Search results for: Surface temperature
2253 Preparation of Porous Metal Membrane by Thermal Annealing for Thin Film Encapsulation
Authors: Jaibir Sharma, Lee JaeWung, Merugu Srinivas, Navab Singh
Abstract:
This paper presents thermal annealing de-wetting technique for the preparation of porous metal membrane for Thin Film Encapsulation (TFE) application. Thermal annealing de-wetting experimental results reveal that pore size formation in porous metal membrane depend upon i.e. 1. The substrate at which metal is deposited, 2. Melting point of metal used for porous metal cap layer membrane formation, 3. Thickness of metal used for cap layer, 4. Temperature used for formation of porous metal membrane. In order to demonstrate this technique, Silver (Ag) was used as a metal for preparation of porous metal membrane on amorphous silicon (a-Si) and silicon oxide. The annealing of the silver thin film of various thicknesses was performed at different temperature. Pores in porous silver film were analyzed using Scanning Electron Microscope (SEM). In order to check the usefulness of porous metal film for TFE application, the porous silver film prepared on amorphous silicon (a- Si) and silicon oxide was released using XeF2 and VHF, respectively. Finally, guide line and structures are suggested to use this porous membrane for robust TFE application.Keywords: De-wetting, thermal annealing, metal, melting point, porous.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20682252 Aerodynamic Prediction and Performance Analysis for Mars Science Laboratory Entry Vehicle
Authors: Tang Wei, Yang Xiaofeng, Gui Yewei, Du Yanxia
Abstract:
Complex lifting entry was selected for precise landing performance during the Mars Science Laboratory entry. This study aims to develop the three-dimensional numerical method for precise computation and the surface panel method for rapid engineering prediction. Detailed flow field analysis for Mars exploration mission was performed by carrying on a series of fully three-dimensional Navier-Stokes computations. The static aerodynamic performance was then discussed, including the surface pressure, lift and drag coefficient, lift-to-drag ratio with the numerical and engineering method. Computation results shown that the shock layer is thin because of lower effective specific heat ratio, and that calculated results from both methods agree well with each other, and is consistent with the reference data. Aerodynamic performance analysis shows that CG location determines trim characteristics and pitch stability, and certain radially and axially shift of the CG location can alter the capsule lifting entry performance, which is of vital significance for the aerodynamic configuration design and inner instrument layout of the Mars entry capsule.Keywords: Mars entry capsule, static aerodynamics, computational fluid dynamics, hypersonic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30352251 Effect of Installation of Long Cylindrical External Store on Performance, Stability, Control and Handling Qualities of Light Transport Aircraft
Authors: Ambuj Srivastava, Narender Singh
Abstract:
This paper presents the effect of installation of cylindrical external store on the performance, stability, control and handling qualities of light transport category aircraft. A pair of long cylindrical store was installed symmetrically on either side of the fuselage (port and starboard) ahead of the wing and below the fuselage bottom surface running below pilot and co-pilot window. The cylindrical store was installed as hanging from aircraft surface through specially designed brackets. The adjoining structure was sufficiently reinforced for bearing aerodynamic loads. The length to diameter ratio of long cylindrical store was ~20. Based on academic studies and flow simulation analysis, a considerable detrimental effect on single engine second segment climb performance was found which was later validated through extensive flight testing exercise. The methodology of progressive flight envelope opening was adopted. The certification was sought from Regional airworthiness authorities and for according approval.Keywords: Second segment climb, maximum operating speed, cruise performance, single engine and twin engine, minimum control speed, and additional trim required.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12372250 Warm Mix and Reclaimed Asphalt Pavement: A Greener Road Approach
Authors: Lillian Gungat, Meor Othman Hamzah, Mohd Rosli Mohd Hasan, Jan Valentin
Abstract:
Utilization of a high percentage of reclaimed asphalt pavement (RAP) requires higher production temperatures and consumes more energy. High production temperature expedites the aging of bitumen in RAP, which could affect the mixture performance. Warm mix asphalt (WMA) additive enables reduced production temperatures as a result of viscosity reduction. This paper evaluates the integration of a high percentage of RAP with a WMA additive known as RH-WMA. The optimum dosage of RH-WMA was determined from basic properties tests. A total of 0%, 30% and 50% RAP contents from two roads sources were modified with RH-WMA. The modified RAP bitumen were examined for viscosity, stiffness, rutting resistance and greenhouse gas emissions. The addition of RH-WMA improved the flow of bitumen by reducing the viscosity, and thus, decreased the construction temperature. The stiffness of the RAP modified bitumen reduced with the incorporation of RH-WMA. The positive improvement in rutting resistance was observed on bitumen with the addition of RAP and RH-WMA in comparison with control. It was estimated that the addition of RH-WMA could potentially reduce fuel usage and GHG emissions by 22 %. Hence, the synergy of RAP and WMA technology can be an alternative in green road construction.
