Search results for: limit detection and avoidance
54 Lightweight and Seamless Distributed Scheme for the Smart Home
Authors: Muhammad Mehran Arshad Khan, Chengliang Wang, Zou Minhui, Danyal Badar Soomro
Abstract:
Security of the smart home in terms of behavior activity pattern recognition is a totally dissimilar and unique issue as compared to the security issues of other scenarios. Sensor devices (low capacity and high capacity) interact and negotiate each other by detecting the daily behavior activity of individuals to execute common tasks. Once a device (e.g., surveillance camera, smart phone and light detection sensor etc.) is compromised, an adversary can then get access to a specific device and can damage daily behavior activity by altering the data and commands. In this scenario, a group of common instruction processes may get involved to generate deadlock. Therefore, an effective suitable security solution is required for smart home architecture. This paper proposes seamless distributed Scheme which fortifies low computational wireless devices for secure communication. Proposed scheme is based on lightweight key-session process to upheld cryptic-link for trajectory by recognizing of individual’s behavior activities pattern. Every device and service provider unit (low capacity sensors (LCS) and high capacity sensors (HCS)) uses an authentication token and originates a secure trajectory connection in network. Analysis of experiments is revealed that proposed scheme strengthens the devices against device seizure attack by recognizing daily behavior activities, minimum utilization memory space of LCS and avoids network from deadlock. Additionally, the results of a comparison with other schemes indicate that scheme manages efficiency in term of computation and communication.Keywords: Authentication, key-session, security, wireless sensors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87853 Computational Feasibility Study of a Torsional Wave Transducer for Tissue Stiffness Monitoring
Authors: Rafael Muñoz, Juan Melchor, Alicia Valera, Laura Peralta, Guillermo Rus
Abstract:
A torsional piezoelectric ultrasonic transducer design is proposed to measure shear moduli in soft tissue with direct access availability, using shear wave elastography technique. The measurement of shear moduli of tissues is a challenging problem, mainly derived from a) the difficulty of isolating a pure shear wave, given the interference of multiple waves of different types (P, S, even guided) emitted by the transducers and reflected in geometric boundaries, and b) the highly attenuating nature of soft tissular materials. An immediate application, overcoming these drawbacks, is the measurement of changes in cervix stiffness to estimate the gestational age at delivery. The design has been optimized using a finite element model (FEM) and a semi-analytical estimator of the probability of detection (POD) to determine a suitable geometry, materials and generated waves. The technique is based on the time of flight measurement between emitter and receiver, to infer shear wave velocity. Current research is centered in prototype testing and validation. The geometric optimization of the transducer was able to annihilate the compressional wave emission, generating a quite pure shear torsional wave. Currently, mechanical and electromagnetic coupling between emitter and receiver signals are being the research focus. Conclusions: the design overcomes the main described problems. The almost pure shear torsional wave along with the short time of flight avoids the possibility of multiple wave interference. This short propagation distance reduce the effect of attenuation, and allow the emission of very low energies assuring a good biological security for human use.Keywords: Cervix ripening, preterm birth, shear modulus, shear wave elastography, soft tissue, torsional wave.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 156752 Combination of Different Classifiers for Cardiac Arrhythmia Recognition
Authors: M. R. Homaeinezhad, E. Tavakkoli, M. Habibi, S. A. Atyabi, A. Ghaffari
Abstract:
This paper describes a new supervised fusion (hybrid) electrocardiogram (ECG) classification solution consisting of a new QRS complex geometrical feature extraction as well as a new version of the learning vector quantization (LVQ) classification algorithm aimed for overcoming the stability-plasticity dilemma. Toward this objective, after detection and delineation of the major events of ECG signal via an appropriate algorithm, each QRS region and also its corresponding discrete wavelet transform (DWT) are supposed as virtual images and each of them is divided into eight polar sectors. Then, the curve length of each excerpted segment is calculated and is used as the element of the feature space. To increase the robustness of the proposed classification algorithm versus noise, artifacts and arrhythmic outliers, a fusion structure consisting of five different classifiers namely as Support Vector Machine (SVM), Modified Learning Vector Quantization (MLVQ) and three Multi Layer Perceptron-Back Propagation (MLP–BP) neural networks with different topologies were designed and implemented. The new proposed algorithm was applied to all 48 MIT–BIH Arrhythmia Database records (within–record analysis) and the discrimination power of the classifier in isolation of different beat types of each record was assessed and as the result, the average accuracy value Acc=98.51% was obtained. Also, the proposed method was applied to 6 number of arrhythmias (Normal, LBBB, RBBB, PVC, APB, PB) belonging to 20 different records of the aforementioned database (between– record analysis) and the average value of Acc=95.6% was achieved. To evaluate performance quality of the new proposed hybrid learning machine, the obtained results were compared with similar peer– reviewed studies in this area.Keywords: Feature Extraction, Curve Length Method, SupportVector Machine, Learning Vector Quantization, Multi Layer Perceptron, Fusion (Hybrid) Classification, Arrhythmia Classification, Supervised Learning Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222951 From Primer Generation to Chromosome Identification: A Primer Generation Genotyping Method for Bacterial Identification and Typing
Authors: Wisam H. Benamer, Ehab A. Elfallah, Mohamed A. Elshaari, Farag A. Elshaari
Abstract:
A challenge for laboratories is to provide bacterial identification and antibiotic sensitivity results within a short time. Hence, advancement in the required technology is desirable to improve timing, accuracy and quality. Even with the current advances in methods used for both phenotypic and genotypic identification of bacteria the need is there to develop method(s) that enhance the outcome of bacteriology laboratories in accuracy and time. The hypothesis introduced here is based on the assumption that the chromosome of any bacteria contains unique sequences that can be used for its identification and typing. The outcome of a pilot study designed to test this hypothesis is reported in this manuscript. Methods: The complete chromosome sequences of several bacterial species were downloaded to use as search targets for unique sequences. Visual basic and SQL server (2014) were used to generate a complete set of 18-base long primers, a process started with reverse translation of randomly chosen 6 amino acids to limit the number of the generated primers. In addition, the software used to scan the downloaded chromosomes using the generated primers for similarities was designed, and the resulting hits were classified according to the number of similar chromosomal sequences, i.e., unique or otherwise. Results: All primers that had identical/similar sequences in the selected genome sequence(s) were classified according to the number of hits in the chromosomes search. Those that were identical to a single site on a single bacterial chromosome were referred to as unique. On the other hand, most generated primers sequences were identical to multiple sites on a single or multiple chromosomes. Following scanning, the generated primers were classified based on ability to differentiate between medically important bacterial and the initial results looks promising. Conclusion: A simple strategy that started by generating primers was introduced; the primers were used to screen bacterial genomes for match. Primer(s) that were uniquely identical to specific DNA sequence on a specific bacterial chromosome were selected. The identified unique sequence can be used in different molecular diagnostic techniques, possibly to identify bacteria. In addition, a single primer that can identify multiple sites in a single chromosome can be exploited for region or genome identification. Although genomes sequences draft of isolates of organism DNA enable high throughput primer design using alignment strategy, and this enhances diagnostic performance in comparison to traditional molecular assays. In this method the generated primers can be used to identify an organism before the draft sequence is completed. In addition, the generated primers can be used to build a bank for easy access of the primers that can be used to identify bacteria.
