Search results for: Mathematical Working Spaces
118 Conceptual Synthesis of Multi-Source Renewable Energy Based Microgrid
Authors: Bakari M. M. Mwinyiwiwa, Mighanda J. Manyahi, Nicodemu Gregory, Alex L. Kyaruzi
Abstract:
Microgrids are increasingly being considered to provide electricity for the expanding energy demand in the grid distribution network and grid isolated areas. However, the technical challenges associated with the operation and controls are immense. Management of dynamic power balances, power flow, and network voltage profiles imposes unique challenges in the context of microgrids. Stability of the microgrid during both grid-connected and islanded mode is considered as the major challenge during its operation. Traditional control methods have been employed are based on the assumption of linear loads. For instance the concept of PQ, voltage and frequency control through decoupled PQ are some of very useful when considering linear loads, but they fall short when considering nonlinear loads. The deficiency of traditional control methods of microgrid suggests that more research in the control of microgrids should be done. This research aims at introducing the dq technique concept into decoupled PQ for dynamic load demand control in inverter interfaced DG system operating as isolated LV microgrid. Decoupled PQ in exact mathematical formulation in dq frame is expected to accommodate all variations of the line parameters (resistance and inductance) and to relinquish forced relationship between the DG variables such as power, voltage and frequency in LV microgrids and allow for individual parameter control (frequency and line voltages). This concept is expected to address and achieve accurate control, improve microgrid stability and power quality at all load conditions.
Keywords: Decoupled PQ, microgrid, multisource, renewable energy, dq control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539117 A Nutritional Wellness Program for Overweight Health Care Providers in Hospital Setting: A Randomized Controlled Trial Pilot Study
Authors: Kim H. K. Choy, Oliva H. K. Chu, W. Y. Keung, B. Lim, Winnie P. Y. Tang
Abstract:
Background: The prevalence of workplace obesity is rising worldwide; therefore, the workplace is an ideal venue to implement weight control intervention. This pilot randomized controlled trial aimed to develop, implement, and evaluate a nutritional wellness program for obese health care providers working in a hospital. Methods: This hospital-based nutritional wellness program was an 8-week pilot randomized controlled trial for obese health care providers. The primary outcomes were body weight and body mass index (BMI). The secondary outcomes were serum fasting glucose, fasting cholesterol, triglyceride, high-density (HDL) and low-density (LDL) lipoprotein, body fat percentage, and body mass. Participants were randomly assigned to the intervention (n = 20) or control (n = 22) group. Participants in both groups received individual nutrition counselling and nutrition pamphlets, whereas only participants in the intervention group were given mobile phone text messages. Results: 42 participants completed the study. In comparison with the control group, the intervention group showed approximately 0.98 kg weight reduction after two months. Participants in intervention group also demonstrated clinically significant improvement in BMI, serum cholesterol level, and HDL level. There was no improvement of body fat percentage and body mass for both intervention and control groups. Conclusion: The nutritional wellness program for obese health care providers was feasible in hospital settings. Health care providers demonstrated short-term weight loss, decrease in serum fasting cholesterol level, and HDL level after completing the program.Keywords: Health care provider, hospital, weight management, weight control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1172116 Attitude and Knowledge of Primary Health Care Physicians and Local Inhabitants about Leishmaniasis and Sandfly in West Alexandria
Authors: Randa M. Ali, Naguiba F. Loutfy, Osama M. Awad
Abstract:
Leishmaniasis is the collective name for a number of diseases caused by protozoan flagellates of the genus Leishmania, which is transmitted by Phlebotomine sandfly, the disease has diverse clinical manifestations and found in many areas of the world, particularly in Africa, Latin America, South and Central Asia, the Mediterranean basin and the Middle East. This study was done to assess primary health care physicians’ knowledge (PHP) and attitude about leishmaniasis and to assess awareness of local inhabitants about the disease and its vector in four areas in west Alexandria, Egypt. It is a cross sectional survey that was conducted in four PHC units in west Alexandria. All physicians currently working in these units during the study period were invited to participate in the study; only 20 PHP completed the questionnaire. 60 local inhabitants were selected randomly from the four areas of the study, 15 from each area; Data was collected through two different specially designed questionnaires. Results showed that 11 (55%) percent of the physicians had satisfactory knowledge; they answered more than 9 (60%) questions out of a total 14 questions about leishmaniasis and sandfly. On the other hand when attitude of the primary health care physicians about leishmaniasis was measured, results showed that 17 (85%) had good attitude and 3 (15%) had poor attitude. The second questionnaire showed that the awareness of local inhabitants about leishmaniasis and sandfly as a vector of the disease is poor and needs to be corrected. (90%) of the interviewed inhabitants had not heard about leishmaniasis, Only 3 (5%) of them said they know sandfly and its role in transmission of leishmaniasis. Thus we conclude that knowledge and attitudes of physicians are acceptable. However, there is, room for improvement and could be done through formal training courses and distribution of guidelines. In addition to raising the awareness of primary health care physicians about the importance of early detection and notification of cases of leishmaniasis, health education for raising awareness of the public regarding the vector and the disease is necessary because related studies have demonstrated that for inhabitants to take enough protective measures against the vector, they should perceive that it is responsible for causing a disease.Keywords: Attitude, knowledge, PHP, leishmaniasis, sandfly, local inhabitants, inside and outside housing conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1934115 Organizational De-Evolution; the Small Group or Single Actor Terrorist
Authors: Audrey Heffron, Casserleigh, Jarrett Broder, Brad Skillman
Abstract:
Traditionally, terror groups have been formed by ideologically aligned actors who perceive a lack of options for achieving political or social change. However, terrorist attacks have been increasingly carried out by small groups of actors or lone individuals who may be only ideologically affiliated with larger, formal terrorist organizations. The formation of these groups represents the inverse of traditional organizational growth, whereby structural de-evolution within issue-based organizations leads to the formation of small, independent terror cells. Ideological franchising – the bypassing of formal affiliation to the “parent" organization – represents the de-evolution of traditional concepts of organizational structure in favor of an organic, independent, and focused unit. Traditional definitions of dark networks that are issue-based include focus on an identified goal, commitment to achieving this goal through unrestrained actions, and selection of symbolic targets. The next step in the de-evolution of small dark networks is the miniorganization, consisting of only a handful of actors working toward a common, violent goal. Information-sharing through social media platforms, coupled with civil liberties of democratic nations, provide the communication systems, access to information, and freedom of movement necessary for small dark networks to flourish without the aid of a parent organization. As attacks such as the 7/7 bombings demonstrate the effectiveness of small dark networks, terrorist actors will feel increasingly comfortable aligning with an ideology only, without formally organizing. The natural result of this de-evolving organization is the single actor event, where an individual seems to subscribe to a larger organization-s violent ideology with little or no formal ties.