Keywords: Reclaimed asphalt pavement, WMA additive, viscosity, stiffness, emissions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8102249 Simulation of Fluid Flow and Heat Transfer in Inclined Cavity using Lattice Boltzmann Method
Authors: Arash Karimipour, A. Hossein Nezhad, E. Shirani, A. Safaei
Abstract:
In this paper, Lattice Boltzmann Method (LBM) is used to study laminar flow with mixed convection heat transfer inside a two-dimensional inclined lid-driven rectangular cavity with aspect ratio AR = 3. Bottom wall of the cavity is maintained at lower temperature than the top lid, and its vertical walls are assumed insulated. Top lid motion results in fluid motion inside the cavity. Inclination of the cavity causes horizontal and vertical components of velocity to be affected by buoyancy force. To include this effect, calculation procedure of macroscopic properties by LBM is changed and collision term of Boltzmann equation is modified. A computer program is developed to simulate this problem using BGK model of lattice Boltzmann method. The effects of the variations of Richardson number and inclination angle on the thermal and flow behavior of the fluid inside the cavity are investigated. The results are presented as velocity and temperature profiles, stream function contours and isotherms. It is concluded that LBM has good potential to simulate mixed convection heat transfer problems.
Keywords: gravity, inclined lid driven cavity, lattice Boltzmannmethod, mixed convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19542248 Avicelase Production by a Thermophilic Geobacillus stearothermophilus Isolated from Soil using Sugarcane Bagasse
Authors: E. A. Makky
Abstract:
Studies were carried out on the comparative study of the production of Avicelase enzyme using sugarcane bagasse-SCB in two different statuses (i.e. treated and untreated SCB) by thermophilic Geobacillus stearothermophilus at 50ºC. Only four thermophilic bacterial isolates were isolated and assayed for Avicelase production using UntSCB and TSCB. Only one isolate selected as most potent and identified as G. stearothermophilus used in this study. A specific endo-β-1,4-D-glucanase (Avicelase EC 3.2.1.91) was partially purified from a thermophilic bacterial strain was isolated from different soil samples when grown on cellulose enrichment SCB substrate as the sole carbon source. Results shown that G. stearothermophilus was the better Avicelase producer strain. Avicelase had an optimum pH and temperature 7.0 and 50ºC for both UntSCB and TSCB and exhibited good pH stability between "5-8" and "4-9", however, good temperature stability between (30-80ºC) for UntSCB and TSCB, respectively. Other factors affecting the production of Avicelase were compared (i.e. SCB concentration, inoculum size and different incubation periods), all results observed and obtained were revealed that the TSCB was exhibited maximal enzyme activity in comparison with the results obtained from UntSCB, so, the TSCB was enhancing the Avicelase production.
Keywords: Geobacillus stearothermophilus, Avicelase, Sugarcane bagasse
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28072247 Use of Caffeine and Human Pharmaceutical Compounds to Identify Sewage Contamination
Authors: Jingming Wu, Junqi Yue, Ruikang Hu, Zhaoguang Yang, Lifeng Zhang
Abstract:
Fecal coliform bacteria are widely used as indicators of sewage contamination in surface water. However, there are some disadvantages in these microbial techniques including time consuming (18-48h) and inability in discriminating between human and animal fecal material sources. Therefore, it is necessary to seek a more specific indicator of human sanitary waste. In this study, the feasibility was investigated to apply caffeine and human pharmaceutical compounds to identify the human-source contamination. The correlation between caffeine and fecal coliform was also explored. Surface water samples were collected from upstream, middle-stream and downstream points respectively, along Rochor Canal, as well as 8 locations of Marina Bay. Results indicate that caffeine is a suitable chemical tracer in Singapore because of its easy detection (in the range of 0.30-2.0 ng/mL), compared with other chemicals monitored. Relative low concentrations of human pharmaceutical compounds (< 0.07 ng/mL) in Rochor Canal and Marina Bay water samples make them hard to be detected and difficult to be chemical tracer. However, their existence can help to validate sewage contamination. In addition, it was discovered the high correlation exists between caffeine concentration and fecal coliform density in the Rochor Canal water samples, demonstrating that caffeine is highly related to the human-source contamination.Keywords: Caffeine, Human Pharmaceutical Compounds, Chemical Tracer, Sewage Contamination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25142246 Porous Particles Drying in a Vertical Upward Pneumatic Conveying Dryer
Authors: Samy M. El-Behery, W. A. El-Askary, K. A. Ibrahim, Mofreh H. Hamed
Abstract:
A steady two-phase flow model has been developed to simulate the drying process of porous particle in a pneumatic conveying dryer. The model takes into account the momentum, heat and mass transfer between the continuous phase and the dispersed phase. A single particle model was employed to calculate the evaporation rate. In this model the pore structure is simplified to allow the dominant evaporation mechanism to be readily identified at all points within the duct. The predominant mechanism at any time depends upon the pressure, temperature and the diameter of pore from which evaporating is occurring. The model was validated against experimental studies of pneumatic transport at low and high speeds as well as pneumatic drying. The effects of operating conditions on the dryer parameters are studied numerically. The present results show that the drying rate is enhanced as the inlet gas temperature and the gas flow rate increase and as the solid mass flow rate deceases. The present results also demonstrate the necessity of measuring the inlet gas velocity or the solid concentration in any experimental analysis.