Keywords: Bacteria chromosome, bacterial identification, sequence, primer generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 104650 A Damage Level Assessment Model for Extra High Voltage Transmission Towers
Authors: Huan-Chieh Chiu, Hung-Shuo Wu, Chien-Hao Wang, Yu-Cheng Yang, Ching-Ya Tseng, Joe-Air Jiang
Abstract:
Power failure resulting from tower collapse due to violent seismic events might bring enormous and inestimable losses. The Chi-Chi earthquake, for example, strongly struck Taiwan and caused huge damage to the power system on September 21, 1999. Nearly 10% of extra high voltage (EHV) transmission towers were damaged in the earthquake. Therefore, seismic hazards of EHV transmission towers should be monitored and evaluated. The ultimate goal of this study is to establish a damage level assessment model for EHV transmission towers. The data of earthquakes provided by Taiwan Central Weather Bureau serve as a reference and then lay the foundation for earthquake simulations and analyses afterward. Some parameters related to the damage level of each point of an EHV tower are simulated and analyzed by the data from monitoring stations once an earthquake occurs. Through the Fourier transform, the seismic wave is then analyzed and transformed into different wave frequencies, and the data would be shown through a response spectrum. With this method, the seismic frequency which damages EHV towers the most is clearly identified. An estimation model is built to determine the damage level caused by a future seismic event. Finally, instead of relying on visual observation done by inspectors, the proposed model can provide a power company with the damage information of a transmission tower. Using the model, manpower required by visual observation can be reduced, and the accuracy of the damage level estimation can be substantially improved. Such a model is greatly useful for health and construction monitoring because of the advantages of long-term evaluation of structural characteristics and long-term damage detection.Keywords: Smart grid, EHV transmission tower, response spectrum, damage level monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 106749 Supervisory Controller with Three-State Energy Saving Mode for Induction Motor in Fluid Transportation
Authors: O. S. Ebrahim, K. O. Shawky, M. O. Ebrahim, P. K. Jain
Abstract:
Induction Motor (IM) driving pump is the main consumer of electricity in a typical fluid transportation system (FTS). Changing the connection of the stator windings from delta to star at no load can achieve noticeable active and reactive energy savings. This paper proposes a supervisory hysteresis liquid-level control with three-state energy saving mode (ESM) for IM in FTS including storage tank. The IM pump drive comprises modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to computer ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. A logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction, considering the motor thermal capacity used. An artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and, computer simulations are performed to show the effectiveness of the proposed control in terms of reliability, power quality and energy/coenergy cost reduction with the suggestion of power factor correction.
Keywords: Artificial Neural Network, ANN, Energy Saving Mode, ESM, Induction Motor, IM, star/delta switch, supervisory control, fluid transportation, reliability, power quality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 39048 3D Modeling Approach for Cultural Heritage Structures: The Case of Virgin of Loreto Chapel in Cusco, Peru
Authors: Rony Reátegui, Cesar Chácara, Benjamin Castañeda, Rafael Aguilar
Abstract:
Nowadays, Heritage Building Information Modeling (HBIM) is considered an efficient tool to represent and manage information of Cultural Heritage (CH). The basis of this tool relies on a 3D model generally obtained from a Cloud-to-BIM procedure. There are different methods to create an HBIM model that goes from manual modeling based on the point cloud to the automatic detection of shapes and the creation of objects. The selection of these methods depends on the desired Level of Development (LOD), Level of Information (LOI), Grade of Generation (GOG) as well as on the availability of commercial software. This paper presents the 3D modeling of a stone masonry chapel using Recap Pro, Revit and Dynamo interface following a three-step methodology. The first step consists of the manual modeling of simple structural (e.g., regular walls, columns, floors, wall openings, etc.) and architectural (e.g., cornices, moldings and other minor details) elements using the point cloud as reference. Then, Dynamo is used for generative modeling of complex structural elements such as vaults, infills and domes. Finally, semantic information (e.g., materials, typology, state of conservation, etc.) and pathologies are added within the HBIM model as text parameters and generic models’ families respectively. The application of this methodology allows the documentation of CH following a relatively simple to apply process that ensures adequate LOD, LOI and GOG levels. In addition, the easy implementation of the method as well as the fact of using only one BIM software with its respective plugin for the scan-to-BIM modeling process means that this methodology can be adopted by a larger number of users with intermediate knowledge and limited resources, since the BIM software used has a free student license.