Keywords: Organizational de-evolution, single actor, small group, terrorism.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258114 Two-Dimensional Observation of Oil Displacement by Water in a Petroleum Reservoir through Numerical Simulation and Application to a Petroleum Reservoir
Authors: Ahmad Fahim Nasiry, Shigeo Honma
Abstract:
We examine two-dimensional oil displacement by water in a petroleum reservoir. The pore fluid is immiscible, and the porous media is homogenous and isotropic in the horizontal direction. Buckley-Leverett theory and a combination of Laplacian and Darcy’s law are used to study the fluid flow through porous media, and the Laplacian that defines the dispersion and diffusion of fluid in the sand using heavy oil is discussed. The reservoir is homogenous in the horizontal direction, as expressed by the partial differential equation. Two main factors which are observed are the water saturation and pressure distribution in the reservoir, and they are evaluated for predicting oil recovery in two dimensions by a physical and mathematical simulation model. We review the numerical simulation that solves difficult partial differential reservoir equations. Based on the numerical simulations, the saturation and pressure equations are calculated by the iterative alternating direction implicit method and the iterative alternating direction explicit method, respectively, according to the finite difference assumption. However, to understand the displacement of oil by water and the amount of water dispersion in the reservoir better, an interpolated contour line of the water distribution of the five-spot pattern, that provides an approximate solution which agrees well with the experimental results, is also presented. Finally, a computer program is developed to calculate the equation for pressure and water saturation and to draw the pressure contour line and water distribution contour line for the reservoir.Keywords: Numerical simulation, immiscible, finite difference, IADI, IADE, waterflooding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1088113 The Prevalence of Organized Retail Crime in Riyadh, Saudi Arabia
Authors: Saleh Dabil
Abstract:
This study investigates the level of existence of organized retail crime in supermarkets of Riyadh, Saudi Arabia. The store managers, security managers and general employees were asked about the types of retail crimes occur in the stores. Three independent variables were related to the report of organized retail theft. The independent variables are: 1) the supermarket profile (volume, location, standard and type of the store), 2) the social physical environment of the store (maintenance, cleanness and overall organizational cooperation), 3) the security techniques and loss prevention electronics techniques used. The theoretical framework of this study based on the social disorganization theory. This study concluded that the organized retail theft, in specific, organized theft is moderately apparent in Riyadh stores. The general result showed that the environment of the stores has an effect on the prevalence of organized retail theft with relation to the gender of thieves, age groups, working shift, type of stolen items as well as the number of thieves in one case. Among other reasons, some factors of the organized theft are: economic pressure of customers based on the location of the store. The dealing of theft also was investigated to have a clear picture of stores dealing with organized retail theft. The result showed that mostly, thieves sent without any action and sometimes given written warning. Very few cases dealt with by police. There are other factors in the study can be looked up in the text. This study suggests solving the problem of organized theft; first, is "the well distributing of the duties and responsibilities between the employees especially for security purposes". Second "Installation of strong security system" and "Making well-designed store layout". Third is "giving training for general employees" and "to give periodically security skills training of employees". There are other suggestions in the study can be looked up in the text.