Keywords: Two-phase, gas-solid, pneumatic drying, pneumatic conveying, heat and mass transfer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32682245 Design and Analysis of Electric Power Production Unit for Low Enthalpy Geothermal Reservoir Applications
Authors: Ildar Akhmadullin, Mayank Tyagi
Abstract:
The subject of this paper is the design analysis of a single well power production unit from low enthalpy geothermal resources. A complexity of the project is defined by a low temperature heat source that usually makes such projects economically disadvantageous using the conventional binary power plant approach. A proposed new compact design is numerically analyzed. This paper describes a thermodynamic analysis, a working fluid choice, downhole heat exchanger (DHE) and turbine calculation results. The unit is able to produce 321 kW of electric power from a low enthalpy underground heat source utilizing n-Pentane as a working fluid. A geo-pressured reservoir located in Vermilion Parish, Louisiana, USA is selected as a prototype for the field application. With a brine temperature of 126 , the optimal length of DHE is determined as 304.8 m (1000ft). All units (pipes, turbine, and pumps) are chosen from commercially available parts to bring this project closer to the industry requirements. Numerical calculations are based on petroleum industry standards. The project is sponsored by the Department of Energy of the US.
Keywords: Downhole Heat Exchangers, Geothermal Power Generation, Organic Rankine Cycle, Refrigerants, Working Fluids.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26702244 The Model Establishment and Analysis of TRACE/FRAPTRAN for Chinshan Nuclear Power Plant Spent Fuel Pool
Authors: J. R. Wang, H. T. Lin, Y. S. Tseng, W. Y. Li, H. C. Chen, S. W. Chen, C. Shih
Abstract:
TRACE is developed by U.S. NRC for the nuclear power plants (NPPs) safety analysis. We focus on the establishment and application of TRACE/FRAPTRAN/SNAP models for Chinshan NPP (BWR/4) spent fuel pool in this research. The geometry is 12.17 m × 7.87 m × 11.61 m for the spent fuel pool. In this study, there are three TRACE/SNAP models: one-channel, two-channel, and multi-channel TRACE/SNAP model. Additionally, the cooling system failure of the spent fuel pool was simulated and analyzed by using the above models. According to the analysis results, the peak cladding temperature response was more accurate in the multi-channel TRACE/SNAP model. The results depicted that the uncovered of the fuels occurred at 2.7 day after the cooling system failed. In order to estimate the detailed fuel rods performance, FRAPTRAN code was used in this research. According to the results of FRAPTRAN, the highest cladding temperature located on the node 21 of the fuel rod (the highest node at node 23) and the cladding burst roughly after 3.7 day.Keywords: TRACE, FRAPTRAN, SNAP, spent fuel pool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14172243 Evaluation of A 50MW Two-Axis Tracking Photovoltaic Power Plant for AL-Jagbob, Libya: Energetic, Economic, and Environmental Impact Analysis
Abstract:
This paper investigates the application of large scale (LS-PV) two-axis tracking photovoltaic power plant in Al-Jagbob, Libya. A 50MW PV-grid connected (two-axis tracking) power plant design in Al-Jagbob, Libya has been carried out presently. A hetero-junction with intrinsic thin layer (HIT) type PV module has been selected and modeled. A Microsoft Excel-VBA program has been constructed to compute slope radiation, dew-point, sky temperature, and then cell temperature, maximum power output and module efficiency for this system, for tracking system. The results for energy production show that the total energy output is 128.5 GWh/year. The average module efficiency is 16.6%. The electricity generation capacity factor (CF) and solar capacity factor (SCF) were found to be 29.3% and 70.4% respectively. A 50MW two axis tracking power plant with a total energy output of 128.5 GWh/year would reduce CO2 pollution by 85,581 tonnes of each year. The payback time for the proposed LS-PV photovoltaic power plant was found to be 4 years.