Keywords: Cloud-to-BIM, cultural heritage, generative modeling, HBIM, parametric modeling, Revit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 93647 Land Use Land Cover Changes in Response to Urban Sprawl within North-West Anatolia, Turkey
Authors: Melis Inalpulat, Levent Genc
Abstract:
In the present study, an attempt was made to state the Land Use Land Cover (LULC) transformation over three decades around the urban regions of Balıkesir, Bursa, and Çanakkale provincial centers (PCs) in Turkey. Landsat imageries acquired in 1984, 1999 and 2014 were used to determine the LULC change. Images were classified using the supervised classification technique and five main LULC classes were considered including forest (F), agricultural land (A), residential area (urban) - bare soil (R-B), water surface (W), and other (O). Change detection analyses were conducted for 1984-1999 and 1999-2014, and the results were evaluated. Conversions of LULC types to R-B class were investigated. In addition, population changes (1985-2014) were assessed depending on census data, the relations between population and the urban areas were stated, and future populations and urban area needs were forecasted for 2030. The results of LULC analysis indicated that urban areas, which are covered under R-B class, were expanded in all PCs. During 1984-1999 R-B class within Balıkesir, Bursa and Çanakkale PCs were found to have increased by 7.1%, 8.4%, and 2.9%, respectively. The trend continued in the 1999-2014 term and the increment percentages reached to 15.7%, 15.5%, and 10.2% at the end of 30-year period (1984-2014). Furthermore, since A class in all provinces was found to be the principal contributor for the R-B class, urban sprawl lead to the loss of agricultural lands. Moreover, the areas of R-B classes were highly correlated with population within all PCs (R2>0.992). Depending on this situation, both future populations and R-B class areas were forecasted. The estimated values of increase in the R-B class areas for Balıkesir, Bursa, and Çanakkale PCs were 1,586 ha, 7,999 ha and 854 ha, respectively. Due to this fact, the forecasted values for 2,030 are 7,838 ha, 27,866, and 2,486 ha for Balıkesir, Bursa, and Çanakkale, and thus, 7.7%, 8.2%, and 9.7% more R-B class areas are expected to locate in PCs in respect to the same order.Keywords: Landsat, LULC change, population, urban sprawl.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 143746 Extraction of Forest Plantation Resources in Selected Forest of San Manuel, Pangasinan, Philippines Using LiDAR Data for Forest Status Assessment
Authors: Mark Joseph Quinto, Roan Beronilla, Guiller Damian, Eliza Camaso, Ronaldo Alberto
Abstract:
Forest inventories are essential to assess the composition, structure and distribution of forest vegetation that can be used as baseline information for management decisions. Classical forest inventory is labor intensive and time-consuming and sometimes even dangerous. The use of Light Detection and Ranging (LiDAR) in forest inventory would improve and overcome these restrictions. This study was conducted to determine the possibility of using LiDAR derived data in extracting high accuracy forest biophysical parameters and as a non-destructive method for forest status analysis of San Manual, Pangasinan. Forest resources extraction was carried out using LAS tools, GIS, Envi and .bat scripts with the available LiDAR data. The process includes the generation of derivatives such as Digital Terrain Model (DTM), Canopy Height Model (CHM) and Canopy Cover Model (CCM) in .bat scripts followed by the generation of 17 composite bands to be used in the extraction of forest classification covers using ENVI 4.8 and GIS software. The Diameter in Breast Height (DBH), Above Ground Biomass (AGB) and Carbon Stock (CS) were estimated for each classified forest cover and Tree Count Extraction was carried out using GIS. Subsequently, field validation was conducted for accuracy assessment. Results showed that the forest of San Manuel has 73% Forest Cover, which is relatively much higher as compared to the 10% canopy cover requirement. On the extracted canopy height, 80% of the tree’s height ranges from 12 m to 17 m. CS of the three forest covers based on the AGB were: 20819.59 kg/20x20 m for closed broadleaf, 8609.82 kg/20x20 m for broadleaf plantation and 15545.57 kg/20x20m for open broadleaf. Average tree counts for the tree forest plantation was 413 trees/ha. As such, the forest of San Manuel has high percent forest cover and high CS.
Keywords: Carbon stock, forest inventory, LiDAR, tree count.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 128145 A Robust Visual SLAM for Indoor Dynamic Environment
Authors: Xiang Zhang, Daohong Yang, Ziyuan Wu, Lei Li, Wanting Zhou
Abstract:
Visual Simultaneous Localization and Mapping (VSLAM) uses cameras to gather information in unknown environments to achieve simultaneous localization and mapping of the environment. This technology has a wide range of applications in autonomous driving, virtual reality, and other related fields. Currently, the research advancements related to VSLAM can maintain high accuracy in static environments. But in dynamic environments, the presence of moving objects in the scene can reduce the stability of the VSLAM system, leading to inaccurate localization and mapping, or even system failure. In this paper, a robust VSLAM method was proposed to effectively address the challenges in dynamic environments. We proposed a dynamic region removal scheme based on a semantic segmentation neural network and geometric constraints. Firstly, a semantic segmentation neural network is used to extract the prior active motion region, prior static region, and prior passive motion region in the environment. Then, the lightweight frame tracking module initializes the transform pose between the previous frame and the current frame on the prior static region. A motion consistency detection module based on multi-view geometry and scene flow is used to divide the environment into static regions and dynamic regions. Thus, the dynamic object region was successfully eliminated. Finally, only the static region is used for tracking thread. Our research is based on the ORBSLAM3 system, which is one of the most effective VSLAM systems available. We evaluated our method on the TUM RGB-D benchmark and the results demonstrate that the proposed VSLAM method improves the accuracy of the original ORBSLAM3 by 70%˜98.5% under a high dynamic environment.
Keywords: Dynamic scene, dynamic visual SLAM, semantic segmentation, scene flow, VSLAM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18244 Analyzing the Changing Pattern of Nigerian Vegetation Zones and Its Ecological and Socio-Economic Implications Using Spot-Vegetation Sensor
Authors: B. L. Gadiga
Abstract:
This study assesses the major ecological zones in Nigeria with the view to understanding the spatial pattern of vegetation zones and the implications on conservation within the period of sixteen (16) years. Satellite images used for this study were acquired from the SPOT-VEGETATION between 1998 and 2013. The annual NDVI images selected for this study were derived from SPOT-4 sensor and were acquired within the same season (November) in order to reduce differences in spectral reflectance due to seasonal variations. The images were sliced into five classes based on literatures and knowledge of the area (i.e. <0.16 Non-Vegetated areas; 0.16-0.22 Sahel Savannah; 0.22-0.40 Sudan Savannah, 0.40-0.47 Guinea Savannah and >0.47 Forest Zone). Classification of the 1998 and 2013 images into forested and non forested areas showed that forested area decrease from 511,691 km2 in 1998 to 478,360 km2 in 2013. Differencing change detection method was performed on 1998 and 2013 NDVI images to identify areas of ecological concern. The result shows that areas undergoing vegetation degradation covers an area of 73,062 km2 while areas witnessing some form restoration cover an area of 86,315 km2. The result also shows that there is a weak correlation between rainfall and the vegetation zones. The non-vegetated areas have a correlation coefficient (r) of 0.0088, Sahel Savannah belt 0.1988, Sudan Savannah belt -0.3343, Guinea Savannah belt 0.0328 and Forest belt 0.2635. The low correlation can be associated with the encroachment of the Sudan Savannah belt into the forest belt of South-eastern part of the country as revealed by the image analysis. The degradation of the forest vegetation is therefore responsible for the serious erosion problems witnessed in the South-east. The study recommends constant monitoring of vegetation and strict enforcement of environmental laws in the country.
Keywords: Vegetation, NDVI, SPOT-vegetation, ecology, degradation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 83943 Implicit Responses for Assessment of Autism Based on Natural Behaviors Obtained Inside Immersive Virtual Environment
Authors: E. Olmos-Raya, A. Cascales Martínez, N. Minto de Sousa, M. Alcañiz Raya
Abstract:
The late detection and subjectivity of the assessment of Autism Spectrum Disorder (ASD) imposed a difficulty for the children’s clinical and familiar environment. The results showed in this paper, are part of a research project about the assessment and training of social skills in children with ASD, whose overall goal is the use of virtual environments together with physiological measures in order to find a new model of objective ASD assessment based on implicit brain processes measures. In particular, this work tries to contribute by studying the differences and changes in the Skin Conductance Response (SCR) and Eye Tracking (ET) between a typical development group (TD group) and an ASD group (ASD group) after several combined stimuli using a low cost Immersive Virtual Environment (IVE). Subjects were exposed to a virtual environment that showed natural scenes that stimulated visual, auditory and olfactory perceptual system. By exposing them to the IVE, subjects showed natural behaviors while measuring SCR and ET. This study compared measures of subjects diagnosed with ASD (N = 18) with a control group of subjects with typical development (N=10) when exposed to three different conditions: only visual (V), visual and auditory (VA) and visual, auditory and olfactory (VAO) stimulation. Correlations between SCR and ET measures were also correlated with the Autism Diagnostic Observation Schedule (ADOS) test. SCR measures showed significant differences among the experimental condition between groups. The ASD group presented higher level of SCR while we did not find significant differences between groups regarding DF. We found high significant correlations among all the experimental conditions in SCR measures and the subscale of ADOS test of imagination and symbolic thinking. Regarding the correlation between ET measures and ADOS test, the results showed significant relationship between VA condition and communication scores.