Keywords: Organized Crime, Retail, Theft, Loss prevention, Store environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334112 Simulation of Dynamic Behavior of Seismic Isolators Using a Parallel Elasto-Plastic Model
Authors: Nicolò Vaiana, Giorgio Serino
Abstract:
In this paper, a one-dimensional (1d) Parallel Elasto- Plastic Model (PEPM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement, is presented. The parallel modeling concept is applied to discretize the continuously decreasing tangent stiffness function, thus allowing to simulate the dynamic behavior of seismic isolation bearings by putting linear elastic and nonlinear elastic-perfectly plastic elements in parallel. The mathematical model has been validated by comparing the experimental force-displacement hysteresis loops, obtained testing a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted numerically. Good agreement between the simulated and experimental results shows that the proposed model can be an effective numerical tool to predict the forcedisplacement relationship of seismic isolators within relatively large displacements. Compared to the widely used Bouc-Wen model, the proposed one allows to avoid the numerical solution of a first order ordinary nonlinear differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort, and requires the evaluation of only three model parameters from experimental tests, namely the initial tangent stiffness, the asymptotic tangent stiffness, and a parameter defining the transition from the initial to the asymptotic tangent stiffness.Keywords: Base isolation, earthquake engineering, parallel elasto-plastic model, seismic isolators, softening hysteresis loops.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1041111 Volunteers’ Preparedness for Natural Disasters and EVANDE Project
Authors: A. Kourou, A. Ioakeimidou, E. Bafa, C. Fassoulas, M. Panoutsopoulou
Abstract:
The role of volunteers in disaster management is of decisive importance and the need of their involvement is well recognized, both for prevention measures and for disaster management. During major catastrophes, whereas professional personnel are outsourced, the role of volunteers is crucial. In Greece experience has shown that various groups operating in the civil protection mechanism like local administration staff or volunteers, in many cases do not have the necessary knowledge and information on best practices to act against natural disasters. One of the major problems is the lack of volunteers’ education and training. In the above given framework, this paper presents the results of a survey aimed to identify the level of education and preparedness of civil protection volunteers in Greece. Furthermore, the implementation of earthquake protection measures at individual, family and working level, are explored. More specifically, the survey questionnaire investigates issues regarding pre-earthquake protection actions, appropriate attitudes and behaviors during an earthquake and existence of contingency plans in the workplace. The questionnaires were administered to citizens from different regions of the country and who attend the civil protection training program: “Protect Myself and Others”. A closed-form questionnaire was developed for the survey, which contained questions regarding the following: a) knowledge of self-protective actions; b) existence of emergency planning at home; c) existence of emergency planning at workplace (hazard mitigation actions, evacuation plan, and performance of drills); and, d) respondents` perception about their level of earthquake preparedness. The results revealed a serious lack of knowledge and preparedness among respondents. Taking into consideration the aforementioned gap and in order to raise awareness and improve preparedness and effective response of volunteers acting in civil protection, the EVANDE project was submitted and approved by the European Commission (EC). The aim of that project is to educate and train civil protection volunteers on the most serious natural disasters, such as forest fires, floods, and earthquakes, and thus, increase their performance.
Keywords: Civil protection, earthquake preparedness, volunteers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1214110 An Intelligent Combined Method Based on Power Spectral Density, Decision Trees and Fuzzy Logic for Hydraulic Pumps Fault Diagnosis
Authors: Kaveh Mollazade, Hojat Ahmadi, Mahmoud Omid, Reza Alimardani
Abstract:
Recently, the issue of machine condition monitoring and fault diagnosis as a part of maintenance system became global due to the potential advantages to be gained from reduced maintenance costs, improved productivity and increased machine availability. The aim of this work is to investigate the effectiveness of a new fault diagnosis method based on power spectral density (PSD) of vibration signals in combination with decision trees and fuzzy inference system (FIS). To this end, a series of studies was conducted on an external gear hydraulic pump. After a test under normal condition, a number of different machine defect conditions were introduced for three working levels of pump speed (1000, 1500, and 2000 rpm), corresponding to (i) Journal-bearing with inner face wear (BIFW), (ii) Gear with tooth face wear (GTFW), and (iii) Journal-bearing with inner face wear plus Gear with tooth face wear (B&GW). The features of PSD values of vibration signal were extracted using descriptive statistical parameters. J48 algorithm is used as a feature selection procedure to select pertinent features from data set. The output of J48 algorithm was employed to produce the crisp if-then rule and membership function sets. The structure of FIS classifier was then defined based on the crisp sets. In order to evaluate the proposed PSD-J48-FIS model, the data sets obtained from vibration signals of the pump were used. Results showed that the total classification accuracy for 1000, 1500, and 2000 rpm conditions were 96.42%, 100%, and 96.42% respectively. The results indicate that the combined PSD-J48-FIS model has the potential for fault diagnosis of hydraulic pumps.Keywords: Power Spectral Density, Machine ConditionMonitoring, Hydraulic Pump, Fuzzy Logic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2711109 Mordechai Vanunu: “The Atomic Spy” as a Nuclear Threat to Discourse in Israeli Society
Authors: Ada Yurman
Abstract:
Using the case of Israeli Atomic Spy Mordechai Vanunu as an example, this study sought to examine social response to political deviance whereby social response can be mobilized in order to achieve social control. Mordechai Vanunu, a junior technician in the Dimona Atomic Research Center, played a normative role in the militaristic discourse while working in the “holy shrine” of the Israeli defense system for many years. At a certain stage, however, Vanunu decided to detach himself from this collective and launched an assault on this top-secret circle. Israeli society in general and the security establishment in particular found this attack intolerable and unforgivable. They presented Vanunu as a ticking time bomb, delegitimized him and portrayed him as “other”. In addition, Israeli enforcement authorities imposed myriad prohibitions and sanctions on Vanunu even after his release from prison – “as will be done to he who desecrates holiness.” Social response to Vanunu at the time of his capture and trial was studied by conducting a content analysis of six contemporary daily newspapers. The analysis focused on use of language and forms of expression. In contrast with traditional content analysis methodology, this study did not just look at frequency of expressions of ideas and terms in the text and covert content; rather, the text was analyzed as a structural whole, and included examination of style, tone and unusual use of imagery, and more, in order to uncover hidden messages within the text. The social response to this case was extraordinarily intense, not only because in this case of political deviance, involving espionage and treason, Vanunu’s actions comprised a real potential threat to the country, but also because of the threat his behavior posed to the symbolic universe of society. Therefore, the response to this instance of political deviance can be seen as being part of a mechanism of social control aiming to protect world view of society as a whole, as well as to punish the criminal.