Keywords: Large PV power plant, solar energy, environmental impact, Dual-axis tracking system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36672242 Analysis of Motor Cycle Helmet under Static and Dynamic Loading
Authors: V. C. Sathish Gandhi, R. Kumaravelan, S. Ramesh, M. Venkatesan, M. Ponraj
Abstract:
Each year nearly nine hundred persons die in head injuries and over fifty thousand persons are severely injured due to non wearing of helmets. In motor cycle accidents, the human head is exposed to heavy impact loading against natural protection. In this work, an attempt has been made for analyzing the helmet with all the standard data. The simulation software ‘ANSYS’ is used to analyze the helmet with different conditions such as bottom fixed-load on top surface, bottom fixed -load on top line, side fixed –load on opposite surface, side fixed-load on opposite line and dynamic analysis. The maximum force of 19.5 kN is applied on the helmet to study the model in static and dynamic conditions. The simulation has been carried out for the static condition for the parameters like total deformation, strain energy, von-Mises stress for different cases. The dynamic analysis has been performed for the parameter like total deformation and equivalent elastic strain. The result shows that these values are concentrated in the retention portion of the helmet. These results have been compared with the standard experimental data proposed by the BIS and well within the acceptable limit.
Keywords: Helmet, Deformation, Strain energy, Equivalent elastic strain.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48902241 Wetting Characterization of High Aspect Ratio Nanostructures by Gigahertz Acoustic Reflectometry
Authors: C. Virgilio, J. Carlier, P. Campistron, M. Toubal, P. Garnier, L. Broussous, V. Thomy, B. Nongaillard
Abstract:
Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.
Keywords: Wetting, acoustic reflectometry, gigahertz, semiconductor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13012240 A Numerical Study on Electrophoresis of a Soft Particle with Charged Core Coated with Polyelectrolyte Layer
Authors: Partha Sarathi Majee, S. Bhattacharyya
Abstract:
Migration of a core-shell soft particle under the influence of an external electric field in an electrolyte solution is studied numerically. The soft particle is coated with a positively charged polyelectrolyte layer (PEL) and the rigid core is having a uniform surface charge density. The Darcy-Brinkman extended Navier-Stokes equations are solved for the motion of the ionized fluid, the non-linear Nernst-Planck equations for the ion transport and the Poisson equation for the electric potential. A pressure correction based iterative algorithm is adopted for numerical computations. The effects of convection on double layer polarization (DLP) and diffusion dominated counter ions penetration are investigated for a wide range of Debye layer thickness, PEL fixed surface charge density, and permeability of the PEL. Our results show that when the Debye layer is in order of the particle size, the DLP effect is significant and produces a reduction in electrophoretic mobility. However, the double layer polarization effect is negligible for a thin Debye layer or low permeable cases. The point of zero mobility and the existence of mobility reversal depending on the electrolyte concentration are also presented.Keywords: Debye length, double layer polarization, electrophoresis, mobility reversal, soft particle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11432239 Thermo-mechanical Behavior of Pressure Tube of Indian PHWR at 20 bar Pressure
Authors: Gopal Nandan, P. K. Sahooa, Ravi Kumara, B Chatterjeeb, D. Mukhopadhyayb, H. G. Leleb
Abstract:
In a nuclear reactor Loss of Coolant accident (LOCA) considers wide range of postulated damage or rupture of pipe in the heat transport piping system. In the case of LOCA with/without failure of emergency core cooling system in a Pressurised Heavy water Reactor, the Pressure Tube (PT) temperature could rise significantly due to fuel heat up and gross mismatch of the heat generation and heat removal in the affected channel. The extent and nature of deformation is important from reactor safety point of view. Experimental set-ups have been designed and fabricated to simulate ballooning (radial deformation) of PT for 220 MWe IPHWRs. Experiments have been conducted by covering the CT by ceramic fibers and then by submerging CT in water of voided PTs. In both the experiments, it is observed that ballooning initiates at a temperature around 665´┐¢C and complete contact between PT and Caldaria Tube (CT) occurs at around 700´┐¢C approximately. The strain rate is found to be 0.116% per second. The structural integrity of PT is retained (no breach) for all the experiments. The PT heatup is found to be arrested after the contact between PT and CT, thus establishing moderator acting as an efficient heat sink for IPHWRs.Keywords: Pressure Tube, Calandria Tube, Thermo-mechanicaldeformation, Boiling heat transfer, Reactor safety
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22252238 Radiation Damage as Nonlinear Evolution of Complex System
Authors: Pavlo Selyshchev
Abstract:
Irradiated material is a typical example of a complex system with nonlinear coupling between its elements. During irradiation the radiation damage is developed and this development has bifurcations and qualitatively different kinds of behavior. The accumulation of primary defects in irradiated crystals is considered in frame work of nonlinear evolution of complex system. The thermo-concentration nonlinear feedback is carried out as a mechanism of self-oscillation development. It is shown that there are two ways of the defect density evolution under stationary irradiation. The first is the accumulation of defects; defect density monotonically grows and tends to its stationary state for some system parameters. Another way that takes place for opportune parameters is the development of self-oscillations of the defect density. The stationary state, its stability and type are found. The bifurcation values of parameters (environment temperature, defect generation rate, etc.) are obtained. The frequency of the selfoscillation and the conditions of their development is found and rated. It is shown that defect density, heat fluxes and temperature during self-oscillations can reach much higher values than the expected steady-state values. It can lead to a change of typical operation and an accident, e.g. for nuclear equipment.Keywords: Irradiation, Primary Defects, Solids, Self-oscillation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17332237 Cloud Forest Characteristics of Khao Nan, Thailand
Authors: P. Sangarun, W. Srisang, K. Jaroensutasinee, M. Jaroensutasinee
Abstract:
A better understanding of cloud forest characteristic in a tropical montane cloud forest at Khao Nan, Nakhon Si Thammarat on climatic, vegetation, soil and hydrology were studied during 18-21 April 2007. The results showed that as air temperature at Sanyen cloud forest increased, the percent relative humidity decreased. The amount of solar radiation at Sanyen cloud forest had a positive association with the amount of solar radiation at Parah forest. The amount of solar radiation at Sanyen cloud forest was very low with a range of 0-19 W/m2. On the other hand, the amount of solar radiation at Parah forest was high with a range of 0-1000 W/m2. There was no difference between leaf width, leaf length, leaf thickness and leaf area with increasing in elevations. As the elevations increased, bush height and tree height decreased. There was no association between bush width and bush ratio with elevation. As the elevations increased, the percent epiphyte cover and the percent soil moisture increased but water temperature, conductivity, and dissolved oxygen decreased. The percent soil moistures and organic contents were higher at elevations above 900 m than elevations below.