Keywords: Autism, electrodermal activity, eye tracking, immersive virtual environment, virtual reality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81142 Assessment of Predictive Confounders for the Prevalence of Breast Cancer among Iraqi Population: A Retrospective Study from Baghdad, Iraq
Authors: Nadia H. Mohammed, Anmar Al-Taie, Fadia H. Al-Sultany
Abstract:
Although breast cancer prevalence continues to increase, mortality has been decreasing as a result of early detection and improvement in adjuvant systemic therapy. Nevertheless, this disease required further efforts to understand and identify the associated potential risk factors that could play a role in the prevalence of this malignancy among Iraqi women. The objective of this study was to assess the perception of certain predictive risk factors on the prevalence of breast cancer types among a sample of Iraqi women diagnosed with breast cancer. This was a retrospective observational study carried out at National Cancer Research Center in College of Medicine, Baghdad University from November 2017 to January 2018. Data of 100 patients with breast cancer whose biopsies examined in the National Cancer Research Center were included in this study. Data were collected to structure a detailed assessment regarding the patients’ demographic, medical and cancer records. The majority of study participants (94%) suffered from ductal breast cancer with mean age 49.57 years. Among those women, 48.9% were obese with body mass index (BMI) 35 kg/m2. 68.1% of them had positive family history of breast cancer and 66% had low parity. 40.4% had stage II ductal breast cancer followed by 25.5% with stage III. It was found that 59.6% and 68.1% had positive oestrogen receptor sensitivity and positive human epidermal growth factor (HER2/neu) receptor sensitivity respectively. In regard to the impact of prediction of certain variables on the incidence of ductal breast cancer, positive family history of breast cancer (P < 0.0001), low parity (P< 0.0001), stage I and II breast cancer (P = 0.02) and positive HER2/neu status (P < 0.0001) were significant predictive factors among the study participants. The results from this study provide relevant evidence for a significant positive and potential association between certain risk factors and the prevalence of breast cancer among Iraqi women.
Keywords: Ductal breast cancer, hormone sensitivity, Iraq, risk factors.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 108441 Screening Wheat Parents of Mapping Population for Heat and Drought Tolerance, Detection of Wheat Genetic Variation
Authors: H.R. Balouchi
Abstract:
To evaluate genetic variation of wheat (Triticum aestivum) affected by heat and drought stress on eight Australian wheat genotypes that are parents of Doubled Haploid (HD) mapping populations at the vegetative stage, the water stress experiment was conducted at 65% field capacity in growth room. Heat stress experiment was conducted in the research field under irrigation over summer. Result show that water stress decreased dry shoot weight and RWC but increased osmolarity and means of Fv/Fm values in all varieties except for Krichauff. Krichauff and Kukri had the maximum RWC under drought stress. Trident variety was shown maximum WUE, osmolarity (610 mM/Kg), dry mater, quantum yield and Fv/Fm 0.815 under water stress condition. However, the recovery of quantum yield was apparent between 4 to 7 days after stress in all varieties. Nevertheless, increase in water stress after that lead to strong decrease in quantum yield. There was a genetic variation for leaf pigments content among varieties under heat stress. Heat stress decreased significantly the total chlorophyll content that measured by SPAD. Krichauff had maximum value of Anthocyanin content (2.978 A/g FW), chlorophyll a+b (2.001 mg/g FW) and chlorophyll a (1.502 mg/g FW). Maximum value of chlorophyll b (0.515 mg/g FW) and Carotenoids (0.234 mg/g FW) content belonged to Kukri. The quantum yield of all varieties decreased significantly, when the weather temperature increased from 28 ÔùªC to 36 ÔùªC during the 6 days. However, the recovery of quantum yield was apparent after 8th day in all varieties. The maximum decrease and recovery in quantum yield was observed in Krichauff. Drought and heat tolerant and moderately tolerant wheat genotypes were included Trident, Krichauff, Kukri and RAC875. Molineux, Berkut and Excalibur were clustered into most sensitive and moderately sensitive genotypes. Finally, the results show that there was a significantly genetic variation among the eight varieties that were studied under heat and water stress.Keywords: Abiotic stress, Genetic variation, Fluorescence, Wheat genotypes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 223040 Attitude and Knowledge of Primary Health Care Physicians and Local Inhabitants about Leishmaniasis and Sandfly in West Alexandria
Authors: Randa M. Ali, Naguiba F. Loutfy, Osama M. Awad
Abstract:
Leishmaniasis is the collective name for a number of diseases caused by protozoan flagellates of the genus Leishmania, which is transmitted by Phlebotomine sandfly, the disease has diverse clinical manifestations and found in many areas of the world, particularly in Africa, Latin America, South and Central Asia, the Mediterranean basin and the Middle East. This study was done to assess primary health care physicians’ knowledge (PHP) and attitude about leishmaniasis and to assess awareness of local inhabitants about the disease and its vector in four areas in west Alexandria, Egypt. It is a cross sectional survey that was conducted in four PHC units in west Alexandria. All physicians currently working in these units during the study period were invited to participate in the study; only 20 PHP completed the questionnaire. 60 local inhabitants were selected randomly from the four areas of the study, 15 from each area; Data was collected through two different specially designed questionnaires. Results showed that 11 (55%) percent of the physicians had satisfactory knowledge; they answered more than 9 (60%) questions out of a total 14 questions about leishmaniasis and sandfly. On the other hand when attitude of the primary health care physicians about leishmaniasis was measured, results showed that 17 (85%) had good attitude and 3 (15%) had poor attitude. The second questionnaire showed that the awareness of local inhabitants about leishmaniasis and sandfly as a vector of the disease is poor and needs to be corrected. (90%) of the interviewed inhabitants had not heard about leishmaniasis, Only 3 (5%) of them said they know sandfly and its role in transmission of leishmaniasis. Thus we conclude that knowledge and attitudes of physicians are acceptable. However, there is, room for improvement and could be done through formal training courses and distribution of guidelines. In addition to raising the awareness of primary health care physicians about the importance of early detection and notification of cases of leishmaniasis, health education for raising awareness of the public regarding the vector and the disease is necessary because related studies have demonstrated that for inhabitants to take enough protective measures against the vector, they should perceive that it is responsible for causing a disease.Keywords: Attitude, knowledge, PHP, leishmaniasis, sandfly, local inhabitants, inside and outside housing conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 193439 Forensic Medical Capacities of Research of Saliva Stains on Physical Evidence after Washing
Authors: Saule Mussabekova
Abstract:
Recent advances in genetics have allowed increasing acutely the capacities of the formation of reliable evidence in conducting forensic examinations. Thus, traces of biological origin are important sources of information about a crime. Currently, around the world, sexual offenses have increased, and among them are those in which the criminals use various detergents to remove traces of their crime. A feature of modern synthetic detergents is the presence of biological additives - enzymes. Enzymes purposefully destroy stains of biological origin. To study the nature and extent of the impact of modern washing powders on saliva stains on the physical evidence, specially prepared test specimens of different types of tissues to which saliva was applied have been examined. Materials and Methods: Washing machines of famous manufacturers of household appliances have been used with different production characteristics and advertised brands of washing powder for test washing. Over 3,500 experimental samples were tested. After washing, the traces of saliva were identified using modern research methods of forensic medicine. Results: The influence was tested and the dependence of the use of different washing programs, types of washing machines and washing powders in the process of establishing saliva trace and identify of the stains on the physical evidence while washing was revealed. The results of experimental and practical expert studies have shown that in most cases it is not possible to draw the conclusions in the identification of saliva traces on physical evidence after washing. This is a consequence of the effect of biological additives and other additional factors on traces of saliva during washing. Conclusions: On the basis of the results of the study, the feasibility of saliva traces of the stains on physical evidence after washing is established. The use of modern molecular genetic methods makes it possible to partially solve the problems arising in the study of unlaundered evidence. Additional study of physical evidence after washing facilitates detection and investigation of sexual offenses against women and children.