Keywords: Militarism, political deviance, social construction, social control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 689108 Failure Analysis of Pipe System at a Hydroelectric Power Plant
Authors: Ali Göksenli, Barlas Eryürek
Abstract:
In this study, failure analysis of pipe system at a micro hydroelectric power plant is investigated. Failure occurred at the pipe system in the powerhouse during shut down operation of the water flow by a valve. This locking had caused a sudden shock wave, also called “Water-hammer effect”, resulting in noise and inside pressure increase. After visual investigation of the effect of the shock wave on the system, a circumference crack was observed at the pipe flange weld region. To establish the reason for crack formation, calculations of pressure and stress values at pipe, flange and welding seams were carried out and concluded that safety factor was high (2.2), indicating that no faulty design existed. By further analysis, pipe system and hydroelectric power plant was examined. After observations it is determined that the plant did not include a ventilation nozzle (air trap), that prevents the system of sudden pressure increase inside the pipes which is caused by water-hammer effect. Analyses were carried out to identify the influence of water-hammer effect on inside pressure increase and it was concluded that, according Jowkowsky’s equation, shut down time is effective on inside pressure increase. The valve closing time was uncertain but by a shut down time of even one minute, inside pressure would increase by 7.6 bar (working pressure was 34.6 bar). Detailed investigations were also carried out on the assembly of the pipe-flange system by considering technical drawings. It was concluded that the pipe-flange system was not installed according to the instructions. Two of five weld seams were not applied and one weld was carried out faulty. This incorrect and inadequate weld seams resulted in; insufficient connection of the pipe to the flange constituting a strong notch effect at weld seam regions, increase in stress values and the decrease of strength and safety factor.Keywords: Failure analysis, hydroelectric plant, water-hammer, crack, welding seam.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2736107 Influence of Thermo-fluid-dynamic Parameters on Fluidics in an Expanding Thermal Plasma Deposition Chamber
Authors: G. Zuppardi, F. Romano
Abstract:
Technology of thin film deposition is of interest in many engineering fields, from electronic manufacturing to corrosion protective coating. A typical deposition process, like that developed at the University of Eindhoven, considers the deposition of a thin, amorphous film of C:H or of Si:H on the substrate, using the Expanding Thermal arc Plasma technique. In this paper a computing procedure is proposed to simulate the flow field in a deposition chamber similar to that at the University of Eindhoven and a sensitivity analysis is carried out in terms of: precursor mass flow rate, electrical power, supplied to the torch and fluid-dynamic characteristics of the plasma jet, using different nozzles. To this purpose a deposition chamber similar in shape, dimensions and operating parameters to the above mentioned chamber is considered. Furthermore, a method is proposed for a very preliminary evaluation of the film thickness distribution on the substrate. The computing procedure relies on two codes working in tandem; the output from the first code is the input to the second one. The first code simulates the flow field in the torch, where Argon is ionized according to the Saha-s equation, and in the nozzle. The second code simulates the flow field in the chamber. Due to high rarefaction level, this is a (commercial) Direct Simulation Monte Carlo code. Gas is a mixture of 21 chemical species and 24 chemical reactions from Argon plasma and Acetylene are implemented in both codes. The effects of the above mentioned operating parameters are evaluated and discussed by 2-D maps and profiles of some important thermo-fluid-dynamic parameters, as per Mach number, velocity and temperature. Intensity, position and extension of the shock wave are evaluated and the influence of the above mentioned test conditions on the film thickness and uniformity of distribution are also evaluated.Keywords: Deposition chamber, Direct Simulation Mote Carlo method (DSMC), Plasma chemistry, Rarefied gas dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697106 Very Large Scale Integration Architecture of Finite Impulse Response Filter Implementation Using Retiming Technique
Authors: S. Jalaja, A. M. Vijaya Prakash
Abstract:
Recursive combination of an algorithm based on Karatsuba multiplication is exploited to design a generalized transpose and parallel Finite Impulse Response (FIR) Filter. Mid-range Karatsuba multiplication and Carry Save adder based on Karatsuba multiplication reduce time complexity for higher order multiplication implemented up to n-bit. As a result, we design modified N-tap Transpose and Parallel Symmetric FIR Filter Structure using Karatsuba algorithm. The mathematical formulation of the FFA Filter is derived. The proposed architecture involves significantly less area delay product (APD) then the existing block implementation. By adopting retiming technique, hardware cost is reduced further. The filter architecture is designed by using 90 nm technology library and is implemented by using cadence EDA Tool. The synthesized result shows better performance for different word length and block size. The design achieves switching activity reduction and low power consumption by applying with and without retiming for different combination of the circuit. The proposed structure achieves more than a half of the power reduction by adopting with and without retiming techniques compared to the earlier design structure. As a proof of the concept for block size 16 and filter length 64 for CKA method, it achieves a 51% as well as 70% less power by applying retiming technique, and for CSA method it achieves a 57% as well as 77% less power by applying retiming technique compared to the previously proposed design.Keywords: Carry save adder Karatsuba multiplication, mid-range Karatsuba multiplication, modified FFA, transposed filter, retiming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910105 Measuring the Influence of Functional Proximity on Environmental Urban Performance via Integrated Modification Methodology: Four Study Cases in Milan
Authors: M. Tadi, M. Hadi Mohammad Zadeh, Ozge Ogut
Abstract:
Although how cities’ forms are structured is studied, more efforts are needed on systemic comprehensions and evaluations of the urban morphology through quantitative metrics that are able to describe the performance of a city in relation to its formal properties. More research is required in this direction in order to better describe the urban form characteristics and their impact on the environmental performance of cities and to increase their sustainability stewardship. With the aim of developing a better understanding of the built environment’s systemic structure, the intention of this paper is to present a holistic methodology for studying the behavior of the built environment and investigate the methods for measuring the effect of urban structure to the environmental performance. This goal will be pursued through an inquiry into the morphological components of the urban systems and the complex relationships between them. Particularly, this paper focuses on proximity, referring to the proximity of different land-uses, is a concept with which Integrated Modification Methodology (IMM) explains how land-use allocation might affect the choice of mobility in neighborhoods, and especially, encourage or discourage non-motived mobility. This paper uses proximity to demonstrate that the structure attributes can quantifiably relate to the performing behavior in the city. The target is to devise a mathematical pattern from the structural elements and correlate it directly with urban performance indicators concerned with environmental sustainability. The paper presents some results of this rigorous investigation of urban proximity and its correlation with performance indicators in four different areas in the city of Milan, each of them characterized by different morphological features.