Keywords: Cloud forest, climate, vegetation, soil, hydrology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18732236 The Water Level Detection Algorithm Using the Accumulated Histogram with Band Pass Filter
Authors: Sangbum Park, Namki Lee, Youngjoon Han, Hernsoo Hahn
Abstract:
In this paper, we propose the robust water level detection method based on the accumulated histogram under small changed image which is acquired from water level surveillance camera. In general surveillance system, this is detecting and recognizing invasion from searching area which is in big change on the sequential images. However, in case of a water level detection system, these general surveillance techniques are not suitable due to small change on the water surface. Therefore the algorithm introduces the accumulated histogram which is emphasizing change of water surface in sequential images. Accumulated histogram is based on the current image frame. The histogram is cumulating differences between previous images and current image. But, these differences are also appeared in the land region. The band pass filter is able to remove noises in the accumulated histogram Finally, this algorithm clearly separates water and land regions. After these works, the algorithm converts from the water level value on the image space to the real water level on the real space using calibration table. The detected water level is sent to the host computer with current image. To evaluate the proposed algorithm, we use test images from various situations.Keywords: accumulated histogram, water level detection, band pass filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20002235 3D Star Skeleton for Fast Human Posture Representation
Authors: Sungkuk Chun, Kwangjin Hong, Keechul Jung
Abstract:
In this paper, we propose an improved 3D star skeleton technique, which is a suitable skeletonization for human posture representation and reflects the 3D information of human posture. Moreover, the proposed technique is simple and then can be performed in real-time. The existing skeleton construction techniques, such as distance transformation, Voronoi diagram, and thinning, focus on the precision of skeleton information. Therefore, those techniques are not applicable to real-time posture recognition since they are computationally expensive and highly susceptible to noise of boundary. Although a 2D star skeleton was proposed to complement these problems, it also has some limitations to describe the 3D information of the posture. To represent human posture effectively, the constructed skeleton should consider the 3D information of posture. The proposed 3D star skeleton contains 3D data of human, and focuses on human action and posture recognition. Our 3D star skeleton uses the 8 projection maps which have 2D silhouette information and depth data of human surface. And the extremal points can be extracted as the features of 3D star skeleton, without searching whole boundary of object. Therefore, on execution time, our 3D star skeleton is faster than the “greedy" 3D star skeleton using the whole boundary points on the surface. Moreover, our method can offer more accurate skeleton of posture than the existing star skeleton since the 3D data for the object is concerned. Additionally, we make a codebook, a collection of representative 3D star skeletons about 7 postures, to recognize what posture of constructed skeleton is.Keywords: computer vision, gesture recognition, skeletonization, human posture representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21232234 Design and Optimization for a Compliant Gripper with Force Regulation Mechanism
Authors: Nhat Linh Ho, Thanh-Phong Dao, Shyh-Chour Huang, Hieu Giang Le
Abstract:
This paper presents a design and optimization for a compliant gripper. The gripper is constructed based on the concept of compliant mechanism with flexure hinge. A passive force regulation mechanism is presented to control the grasping force a micro-sized object instead of using a sensor force. The force regulation mechanism is designed using the planar springs. The gripper is expected to obtain a large range of displacement to handle various sized objects. First of all, the statics and dynamics of the gripper are investigated by using the finite element analysis in ANSYS software. And then, the design parameters of the gripper are optimized via Taguchi method. An orthogonal array L9 is used to establish an experimental matrix. Subsequently, the signal to noise ratio is analyzed to find the optimal solution. Finally, the response surface methodology is employed to model the relationship between the design parameters and the output displacement of the gripper. The design of experiment method is then used to analyze the sensitivity so as to determine the effect of each parameter on the displacement. The results showed that the compliant gripper can move with a large displacement of 213.51 mm and the force regulation mechanism is expected to be used for high precision positioning systems.