Keywords: Saliva research, modern synthetic detergents, laundry detergents, forensic medicine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 132138 Resting-State Functional Connectivity Analysis Using an Independent Component Approach
Authors: Eric Jacob Bacon, Chaoyang Jin, Dianning He, Shuaishuai Hu, Lanbo Wang, Han Li, Shouliang Qi
Abstract:
Refractory epilepsy is a complicated type of epilepsy that can be difficult to diagnose. Recent technological advancements have made resting-state functional magnetic resonance (rsfMRI) a vital technique for studying brain activity. However, there is still much to learn about rsfMRI. Investigating rsfMRI connectivity may aid in the detection of abnormal activities. In this paper, we propose studying the functional connectivity of rsfMRI candidates to diagnose epilepsy. 45 rsfMRI candidates, comprising 26 with refractory epilepsy and 19 healthy controls, were enrolled in this study. A data-driven approach known as Independent Component Analysis (ICA) was used to achieve our goal. First, rsfMRI data from both patients and healthy controls were analyzed using group ICA. The components that were obtained were then spatially sorted to find and select meaningful ones. A two-sample t-test was also used to identify abnormal networks in patients and healthy controls. Finally, based on the fractional amplitude of low-frequency fluctuations (fALFF), a chi-square statistic test was used to distinguish the network properties of the patient and healthy control groups. The two-sample t-test analysis yielded abnormal in the default mode network, including the left superior temporal lobe and the left supramarginal. The right precuneus was found to be abnormal in the dorsal attention network. In addition, the frontal cortex showed an abnormal cluster in the medial temporal gyrus. In contrast, the temporal cortex showed an abnormal cluster in the right middle temporal gyrus and the right fronto-operculum gyrus. Finally, the chi-square statistic test was significant, producing a p-value of 0.001 for the analysis. This study offers evidence that investigating rsfMRI connectivity provides an excellent diagnosis option for refractory epilepsy.
Keywords: Independent Component Analysis, Resting State Network, refractory epilepsy, rsfMRI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29237 Screening Wheat Parents of Mapping Population for Heat and Drought Tolerance, Detection of Wheat Genetic Variation
Authors: H.R. Balouchi
Abstract:
To evaluate genetic variation of wheat (Triticum aestivum) affected by heat and drought stress on eight Australian wheat genotypes that are parents of Doubled Haploid (HD) mapping populations at the vegetative stage, the water stress experiment was conducted at 65% field capacity in growth room. Heat stress experiment was conducted in the research field under irrigation over summer. Result show that water stress decreased dry shoot weight and RWC but increased osmolarity and means of Fv/Fm values in all varieties except for Krichauff. Krichauff and Kukri had the maximum RWC under drought stress. Trident variety was shown maximum WUE, osmolarity (610 mM/Kg), dry mater, quantum yield and Fv/Fm 0.815 under water stress condition. However, the recovery of quantum yield was apparent between 4 to 7 days after stress in all varieties. Nevertheless, increase in water stress after that lead to strong decrease in quantum yield. There was a genetic variation for leaf pigments content among varieties under heat stress. Heat stress decreased significantly the total chlorophyll content that measured by SPAD. Krichauff had maximum value of Anthocyanin content (2.978 A/g FW), chlorophyll a+b (2.001 mg/g FW) and chlorophyll a (1.502 mg/g FW). Maximum value of chlorophyll b (0.515 mg/g FW) and Carotenoids (0.234 mg/g FW) content belonged to Kukri. The quantum yield of all varieties decreased significantly, when the weather temperature increased from 28 ÔùªC to 36 ÔùªC during the 6 days. However, the recovery of quantum yield was apparent after 8th day in all varieties. The maximum decrease and recovery in quantum yield was observed in Krichauff. Drought and heat tolerant and moderately tolerant wheat genotypes were included Trident, Krichauff, Kukri and RAC875. Molineux, Berkut and Excalibur were clustered into most sensitive and moderately sensitive genotypes. Finally, the results show that there was a significantly genetic variation among the eight varieties that were studied under heat and water stress.
Keywords: Abiotic stress, genetic variation, fluorescence, wheat genotypes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 258736 Supervisory Control for Induction Machine with a Modified Star/Delta Switch in Fluid Transportation
Authors: O. S. Ebrahim, K. O. Shawky, M. A. Badr, P. K. Jain
Abstract:
This paper proposes an intelligent, supervisory, hysteresis liquid-level control with three-state energy saving mode (ESM) for induction motor (IM) in fluid transportation system (FTS) including storage tank. The IM pump drive comprises a modified star/delta switch and hydromantic coupler. Three-state ESM is defined, along with the normal running, and named analog to the computer’s ESMs as follows: Sleeping mode in which the motor runs at no load with delta stator connection, hibernate mode in which the motor runs at no load with a star connection, and motor shutdown is the third energy saver mode. Considering the motor’s thermal capacity used (TCU) and grid-compatible tariff structure, a logic flow-chart is synthesized to select the motor state at no-load for best energetic cost reduction. Fuzzy-logic (FL) based availability assessment is designed and deployed on cloud, in order to provide mobilized service for the star/delta switch and highly reliable contactors. Moreover, an artificial neural network (ANN) state estimator, based on the recurrent architecture, is constructed and learned in order to provide fault-tolerant capability for the supervisory controller. Sequential test of Wald is used for sensor fault detection. Theoretical analysis, preliminary experimental testing and computer simulations are performed to demonstrate the validity and effectiveness of the proposed control system in terms of reliability, power quality and operational cost reduction with a motivation of power factor correction.