Keywords: Built environment, ecology, sustainable indicators, sustainability, urban morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 629104 A Case Study on Vocational Teachers’ Perceptions on Their Linguistically and Culturally Responsive Teaching
Authors: Kirsi Korkealehto
Abstract:
In Finland the transformation from homogenous culture into multicultural one as a result of heavy immigration has been rapid in the recent decades. As multilingualism and multiculturalism are growing features in our society, teachers in all educational levels need to be competent for encounters with students from diverse cultural backgrounds. Consequently, also the number of multicultural and multilingual vocational school students has increased which has not been taken into consideration in teacher education enough. To bridge this gap between teachers’ competences and the requirements of the contemporary school world, Finnish Ministry of Culture and Education established the DivEd-project. The aim of the project is to prepare all teachers to work in the linguistically and culturally diverse world they live in, to develop and increase culturally sustaining and linguistically responsive pedagogy in Finland, increase awareness among Teacher Educators working with preservice teachers and to increase awareness and provide specific strategies to in-service teachers. The partners in the nationwide project are 6 universities and 2 universities of applied sciences. In this research, the linguistically and culturally sustainable teaching practices developed within the DivEd-project are tested in practice. This research aims to explore vocational teachers’ perceptions of these multilingualism and multilingual educational practices. The participants of this study are vocational teachers in of different fields. The data were collected by individual, face-to-face interviews. The data analysis was conducted through content analysis. The findings indicate that the vocational teachers experience that they lack knowledge on linguistically and culturally responsive pedagogy. Moreover, they regard themselves in some extent incompetent in incorporating multilingually and multiculturally sustainable pedagogy in everyday teaching work. Therefore, they feel they need more training pertaining multicultural and multilingual knowledge, competences and suitable pedagogical methods for teaching students from diverse linguistic and cultural backgrounds.Keywords: Multicultural, multilingual, teacher competences, vocational school.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 510103 Engineering Education for Sustainable Development in China: Perceptions Bias between Experienced Engineers and Engineering Students
Authors: Liang Wang, Wei Zhang
Abstract:
Nowadays sustainable development has increasingly become an important research topic of engineering education all over the world. Engineering Education for Sustainable Development (EESD) highlighted the importance of addressing sustainable development in engineering practice. However, whether and how the professional engineering learning and experience affect those perceptions is an interesting research topic especially in Chinese context. Our study fills this gap by investigating perceptions bias of EESD among first-grade engineering students, fourth-grade engineering students and experienced engineers using a triple-dimensional model. Our goal is to find the effect of engineering learning and experience on sustainable development and make these learning and experiences more accessible for students and engineers in school and workplace context. The data (n = 138) came from a Likert questionnaire based on the triple-dimensional model of EESD adopted from literature reviews and the data contain 48 first-grade students, 56 fourth-grade students and 34 engineers with rich working experience from Environmental Engineering, Energy Engineering, Chemical Engineering and Civil Engineering in or graduated from Zhejiang University, China. One-way ANOVA analysis was used to find the difference in different dimensions among the three groups. The statistical results show that both engineering students and engineers have a well understanding of sustainable development in ecology dimension of EESD while there are significant differences among three groups as to the socio-economy and value rationality dimensions of EESD. The findings provide empirical evidence that both engineering learning and professional engineering experience are helpful to cultivate the cognition and perception of sustainable development in engineering education. The results of this work indicate that more practical content should be added to students’ engineering education while more theoretical content should be added to engineers’ training in order to promote the engineering students’ and engineers’ perceptions of sustainable development. In addition, as to the design of engineering courses and professional practice system for sustainable development, we should not only pay attention to the ecological aspects, but also emphasize the coordination of ecological, socio-economic and human-centered sustainable development (e.g., engineer's ethical responsibility).