Keywords: Flexure hinge, compliant mechanism, compliant gripper, force regulation mechanism, Taguchi method, response surface methodology, design of experiment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16142233 Combination of Standard Secondary Raw Materials and New Production Waste Materials in Green Concrete Technology
Authors: M. Tazky, R. Hela, P. Novosad, L. Osuska
Abstract:
This paper deals with the possibility of safe incorporation fluidised bed combustion fly ash (waste material) into cement matrix together with next commonly used secondary raw material, which is high-temperature fly ash. Both of these materials have a very high pozzolanic ability, and the right combination could bring important improvements in both the physico-mechanical properties and the better durability of a cement composite. This paper tries to determine the correct methodology for designing green concrete by using modern methods measuring rheology of fresh concrete and following hydration processes. The use of fluidised bed combustion fly ash in cement composite production as an admixture is not currently common, but there are some real possibilities for its potential. The most striking negative aspect is its chemical composition which supports the development of new product formation, influencing the durability of the composite. Another disadvantage is the morphology of grains, which have a negative effect on consistency. This raises the question of how this waste can be used in concrete production to emphasize its positive properties and eliminate negatives. The focal point of the experiment carried out on cement pastes was particularly on the progress of hydration processes, aiming for the possible acceleration of pozzolanic reactions of both types of fly ash.
Keywords: High-temperature fly ash, fluidised bed combustion fly ash, pozzolanic, CaO (calcium oxide), rheology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7872232 Mechanical Properties of Ordinary Portland Cement Modified Cold Bitumen Emulsion Mixture
Authors: Hayder Kamil Shanbara, Felicite Ruddock, William Atherton, Nassier A. Nassir
Abstract:
Cold bitumen emulsion mixture (CBEM) offers a series benefits as compared with hot mix asphalt (HMA); these include environmental factors, energy saving, the resolution of logistical challenges that can characterise hot mix, and the potential to reserve funds. However, this mixture has some problems similar to any bituminous mixtures as it has low early strength, long curing time that needed to obtain the maximum performance, high air voids and considered inferior to HMA. Thus, CBEM has been used in limited applications such as lightly trafficked roads, footways and reinstatements. This laboratory study describes the development of CBEM using ordinary Portland cement (OPC) instead of the traditional mineral filler. Stiffness modulus, moisture damage and temperature sensitivity tests were used to evaluate the mechanical properties of the produced mixtures. The study concluded that there is a substantial improvement in the mechanical properties and moisture damage resistance of CBEMs containing OPC. Also, the produced cement modified CBEM shows a considerable lower thermal sensitivity than the conventional CBEM.
Keywords: Cold bitumen emulsion mixture, moisture damage, OPC, stiffness modulus, temperature sensitivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11112231 Separation of Polyphenolics and Sugar by Ultrafiltration: Effects of Operating Conditions on Fouling and Diafiltration
Authors: Diqiao S. Wei, M. Hossain, Zaid S. Saleh
Abstract:
Polyphenolics and sugar are the components of many fruit juices. In this work, the performance of ultra-filtration (UF) for separating phenolic compounds from apple juice was studied by performing batch experiments in a membrane module with an area of 0.1 m2 and fitted with a regenerated cellulose membrane of 1 kDa MWCO. The effects of various operating conditions: transmembrane pressure (3, 4, 5 bar), temperature (30, 35, 40 ºC), pH (2, 3, 4, 5), feed concentration (3, 5, 7, 10, 15 ºBrix for apple juice) and feed flow rate (1, 1.5, 1.8 L/min) on the performance were determined. The optimum operating conditions were: transmembrane pressure 4 bar, temperature 30 ºC, feed flow rate 1 – 1.8 L/min, pH 3 and 10 Brix (apple juice). After performing ultrafiltration under these conditions, the concentration of polyphenolics in retentate was increased by a factor of up to 2.7 with up to 70% recovered in the permeate and with approx. 20% of the sugar in that stream.. Application of diafiltration (addition of water to the concentrate) can regain the flux by a factor of 1.5, which has been decreased due to fouling. The material balance performed on the process has shown the amount of deposits on the membrane and the extent of fouling in the system. In conclusion, ultrafiltration has been demonstrated as a potential technology to separate the polyphenolics and sugars from their mixtures and can be applied to remove sugars from fruit juice.Keywords: Fouling, membrane, polyphenols, ultrafiltration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33872230 Geology, Geomorphology and Genesis of Andarokh Karstic Cave, North-East Iran
Authors: Mojtaba Heydarizad
Abstract:
Andarokh basin is one of the main karstic regions in Khorasan Razavi province NE Iran. This basin is part of Kopeh-Dagh mega zone extending from Caspian Sea in the east to northern Afghanistan in the west. This basin is covered by Mozdooran Formation, Ngr evaporative formation and quaternary alluvium deposits in descending order of age. Mozdooran carbonate formation is notably karstified. The main surface karstic features in Mozdooran formation are Groove karren, Cleft karren, Rain pit, Rill karren, Tritt karren, Kamintza, Domes, and Table karren. In addition to surface features, deep karstic feature Andarokh Cave also exists in the region. Studying Ca, Mg, Mn, Sr, Fe concentration and Sr/Mn ratio in Mozdooran formation samples with distance to main faults and joints system using PCA analyses demonstrates intense meteoric digenesis role in controlling carbonate rock geochemistry. The karst evaluation in Andarokh basin varies from early stages 'deep seated karst' in Mesozoic to mature karstic system 'Exhumed karst' in quaternary period. Andarokh cave (the main cave in Andarokh basin) is rudimentary branch work consists of three passages of A, B and C and two entrances Andarokh and Sky.
