of delay which preserves the stability of the positive equilibrium is calculated. Some numerical simulations are included to justify the theoretical analysis results. Finally, main conclusions are given.

Keywords: Predator-prey model, stability, Hopf bifurcation, frequency domain, Nyquist criterion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
6688 Aeroelastic Response for Pure Plunging Motion of a Typical Section Due to Sharp Edged Gust, Using Jones Approximation Aerodynamics

Authors: M. H. Kargarnovin, A. Mamandi

Abstract:

This paper presents investigation effects of a sharp edged gust on aeroelastic behavior and time-domain response of a typical section model using Jones approximate aerodynamics for pure plunging motion. Flutter analysis has been done by using p and p-k methods developed for presented finite-state aerodynamic model for a typical section model (airfoil). Introduction of gust analysis as a linear set of ordinary differential equations in a simplified procedure has been carried out by using transformation into an eigenvalue problem.

Keywords: Aeroelastic response, jones approximation, pure plunging motion, sharp edged gust.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
6687 In Search of Innovation: Exploring the Dynamics of Innovation

Authors: Michal Lysek, Mike Danilovic, Jasmine Lihua Liu

Abstract:

HMS Industrial Networks AB has been recognized as one of the most innovative companies in the industrial communication industry worldwide. The creation of their Anybus innovation during the 1990s contributed considerably to the company’s success. From inception, HMS’ employees were innovating for the purpose of creating new business (the creation phase). After the Anybus innovation, they began the process of internationalization (the commercialization phase), which in turn led them to concentrate on cost reduction, product quality, delivery precision, operational efficiency, and increasing growth (the growth phase). As a result of this transformation, performing new radical innovations have become more complicated. The purpose of our research was to explore the dynamics of innovation at HMS from the aspect of key actors, activities, and events, over the three phases, in order to understand what led to the creation of their Anybus innovation, and why it has become increasingly challenging for HMS to create new radical innovations for the future. Our research methodology was based on a longitudinal, retrospective study from the inception of HMS in 1988 to 2014, a single case study inspired by the grounded theory approach. We conducted 47 interviews and collected 1 024 historical documents for our research. Our analysis has revealed that HMS’ success in creating the Anybus, and developing a successful business around the innovation, was based on three main capabilities – cultivating customer relations on different managerial and organizational levels, inspiring business relations, and balancing complementary human assets for the purpose of business creation. The success of HMS has turned the management’s attention away from past activities of key actors, of their behavior, and how they influenced and stimulated the creation of radical innovations. Nowadays, they are rhetorically focusing on creativity and innovation. All the while, their real actions put emphasis on growth, cost reduction, product quality, delivery precision, operational efficiency, and moneymaking. In the process of becoming an international company, HMS gradually refocused. In so doing they became profitable and successful, but they also forgot what made them innovative in the first place. Fortunately, HMS’ management has come to realize that this is the case and they are now in search of recapturing innovation once again. Our analysis indicates that HMS’ management is facing several barriers to innovation related path dependency and other lock-in phenomena. HMS’ management has been captured, trapped in their mindset and actions, by the success of the past. But now their future has to be secured, and they have come to realize that moneymaking is not everything. In recent years, HMS’ management have begun to search for innovation once more, in order to recapture their past capabilities for creating radical innovations. In order to unlock their managerial perceptions of customer needs and their counter-innovation driven activities and events, to utilize the full potential of their employees and capture the innovation opportunity for the future.

Keywords: Barriers to innovation, dynamics of innovation, in search of excellence and innovation, radical innovation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3061
6686 Preliminary Study on Determining Stem Diameter Variations of Sympodial Orchid

Authors: N.M Khairi, M.I. Naimah, M.S.B. Shah Rizam, M.T. Nooritawati, Z.A. Husna

Abstract:

Changes in stem diameter of orchid plants were investigated in a control growing climate. Previous studies have focused on stem diameter in relation to plant water on terrestrial plants in order to schedule the irrigation. The objective of this work was to evaluate the ability of the strain gauges to capture changes in the epiphytes plant stem. Experiments were carried out by using the sympodial orchid, Dendrobium Sonia in a stressed condition. From the findings, the sensor can detect changes in the plant stem and the result can easily be used as a reference for further studies for the development of a proper watering system.

Keywords: Strain gauge, stem diameter, Dendrobium Sonia, epiphyte, terrestrial

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410
6685 Machine Scoring Model Using Data Mining Techniques

Authors: Wimalin S. Laosiritaworn, Pongsak Holimchayachotikul

Abstract:

this article proposed a methodology for computer numerical control (CNC) machine scoring. The case study company is a manufacturer of hard disk drive parts in Thailand. In this company, sample of parts manufactured from CNC machine are usually taken randomly for quality inspection. These inspection data were used to make a decision to shut down the machine if it has tendency to produce parts that are out of specification. Large amount of data are produced in this process and data mining could be very useful technique in analyzing them. In this research, data mining techniques were used to construct a machine scoring model called 'machine priority assessment model (MPAM)'. This model helps to ensure that the machine with higher risk of producing defective parts be inspected before those with lower risk. If the defective prone machine is identified sooner, defective part and rework could be reduced hence improving the overall productivity. The results showed that the proposed method can be successfully implemented and approximately 351,000 baht of opportunity cost could have saved in the case study company.

Keywords: Computer Numerical Control, Data Mining, HardDisk Drive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
6684 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks

Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi

Abstract:

Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on timecontrolled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSO algorithm is a versatile management model for the operation of realworld water distribution system.

Keywords: JPSO, operation, optimization, water distribution system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
6683 A Multi-Objective Model for Supply Chain Network Design under Stochastic Demand

Authors: F. Alborzi, H. Vafaei, M.H. Gholami, M.M. S. Esfahani

Abstract:

In this article, the design of a Supply Chain Network (SCN) consisting of several suppliers, production plants, distribution centers and retailers, is considered. Demands of retailers are considered stochastic parameters, so we generate amounts of data via simulation to extract a few demand scenarios. Then a mixed integer two-stage programming model is developed to optimize simultaneously two objectives: (1) minimization the fixed and variable cost, (2) maximization the service level. A weighting method is utilized to solve this two objective problem and a numerical example is made to show the performance of the model.

Keywords: Mixed Integer Programming, Multi-objective Optimization, Stochastic Demand, Supply Chain Design, Two Stage Programming

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2322
6682 Spatial Behavioral Model-Based Dynamic Data-Driven Diagram Information Model

Authors: Chiung-Hui Chen

Abstract:

Diagram and drawing are important ways to communicate and the reproduce of architectural design, Due to the development of information and communication technology, the professional thinking of architecture and interior design are also change rapidly. In development process of design, diagram always play very important role. This study is based on diagram theories, observe and record interaction between man and objects, objects and space, and space and time in a modern nuclear family. Construct a method for diagram to systematically and visualized describe the space plan of a modern nuclear family toward an intelligent design, to assist designer to retrieve information and review event pattern of past and present.

Keywords: Digital diagram, information model, context aware, data analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1855