Keywords: Engineering education, sustainable development, experienced engineers, engineering students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 591102 Simultaneous Treatment and Catalytic Gasification of Olive Mill Wastewater under Supercritical Conditions
Authors: Ekin Kıpçak, Sinan Kutluay, Mesut Akgün
Abstract:
Recently, a growing interest has emerged on the development of new and efficient energy sources, due to the inevitable extinction of the nonrenewable energy reserves. One of these alternative sources which has a great potential and sustainability to meet up the energy demand is biomass energy. This significant energy source can be utilized with various energy conversion technologies, one of which is biomass gasification in supercritical water. Water, being the most important solvent in nature, has very important characteristics as a reaction solvent under supercritical circumstances. At temperatures above its critical point (374.8oC and 22.1 MPa), water becomes more acidic and its diffusivity increases. Working with water at high temperatures increases the thermal reaction rate, which in consequence leads to a better dissolving of the organic matters and a fast reaction with oxygen. Hence, supercritical water offers a control mechanism depending on solubility, excellent transport properties based on its high diffusion ability and new reaction possibilities for hydrolysis or oxidation. In this study the gasification of a real biomass, namely olive mill wastewater (OMW), in supercritical water is investigated with the use of Pt/Al2O3 and Ni/Al2O3 catalysts. OMW is a by-product obtained during olive oil production, which has a complex nature characterized by a high content of organic compounds and polyphenols. These properties impose OMW a significant pollution potential, but at the same time, the high content of organics makes OMW a desirable biomass candidate for energy production. All of the catalytic gasification experiments were made with five different reaction temperatures (400, 450, 500, 550 and 600°C), under a constant pressure of 25 MPa. For the experiments conducted with Ni/Al2O3 catalyst, the effect of five reaction times (30, 60, 90, 120 and 150 s) was investigated. However, procuring that similar gasification efficiencies could be obtained at shorter times, the experiments were made by using different reaction times (10, 15, 20, 25 and 30 s) for the case of Pt/Al2O3 catalyst. Through these experiments, the effects of temperature, time and catalyst type on the gasification yields and treatment efficiencies were investigated.Keywords: Catalyst, Gasification, Olive mill wastewater, Supercritical water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747101 Port Positions on the Mixing Efficiency of a Rotor-Type Mixer – A Numerical Study
Authors: Y. C. Liou, J. M. Miao, T. L. Liu, M. H. Ho
Abstract:
The purpose of this study was to explore the complex flow structure a novel active-type micromixer that based on concept of Wankle-type rotor. The characteristics of this micromixer are two folds; a rapid mixing of reagents in a limited space due to the generation of multiple vortices and a graduate increment in dynamic pressure as the mixed reagents is delivered to the output ports. Present micro-mixer is consisted of a rotor with shape of triangle column, a blending chamber and several inlet and outlet ports. The geometry of blending chamber is designed to make the rotor can be freely internal rotated with a constant eccentricity ratio. When the shape of the blending chamber and the rotor are fixed, the effects of rotating speed of rotor and the relative locations of ports on the mixing efficiency are numerical studied. The governing equations are unsteady, two-dimensional incompressible Navier-Stokes equation and the working fluid is the water. The species concentration equation is also solved to reveal the mass transfer process of reagents in various regions then to evaluate the mixing efficiency. The dynamic mesh technique was implemented to model the dynamic volume shrinkage and expansion of three individual sub-regions of blending chamber when the rotor conducted a complete rotating cycle. Six types of ports configuration on the mixing efficiency are considered in a range of Reynolds number from 10 to 300. The rapid mixing process was accomplished with the multiple vortex structures within a tiny space due to the equilibrium of shear force, viscous force and inertial force. Results showed that the highest mixing efficiency could be attained in the following conditions: two inlet and two outlet ports configuration, that is an included angle of 60 degrees between two inlets and an included angle of 120 degrees between inlet and outlet ports when Re=10.Keywords: active micro-mixer, CFD, mixing efficiency, ports configuration, Reynolds number, Wankle-type rotor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685100 DYVELOP Method Implementation for the Research Development in Small and Middle Enterprises
Authors: Jiří F. Urbánek, David Král
Abstract:
Small and Middle Enterprises (SME) have a specific mission, characteristics, and behavior in global business competitive environments. They must respect policy, rules, requirements and standards in all their inherent and outer processes of supply - customer chains and networks. Paper aims and purposes are to introduce computational assistance, which enables us the using of prevailing operation system MS Office (SmartArt...) for mathematical models, using DYVELOP (Dynamic Vector Logistics of Processes) method. It is providing for SMS´s global environment the capability and profit to achieve its commitment regarding the effectiveness of the quality management system in customer requirements meeting and also the continual improvement of the organization’s and SME´s processes overall performance and efficiency, as well as its societal security via continual planning improvement. DYVELOP model´s maps - the Blazons are able mathematically - graphically express the relationships among entities, actors, and processes, including the discovering and modeling of the cycling cases and their phases. The blazons need live PowerPoint presentation for better comprehension of this paper mission – added value analysis. The crisis management of SMEs is obliged to use the cycles for successful coping of crisis situations. Several times cycling of these cases is a necessary condition for the encompassment of the both the emergency event and the mitigation of organization´s damages. Uninterrupted and continuous cycling process is a good indicator and controlling actor of SME continuity and its sustainable development advanced possibilities.Keywords: Blazons, computational assistance, DYVELOP method, small and middle enterprises.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 70399 Analytical Solution for Compressible Gas Flow Inside a Two-Dimensional Poiseuille Flow in Microchannels with Constant Heat Flux Including the Creeping Effect
Authors: Amir Reza Ghahremani, Salman SafariMohsenabad, Mohammad Behshad Shafii
Abstract:
To achieve reliable solutions, today-s numerical and experimental activities need developing more accurate methods and utilizing expensive facilities, respectfully in microchannels. The analytical study can be considered as an alternative approach to alleviate the preceding difficulties. Among the analytical solutions, those with high robustness and low complexities are certainly more attractive. The perturbation theory has been used by many researchers to analyze microflows. In present work, a compressible microflow with constant heat flux boundary condition is analyzed. The flow is assumed to be fully developed and steady. The Mach and Reynolds numbers are also assumed to be very small. For this case, the creeping phenomenon may have some effect on the velocity profile. To achieve robustness solution it is assumed that the flow is quasi-isothermal. In this study, the creeping term which appears in the slip boundary condition is formulated by different mathematical formulas. The difference between this work and the previous ones is that the creeping term is taken into account and presented in non-dimensionalized form. The results obtained from perturbation theory are presented based on four non-dimensionalized parameters including the Reynolds, Mach, Prandtl and Brinkman numbers. The axial velocity, normal velocity and pressure profiles are obtained. Solutions for velocities and pressure for two cases with different Br numbers are compared with each other and the results show that the effect of creeping phenomenon on the velocity profile becomes more important when Br number is less than O(ε).Keywords: Creeping Effect, Microflow, Slip, Perturbation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 247098 Analyzing the Historical Ayazma Bath within the Scope of Integrated Preservation and Specifying the Criteria for Reuse
Authors: Meryem Elif Çelebi Yakartepe, Ayşe Betül Gökarslan
Abstract:
Today, preservation of the historical constructions in "single construction" scale creates an inadequate preservation model in terms of the integrity of the historical environment in which they are located. However, in order to preserve these structures forming this integrity with a holistic approach, the structures either need to continue their unique functions or to be reshaped for function conforming to today's comfort conditions brought by the modern life.