Keywords: Andarokh basin, Andarokh cave, geochemical analyses and karst evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8312229 The Effect of Electric Field Distributions on Grains and Insect for Dielectric Heating Applications
Authors: S. Santalunai, T. Thosdeekoraphat, C. Thongsopa
Abstract:
This paper presents the effect of electric field distribution which is an electric field intensity analysis. Consideration of the dielectric heating of grains and insects, the rice and rice weevils are utilized for dielectric heating analysis. Furthermore, this analysis compares the effect of electric field distribution in rice and rice weevil. In this simulation, two copper plates are used to generate the electric field for dielectric heating system and put the rice materials between the copper plates. The simulation is classified in two cases, which are case I one rice weevil is placed in the rice and case II two rice weevils are placed at different position in the rice. Moreover, the probes are located in various different positions on plate. The power feeding on this plate is optimized by using CST EM studio program of 1000 watt electrical power at 39 MHz resonance frequency. The results of two cases are indicated that the most electric field distribution and intensity are occurred on the rice and rice weevils at the near point of the probes. Moreover, the heat is directed to the rice weevils more than the rice. When the temperature of rice and rice weevils are calculated and compared, the rice weevils has the temperature more than rice is about 41.62 Celsius degrees. These results can be applied for the dielectric heating applications to eliminate insect.
Keywords: Copper plates, Electric field distribution, Dielectric heating.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23412228 On the Fixed Rainfall Intensity: Effects on Overland Flow Resistance, Shear Velocity and on Soil Erosion
Authors: L. Mouzai, M. Bouhadef
Abstract:
Raindrops and overland flow both are erosive parameters but they do not act by the same way. The overland flow alone tends to shear the soil horizontally and concentrates into rills. In the presence of rain, the soil particles are removed from the soil surface in the form of a uniform sheet layer. In addition to this, raindrops falling on the flow roughen the water and soil surface depending on the flow depth, and retard the velocity, therefore influence shear velocity and Manning’s factor. To investigate this part, agricultural sandy soil, rainfall simulator and a laboratory soil tray of 0.2x1x3 m were the base of this work. Five overland flow depths of 0; 3.28; 4.28; 5.16; 5.60; 5.80 mm were generated under a rainfall intensity of 217.2 mm/h. Sediment concentration control is based on the proportionality of depth/microtopography. The soil loose is directly related to the presence of rain splash on thin sheet flow. The effect of shear velocity on sediment concentration is limited by the value of 5.28 cm/s. In addition to this, the rain splash reduces the soil roughness by breaking the soil crests. The rainfall intensity is the major factor influencing depth and soil erosion. In the presence of rainfall, the shear velocity of the flow is due to two simultaneous effects. The first, which is horizontal, comes from the flow and the second, vertical, is due to the raindrops.