Keywords: Artificial Neural Network, ANN, Contactor Health Assessment, Energy Saving Mode, Induction Machine, IM, Supervisory Control, Fluid Transportation, Fuzzy Logic, FL, cloud computing, pumped storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45035 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models
Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu
Abstract:
Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.
Keywords: DTM, unmanned aerial vehicle, UAV, random, Kriging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 81034 Optimization of the Headspace Solid-Phase Microextraction Gas Chromatography for Volatile Compounds Determination in Phytophthora Cinnamomi Rands
Authors: Rui Qiu, Giles Hardy, Dong Qu, Robert Trengove, Manjree Agarwal, YongLin Ren
Abstract:
Phytophthora cinnamomi (P. c) is a plant pathogenic oomycete that is capable of damaging plants in commercial production systems and natural ecosystems worldwide. The most common methods for the detection and diagnosis of P. c infection are expensive, elaborate and time consuming. This study was carried out to examine whether species specific and life cycle specific volatile organic compounds (VOCs) can be absorbed by solid-phase microextraction fibers and detected by gas chromatography that are produced by P. c and another oomycete Pythium dissotocum. A headspace solid-phase microextraction (HS-SPME) together with gas chromatography (GC) method was developed and optimized for the identification of the VOCs released by P. c. The optimized parameters included type of fiber, exposure time, desorption temperature and desorption time. Optimization was achieved with the analytes of P. c+V8A and V8A alone. To perform the HS-SPME, six types of fiber were assayed and compared: 7μm Polydimethylsiloxane (PDMS), 100μm Polydimethylsiloxane (PDMS), 50/30μm Divinylbenzene/CarboxenTM/Polydimethylsiloxane DVB/CAR/PDMS), 65μm Polydimethylsiloxane/Divinylbenzene (PDMS/DVB), 85μm Polyacrylate (PA) fibre and 85μm CarboxenTM/ Polydimethylsiloxane (Carboxen™/PDMS). In a comparison of the efficacy of the fibers, the bipolar fiber DVB/CAR/PDMS had a higher extraction efficiency than the other fibers. An exposure time of 16h with DVB/CAR/PDMS fiber in the sample headspace was enough to reach the maximum extraction efficiency. A desorption time of 3min in the GC injector with the desorption temperature of 250°C was enough for the fiber to desorb the compounds of interest. The chromatograms and morphology study confirmed that the VOCs from P. c+V8A had distinct differences from V8A alone, as did different life cycle stages of P. c and different taxa such as Pythium dissotocum. The study proved that P. c has species and life cycle specific VOCs, which in turn demonstrated the feasibility of this method as means ofKeywords: Gas chromatography, headspace solid-phase microextraction, optimization, volatile compounds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188533 Destination Port Detection for Vessels: An Analytic Tool for Optimizing Port Authorities Resources
Authors: Lubna Eljabu, Mohammad Etemad, Stan Matwin
Abstract:
Port authorities have many challenges in congested ports to allocate their resources to provide a safe and secure loading/unloading procedure for cargo vessels. Selecting a destination port is the decision of a vessel master based on many factors such as weather, wavelength and changes of priorities. Having access to a tool which leverages Automatic Identification System (AIS) messages to monitor vessel’s movements and accurately predict their next destination port promotes an effective resource allocation process for port authorities. In this research, we propose a method, namely, Reference Route of Trajectory (RRoT) to assist port authorities in predicting inflow and outflow traffic in their local environment by monitoring AIS messages. Our RRo method creates a reference route based on historical AIS messages. It utilizes some of the best trajectory similarity measures to identify the destination of a vessel using their recent movement. We evaluated five different similarity measures such as Discrete Frechet Distance (DFD), Dynamic Time ´ Warping (DTW), Partial Curve Mapping (PCM), Area between two curves (Area) and Curve length (CL). Our experiments show that our method identifies the destination port with an accuracy of 98.97% and an f-measure of 99.08% using Dynamic Time Warping (DTW) similarity measure.
Keywords: Spatial temporal data mining, trajectory mining, trajectory similarity, resource optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70032 Assessing Overall Thermal Conductance Value of Low-Rise Residential Home Exterior Above-Grade Walls Using Infrared Thermography Methods
Authors: Matthew D. Baffa
Abstract:
Infrared thermography is a non-destructive test method used to estimate surface temperatures based on the amount of electromagnetic energy radiated by building envelope components. These surface temperatures are indicators of various qualitative building envelope deficiencies such as locations and extent of heat loss, thermal bridging, damaged or missing thermal insulation, air leakage, and moisture presence in roof, floor, and wall assemblies. Although infrared thermography is commonly used for qualitative deficiency detection in buildings, this study assesses its use as a quantitative method to estimate the overall thermal conductance value (U-value) of the exterior above-grade walls of a study home. The overall U-value of exterior above-grade walls in a home provides useful insight into the energy consumption and thermal comfort of a home. Three methodologies from the literature were employed to estimate the overall U-value by equating conductive heat loss through the exterior above-grade walls to the sum of convective and radiant heat losses of the walls. Outdoor infrared thermography field measurements of the exterior above-grade wall surface and reflective temperatures and emissivity values for various components of the exterior above-grade wall assemblies were carried out during winter months at the study home using a basic thermal imager device. The overall U-values estimated from each methodology from the literature using the recorded field measurements were compared to the nominal exterior above-grade wall overall U-value calculated from materials and dimensions detailed in architectural drawings of the study home. The nominal overall U-value was validated through calendarization and weather normalization of utility bills for the study home as well as various estimated heat loss quantities from a HOT2000 computer model of the study home and other methods. Under ideal environmental conditions, the estimated overall U-values deviated from the nominal overall U-value between ±2% to ±33%. This study suggests infrared thermography can estimate the overall U-value of exterior above-grade walls in low-rise residential homes with a fair amount of accuracy.