In this work, the preservation of Ayazma Social Complex located in Ayazma Neighborhood of Üsküdar, one of the most important historical districts of İstanbul, with integrated preservation method has been discussed. In the conventional Turkish architecture, the social complex is a structure complex formed via constructing the public buildings required for the daily life of the people living in a settlement. Thus, the preservation of the social complexes within the scope of "integrated preservation" has gained importance. Ayazma Social Complex that forms the examination area of this work consists of a mosque in its center and structures around this mosque such as sultan mansion, time assignment center, primary school, stores, bath and water reservoirs. Mosque, sultan mansion and the water reservoirs survived to today as mostly preserved status. However, time assignment center, primary school and the stores didn't survive to today and new structures were built on their plots. The bath was mostly damaged and only the wall residues survive to today. Thus, it's urgent and crucial especially carry out the preservation restoration of the bath in accordance with integrated preservation principles. The preservation problems of the bath based on the social complex were determined as a working method and preservation suggestions were made to overcome these problems and to include the bath into daily life. Furthermore, it was suggested that the bath should be reshaped for a different function in order to be preserved with the social complex.
Keywords: Üsküdar, Ayazma Complex, Ayazma Bath, Conservation, Restoration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182097 Generative Design of Acoustical Diffuser and Absorber Elements Using Large-Scale Additive Manufacturing
Authors: S. Aziz, B. Alexander, C. Gengnagel, S. Weinzierl
Abstract:
This paper explores a generative design, simulation, and optimization workflow for the integration of acoustical diffuser and/or absorber geometry with embedded coupled Helmholtz-resonators for full scale 3D printed building components. Large-scale additive manufacturing in conjunction with algorithmic CAD design tools enables a vast amount of control when creating geometry. This is advantageous regarding the increasing demands of comfort standards for indoor spaces and the use of more resourceful and sustainable construction methods and materials. The presented methodology highlights these new technological advancements and offers a multimodal and integrative design solution with the potential for an immediate application in the AEC-Industry. In principle, the methodology can be applied to a wide range of structural elements that can be manufactured by additive manufacturing processes. The current paper focuses on a case study of an application for a biaxial load-bearing beam grillage made of reinforced concrete, which allows for a variety of applications through the combination of additive prefabricated semi-finished parts and in-situ concrete supplementation. The semi-prefabricated parts or formwork bodies form the basic framework of the supporting structure and at the same time have acoustic absorption and diffusion properties that are precisely acoustically programmed for the space underneath the structure. To this end, a hybrid validation strategy is being explored using a digital and cross-platform simulation environment, verified with physical prototyping. The iterative workflow starts with the generation of a parametric design model for the acoustical geometry using the algorithmic visual scripting editor Grasshopper3D inside the Building Information Modeling (BIM) software Revit. Various geometric attributes (i.e., bottleneck and cavity dimensions) of the resonator are parameterized and fed to a numerical optimization algorithm which can modify the geometry with the goal of increasing absorption at resonance and increasing the bandwidth of the effective absorption range. Using Rhino.Inside and LiveLink for Revit the generative model was imported directly into the Multiphysics simulation environment COMSOL. The geometry was further modified and prepared for simulation in a semi-automated process. The incident and scattered pressure fields were simulated from which the surface normal absorption coefficients were calculated. This reciprocal process was repeated to further optimize the geometric parameters. Subsequently the numerical models were compared to a set of 3D concrete printed physical twin models which were tested in a .25 m x .25 m impedance tube. The empirical results served to improve the starting parameter settings of the initial numerical model. The geometry resulting from the numerical optimization was finally returned to grasshopper for further implementation in an interdisciplinary study.
Keywords: Acoustical design, additive manufacturing, computational design, multimodal optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60396 Fuzzy Optimization in Metabolic Systems
Authors: Feng-Sheng Wang, Wu-Hsiung Wu, Kai-Cheng Hsu
Abstract:
The optimization of biological systems, which is a branch of metabolic engineering, has generated a lot of industrial and academic interest for a long time. In the last decade, metabolic engineering approaches based on mathematical optimizations have been used extensively for the analysis and manipulation of metabolic networks. In practical optimization of metabolic reaction networks, designers have to manage the nature of uncertainty resulting from qualitative characters of metabolic reactions, e.g., the possibility of enzyme effects. A deterministic approach does not give an adequate representation for metabolic reaction networks with uncertain characters. Fuzzy optimization formulations can be applied to cope with this problem. A fuzzy multi-objective optimization problem can be introduced for finding the optimal engineering interventions on metabolic network systems considering the resilience phenomenon and cell viability constraints. The accuracy of optimization results depends heavily on the development of essential kinetic models of metabolic networks. Kinetic models can quantitatively capture the experimentally observed regulation data of metabolic systems and are often used to find the optimal manipulation of external inputs. To address the issues of optimizing the regulatory structure of metabolic networks, it is necessary to consider qualitative effects, e.g., the resilience phenomena and cell viability constraints. Combining the qualitative and quantitative descriptions for metabolic networks makes it possible to design a viable strain and accurately predict the maximum possible flux rates of desired products. Considering the resilience phenomena in metabolic networks can improve the predictions of gene intervention and maximum synthesis rates in metabolic engineering. Two case studies will present in the conference to illustrate the phenomena.