Keywords: Flow resistance, laboratory experiments, rainfall simulator, sediment concentration, shear velocity, soil erosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6212227 Effect of Endplate Shape on Performance and Stability of Wings-in Ground (WIG) Craft
Authors: Kyoungwoo Park, Chol Ho Hong, Kwang Soo Kim, Juhee Lee
Abstract:
Numerical analysis for the aerodynamic characteristics of the WIG (wing-in ground effect) craft with highly cambered and aspect ratio of one is performed to predict the ground effect for the case of with- and without- lower-extension endplate. The analysis is included varying angles of attack from 0 to10 deg. and ground clearances from 5% of chord to 50%. Due to the ground effect, the lift by rising in pressure on the lower surface is increased and the influence of wing-tip vortices is decreased. These two significant effects improve the lift-drag ratio. On the other hand, the endplate prevents the high-pressure air escaping from the air cushion at the wing tip and causes to increase the lift and lift-drag ratio further. It is found from the visualization of computation results that two wing-tip vortices are generated from each surface of the wing tip and their strength are weak and diminished rapidly. Irodov-s criteria are also evaluated to investigate the static height stability. The comparison of Irodov-s criteria shows that the endplate improves the deviation of the static height stability with respect to pitch angles and heights. As the results, the endplate can improve the aerodynamic characteristics and static height stability of wings in ground effect, simultaneously.Keywords: WIG craft, Endplate, Ground Effect, Aerodynamics, CFD, Lift-drag ratio, Static height stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30062226 Application of Stabilized Polyaniline Microparticles for Better Protective Ability of Zinc Coatings
Authors: N. Boshkova, K. Kamburova, N. Tabakova, N. Boshkov, Ts. Radeva
Abstract:
Coatings based on polyaniline (PANI) can improve the resistance of steel against corrosion. In this work, the preparation of stable suspensions of colloidal PANI-SiO2 particles, suitable for obtaining of composite anticorrosive coating on steel, is described. Electrokinetic data as a function of pH are presented, showing that the zeta potentials of the PANI-SiO2 particles are governed primarily by the charged groups at the silica oxide surface. Electrosteric stabilization of the PANI-SiO2 particles’ suspension against aggregation is realized at pH>5.5 (EB form of PANI) by adsorption of positively charged polyelectrolyte molecules onto negatively charged PANI-SiO2 particles. The PANI-SiO2 particles are incorporated by electrodeposition into the metal matrix of zinc in order to obtain composite (hybrid) coatings. The latter are aimed to ensure sacrificial protection of steel mainly in aggressive media leading to local corrosion damages. The surface morphology of the composite zinc coatings is investigated with SEM. The influence of PANI-SiO2 particles on the cathodic and anodic processes occurring in the starting electrolyte for obtaining of the coatings is followed with cyclic voltammetry. The electrochemical and corrosion behavior is evaluated with potentiodynamic polarization curves and polarization resistance measurements. The beneficial effect of the stabilized PANI-SiO2 particles for the increased protective ability of the composites is commented and discussed.
Keywords: Corrosion, polyaniline particles, zinc, protective ability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8092225 Behavior of Droplets in Microfluidic System with T-Junction
Authors: A. Guellati, F-M Lounis, N. Guemras, K. Daoud
Abstract:
Micro droplet formation is considered as a growing emerging area of research due to its wide-range application in chemistry as well as biology. The mechanism of micro droplet formation using two immiscible liquids running through a T-junction has been widely studied. We believe that the flow of these two immiscible phases can be of greater important factor that could have an impact on out-flow hydrodynamic behavior, the droplets generated and the size of the droplets. In this study, the type of the capillary tubes used also represents another important factor that can have an impact on the generation of micro droplets. The tygon capillary tubing with hydrophilic inner surface doesn't allow regular out-flows due to the fact that the continuous phase doesn't adhere to the wall of the capillary inner surface. Teflon capillary tubing, presents better wettability than tygon tubing, and allows to obtain steady and regular regimes of out-flow, and the micro droplets are homogeneoussize. The size of the droplets is directly dependent on the flows of the continuous and dispersed phases. Thus, as increasing the flow of the continuous phase, to flow of the dispersed phase stationary, the size of the drops decreases. Inversely, while increasing the flow of the dispersed phase, to flow of the continuous phase stationary, the size of the droplet increases.
Keywords: Microfluidic system, micro droplets generation, T-junction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16192224 Solubility of Water in CO2 Mixtures at Pipeline Operation Conditions
Authors: Mohammad Ahmad, Sander Gersen, Erwin Wilbers
Abstract:
Carbon capture, transport and underground storage have become a major solution to reduce CO2 emissions from power plants and other large CO2 sources. A big part of this captured CO2 stream is transported at high pressure dense phase conditions and stored in offshore underground depleted oil and gas fields. CO2 is also transported in offshore pipelines to be used for enhanced oil and gas recovery. The captured CO2 stream with impurities may contain water that causes severe corrosion problems, flow assurance failure and might damage valves and instrumentations. Thus, free water formation should be strictly prevented. The purpose of this work is to study the solubility of water in pure CO2 and in CO2 mixtures under real pipeline pressure (90-150 bar) and temperature operation conditions (5-35°C). A set up was constructed to generate experimental data. The results show the solubility of water in CO2 mixtures increasing with the increase of the temperature or/and with the increase in pressure. A drop in water solubility in CO2 is observed in the presence of impurities. The data generated were then used to assess the capabilities of two mixture models: the GERG-2008 model and the EOS-CG model. By generating the solubility data, this study contributes to determine the maximum allowable water content in CO2 pipelines.
Keywords: Carbon capture and storage, water solubility, equation of states.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2914