Keywords: Emissivity, heat loss, infrared thermography, thermal conductance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 83631 Image-Based UAV Vertical Distance and Velocity Estimation Algorithm during the Vertical Landing Phase Using Low-Resolution Images
Authors: Seyed-Yaser Nabavi-Chashmi, Davood Asadi, Karim Ahmadi, Eren Demir
Abstract:
The landing phase of a UAV is very critical as there are many uncertainties in this phase, which can easily entail a hard landing or even a crash. In this paper, the estimation of relative distance and velocity to the ground, as one of the most important processes during the landing phase, is studied. Using accurate measurement sensors as an alternative approach can be very expensive for sensors like LIDAR, or with a limited operational range, for sensors like ultrasonic sensors. Additionally, absolute positioning systems like GPS or IMU cannot provide distance to the ground independently. The focus of this paper is to determine whether we can measure the relative distance and velocity of UAV and ground in the landing phase using just low-resolution images taken by a monocular camera. The Lucas-Konda feature detection technique is employed to extract the most suitable feature in a series of images taken during the UAV landing. Two different approaches based on Extended Kalman Filters (EKF) have been proposed, and their performance in estimation of the relative distance and velocity are compared. The first approach uses the kinematics of the UAV as the process and the calculated optical flow as the measurement. On the other hand, the second approach uses the feature’s projection on the camera plane (pixel position) as the measurement while employing both the kinematics of the UAV and the dynamics of variation of projected point as the process to estimate both relative distance and relative velocity. To verify the results, a sequence of low-quality images taken by a camera that is moving on a specifically developed testbed has been used to compare the performance of the proposed algorithm. The case studies show that the quality of images results in considerable noise, which reduces the performance of the first approach. On the other hand, using the projected feature position is much less sensitive to the noise and estimates the distance and velocity with relatively high accuracy. This approach also can be used to predict the future projected feature position, which can drastically decrease the computational workload, as an important criterion for real-time applications.
Keywords: Automatic landing, multirotor, nonlinear control, parameters estimation, optical flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52930 Comparison of Methods for the Detection of Biofilm Formation in Yeast and Lactic Acid Bacteria Species Isolated from Dairy Products
Authors: Goksen Arik, Mihriban Korukluoglu
Abstract:
Lactic acid bacteria (LAB) and some yeast species are common microorganisms found in dairy products and most of them are responsible for the fermentation of foods. Such cultures are isolated and used as a starter culture in the food industry because of providing standardisation of the final product during the food processing. Choice of starter culture is the most important step for the production of fermented food. Isolated LAB and yeast cultures which have the ability to create a biofilm layer can be preferred as a starter in the food industry. The biofilm formation could be beneficial to extend the period of usage time of microorganisms as a starter. On the other hand, it is an undesirable property in pathogens, since biofilm structure allows a microorganism become more resistant to stress conditions such as antibiotic presence. It is thought that the resistance mechanism could be turned into an advantage by promoting the effective microorganisms which are used in the food industry as starter culture and also which have potential to stimulate the gastrointestinal system. Development of the biofilm layer is observed in some LAB and yeast strains. The resistance could make LAB and yeast strains dominant microflora in the human gastrointestinal system; thus, competition against pathogen microorganisms can be provided more easily. Based on this circumstance, in the study, 10 LAB and 10 yeast strains were isolated from various dairy products, such as cheese, yoghurt, kefir, and cream. Samples were obtained from farmer markets and bazaars in Bursa, Turkey. As a part of this research, all isolated strains were identified and their ability of biofilm formation was detected with two different methods and compared with each other. The first goal of this research was to determine whether isolates have the potential for biofilm production, and the second was to compare the validity of two different methods, which are known as “Tube method” and “96-well plate-based method”. This study may offer an insight into developing a point of view about biofilm formation and its beneficial properties in LAB and yeast cultures used as a starter in the food industry.
Keywords: Biofilm, dairy products, lactic acid bacteria, yeast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125229 Synthesis and Fluorescence Spectroscopy of Sulphonic Acid-Doped Polyaniline When Exposed to Oxygen Gas
Authors: S.F.S. Draman, R. Daik, A. Musa
Abstract:
Three sulphonic acid-doped polyanilines were synthesized through chemical oxidation at low temperature (0-5 oC) and potential of these polymers as sensing agent for O2 gas detection in terms of fluorescence quenching was studied. Sulphuric acid, dodecylbenzene sulphonic acid (DBSA) and camphor sulphonic acid (CSA) were used as doping agents. All polymers obtained were dark green powder. Polymers obtained were characterized by Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, thermogravimetry analysis, elemental analysis, differential scanning calorimeter and gel permeation chromatography. Characterizations carried out showed that polymers were successfully synthesized with mass recovery for sulphuric aciddoped polyaniline (SPAN), DBSA-doped polyaniline (DBSA-doped PANI) and CSA-doped polyaniline (CSA-doped PANI) of 71.40%, 75.00% and 39.96%, respectively. Doping level of SPAN, DBSAdoped PANI and CSA-doped PANI were 32.86%, 33.13% and 53.96%, respectively as determined based on elemental analysis. Sensing test was carried out on polymer sample in the form of solution and film by using fluorescence spectrophotometer. Samples of polymer solution and polymer film showed positive response towards O2 exposure. All polymer solutions and films were fully regenerated by using N2 gas within 1 hour period. Photostability study showed that all samples of polymer solutions and films were stable towards light when continuously exposed to xenon lamp for 9 hours. The relative standard deviation (RSD) values for SPAN solution, DBSA-doped PANI solution and CSA-doped PANI solution for repeatability were 0.23%, 0.64% and 0.76%, respectively. Meanwhile RSD values for reproducibility were 2.36%, 6.98% and 1.27%, respectively. Results for SPAN film, DBSAdoped PANI film and CSA-doped PANI film showed the same pattern with RSD values for repeatability of 0.52%, 4.05% and 0.90%, respectively. Meanwhile RSD values for reproducibility were 2.91%, 10.05% and 7.42%, respectively. The study on effect of the flow rate on response time was carried out using 3 different rates which were 0.25 mL/s, 1.00 mL/s and 2.00 mL/s. Results obtained showed that the higher the flow rate, the shorter the response time.Keywords: conjugated polymer, doping, fluorescence quenching, oxygen gas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 240028 Developing Manufacturing Process for the Graphene Sensors
Authors: Abdullah Faqihi, John Hedley
Abstract:
Biosensors play a significant role in the healthcare sectors, scientific and technological progress. Developing electrodes that are easy to manufacture and deliver better electrochemical performance is advantageous for diagnostics and biosensing. They can be implemented extensively in various analytical tasks such as drug discovery, food safety, medical diagnostics, process controls, security and defence, in addition to environmental monitoring. Development of biosensors aims to create high-performance electrochemical electrodes for diagnostics and biosensing. A biosensor is a device that inspects the biological and chemical reactions generated by the biological sample. A biosensor carries out biological detection via a linked transducer and transmits the biological response into an electrical signal; stability, selectivity, and sensitivity are the dynamic and static characteristics that affect and dictate the quality and performance of biosensors. In this research, a developed experimental study for laser scribing technique for graphene oxide inside a vacuum chamber for processing of graphene oxide is presented. The processing of graphene oxide (GO) was achieved using the laser scribing technique. The effect of the laser scribing on the reduction of GO was investigated under two conditions: atmosphere and vacuum. GO solvent was coated onto a LightScribe DVD. The laser scribing technique was applied to reduce GO layers to generate rGO. The micro-details for the morphological structures of rGO and GO were visualised using scanning electron microscopy (SEM) and Raman spectroscopy so that they could be examined. The first electrode was a traditional graphene-based electrode model, made under normal atmospheric conditions, whereas the second model was a developed graphene electrode fabricated under a vacuum state using a vacuum chamber. The purpose was to control the vacuum conditions, such as the air pressure and the temperature during the fabrication process. The parameters to be assessed include the layer thickness and the continuous environment. Results presented show high accuracy and repeatability achieving low cost productivity.Keywords: Laser scribing, LightScribe DVD, graphene oxide, scanning electron microscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 66827 A Commercial Building Plug Load Management System That Uses Internet of Things Technology to Automatically Identify Plugged-In Devices and Their Locations
Authors: Amy LeBar, Kim L. Trenbath, Bennett Doherty, William Livingood
Abstract:
Plug and process loads (PPLs) account for a large portion of U.S. commercial building energy use. There is a huge potential to reduce whole building consumption by targeting PPLs for energy savings measures or implementing some form of plug load management (PLM). Despite this potential, there has yet to be a widely adopted commercial PLM technology. This paper describes the Automatic Type and Location Identification System (ATLIS), a PLM system framework with automatic and dynamic load detection (ADLD). ADLD gives PLM systems the ability to automatically identify devices as they are plugged into the outlets of a building. The ATLIS framework takes advantage of smart, connected devices to identify device locations in a building, meter and control their power, and communicate this information to a central database. ATLIS includes five primary capabilities: location identification, communication, control, energy metering, and data storage. A laboratory proof of concept (PoC) demonstrated all but the energy metering capability, and these capabilities were validated using a series of system tests. The PoC was able to identify when a device was plugged into an outlet and the location of the device in the building. When a device was moved, the PoC’s dashboard and database were automatically updated with the new location. The PoC implemented controls to devices from the system dashboard so that devices maintained correct schedules regardless of where they were plugged in within the building. ATLIS’s primary technology application is improved PLM, but other applications include asset management, energy audits, and interoperability for grid-interactive efficient buildings. An ATLIS-based system could also be used to direct power to critical devices, such as ventilators, during a brownout or blackout. Such a framework is an opportunity to make PLM more widespread and reduce the amount of energy consumed by PPLs in current and future commercial buildings.
Keywords: commercial buildings, grid-interactive efficient buildings, miscellaneous electric loads, plug loads, plug load management
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 88326 A Risk Assessment Tool for the Contamination of Aflatoxins on Dried Figs based on Machine Learning Algorithms
Authors: Kottaridi Klimentia, Demopoulos Vasilis, Sidiropoulos Anastasios, Ihara Diego, Nikolaidis Vasileios, Antonopoulos Dimitrios
Abstract:
Aflatoxins are highly poisonous and carcinogenic compounds produced by species of the genus Aspergillus spp. that can infect a variety of agricultural foods, including dried figs. Biological and environmental factors, such as population, pathogenicity and aflatoxinogenic capacity of the strains, topography, soil and climate parameters of the fig orchards are believed to have a strong effect on aflatoxin levels. Existing methods for aflatoxin detection and measurement, such as high-performance liquid chromatography (HPLC), and enzyme-linked immunosorbent assay (ELISA), can provide accurate results, but the procedures are usually time-consuming, sample-destructive and expensive. Predicting aflatoxin levels prior to crop harvest is useful for minimizing the health and financial impact of a contaminated crop. Consequently, there is interest in developing a tool that predicts aflatoxin levels based on topography and soil analysis data of fig orchards. This paper describes the development of a risk assessment tool for the contamination of aflatoxin on dried figs, based on the location and altitude of the fig orchards, the population of the fungus Aspergillus spp. in the soil, and soil parameters such as pH, saturation percentage (SP), electrical conductivity (EC), organic matter, particle size analysis (sand, silt, clay), concentration of the exchangeable cations (Ca, Mg, K, Na), extractable P and trace of elements (B, Fe, Mn, Zn and Cu), by employing machine learning methods. In particular, our proposed method integrates three machine learning techniques i.e., dimensionality reduction on the original dataset (Principal Component Analysis), metric learning (Mahalanobis Metric for Clustering) and K-nearest Neighbors learning algorithm (KNN), into an enhanced model, with mean performance equal to 85% by terms of the Pearson Correlation Coefficient (PCC) between observed and predicted values.
Keywords: aflatoxins, Aspergillus spp., dried figs, k-nearest neighbors, machine learning, prediction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 65025 Impact of Urbanization Growth on Disease Spread and Outbreak Response: Exploring Strategies for Enhancing Resilience
Authors: Raquel Vianna Duarte Cardoso, Eduarda Lobato Faria, José Jorge Boueri
Abstract:
Rapid urbanization has transformed the global landscape, presenting significant challenges to public health. This article delves into the impact of urbanization on the spread of infectious diseases in cities and identifies crucial strategies to enhance urban community resilience. Massive urbanization over recent decades has created conducive environments for the rapid spread of diseases due to population density, mobility, and unequal living conditions. Urbanization has been observed to increase exposure to pathogens and foster conditions conducive to disease outbreaks, including seasonal flu, vector-borne diseases, and respiratory infections. In order to tackle these issues, a range of cross-disciplinary approaches are suggested. These encompass the enhancement of urban healthcare infrastructure, emphasizing the need for robust investments in hospitals, clinics, and healthcare systems to keep pace with the burgeoning healthcare requirements in urban environments. Moreover, the establishment of disease monitoring and surveillance mechanisms is indispensable, as it allows for the timely detection of outbreaks, enabling swift responses. Additionally, community engagement and education play a pivotal role in advocating for personal hygiene, vaccination, and preventive measures, thus playing a pivotal role in diminishing disease transmission. Lastly, the promotion of sustainable urban planning, which includes the creation of cities with green spaces, access to clean water, and proper sanitation, can significantly mitigate the risks associated with waterborne and vector-borne diseases. The article is based on the analysis of scientific literature, and it offers a comprehensive insight into the complexities of the relationship between urbanization and health. It places a strong emphasis on the urgent need for integrated approaches to improve urban resilience in the face of health challenges.
Keywords: Infectious diseases dissemination, public health, urbanization impacts, urban resilience.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 92