Keywords: Fuzzy multi-objective optimization problem, kinetic model, metabolic engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201895 Flat Miniature Heat Pipes for Electronics Cooling: State of the Art, Experimental and Theoretical Analysis
Authors: M.C. Zaghdoudi, S. Maalej, J. Mansouri, M.B.H. Sassi
Abstract:
An experimental study is realized in order to verify the Mini Heat Pipe (MHP) concept for cooling high power dissipation electronic components and determines the potential advantages of constructing mini channels as an integrated part of a flat heat pipe. A Flat Mini Heat Pipe (FMHP) prototype including a capillary structure composed of parallel rectangular microchannels is manufactured and a filling apparatus is developed in order to charge the FMHP. The heat transfer improvement obtained by comparing the heat pipe thermal resistance to the heat conduction thermal resistance of a copper plate having the same dimensions as the tested FMHP is demonstrated for different heat input flux rates. Moreover, the heat transfer in the evaporator and condenser sections are analyzed, and heat transfer laws are proposed. In the theoretical part of this work, a detailed mathematical model of a FMHP with axial microchannels is developed in which the fluid flow is considered along with the heat and mass transfer processes during evaporation and condensation. The model is based on the equations for the mass, momentum and energy conservation, which are written for the evaporator, adiabatic, and condenser zones. The model, which permits to simulate several shapes of microchannels, can predict the maximum heat transfer capacity of FMHP, the optimal fluid mass, and the flow and thermal parameters along the FMHP. The comparison between experimental and model results shows the good ability of the numerical model to predict the axial temperature distribution along the FMHP.Keywords: Electronics Cooling, Micro Heat Pipe, Mini Heat Pipe, Mini Heat Spreader, Capillary grooves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 393694 Fault-Tolerant Control Study and Classification: Case Study of a Hydraulic-Press Model Simulated in Real-Time
Authors: Jorge Rodriguez-Guerra, Carlos Calleja, Aron Pujana, Iker Elorza, Ana Maria Macarulla
Abstract:
Society demands more reliable manufacturing processes capable of producing high quality products in shorter production cycles. New control algorithms have been studied to satisfy this paradigm, in which Fault-Tolerant Control (FTC) plays a significant role. It is suitable to detect, isolate and adapt a system when a harmful or faulty situation appears. In this paper, a general overview about FTC characteristics are exposed; highlighting the properties a system must ensure to be considered faultless. In addition, a research to identify which are the main FTC techniques and a classification based on their characteristics is presented in two main groups: Active Fault-Tolerant Controllers (AFTCs) and Passive Fault-Tolerant Controllers (PFTCs). AFTC encompasses the techniques capable of re-configuring the process control algorithm after the fault has been detected, while PFTC comprehends the algorithms robust enough to bypass the fault without further modifications. The mentioned re-configuration requires two stages, one focused on detection, isolation and identification of the fault source and the other one in charge of re-designing the control algorithm by two approaches: fault accommodation and control re-design. From the algorithms studied, one has been selected and applied to a case study based on an industrial hydraulic-press. The developed model has been embedded under a real-time validation platform, which allows testing the FTC algorithms and analyse how the system will respond when a fault arises in similar conditions as a machine will have on factory. One AFTC approach has been picked up as the methodology the system will follow in the fault recovery process. In a first instance, the fault will be detected, isolated and identified by means of a neural network. In a second instance, the control algorithm will be re-configured to overcome the fault and continue working without human interaction.Keywords: Fault-tolerant control, electro-hydraulic actuator, fault detection and isolation, control re-design, real-time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 84093 Catalytic Gasification of Olive Mill Wastewater as a Biomass Source under Supercritical Conditions
Authors: Ekin Kıpçak, Mesut Akgün
Abstract:
Recently, a growing interest has emerged on the development of new and efficient energy sources, due to the inevitable extinction of the nonrenewable energy reserves. One of these alternative sources which have a great potential and sustainability to meet up the energy demand is biomass energy. This significant energy source can be utilized with various energy conversion technologies, one of which is biomass gasification in supercritical water.
Water, being the most important solvent in nature, has very important characteristics as a reaction solvent under supercritical circumstances. At temperatures above its critical point (374.8oC and 22.1MPa), water becomes more acidic and its diffusivity increases. Working with water at high temperatures increases the thermal reaction rate, which in consequence leads to a better dissolving of the organic matters and a fast reaction with oxygen. Hence, supercritical water offers a control mechanism depending on solubility, excellent transport properties based on its high diffusion ability and new reaction possibilities for hydrolysis or oxidation.
In this study the gasification of a real biomass, namely olive mill wastewater (OMW), in supercritical water conditions is investigated with the use of Ru/Al2O3 catalyst. OMW is a by-product obtained during olive oil production, which has a complex nature characterized by a high content of organic compounds and polyphenols. These properties impose OMW a significant pollution potential, but at the same time, the high content of organics makes OMW a desirable biomass candidate for energy production.
The catalytic gasification experiments were made with five different reaction temperatures (400, 450, 500, 550 and 600°C) and five reaction times (30, 60, 90, 120 and 150s), under a constant pressure of 25MPa. Through these experiments, the effects of reaction temperature and time on the gasification yield, gaseous product composition and OMW treatment efficiency were investigated.
Keywords: Catalyst, Gasification, Olive mill wastewater, Ru/Al2O3, Supercritical water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 227992 A Comprehensive Survey on Machine Learning Techniques and User Authentication Approaches for Credit Card Fraud Detection
Authors: Niloofar Yousefi, Marie Alaghband, Ivan Garibay
Abstract:
With the increase of credit card usage, the volume of credit card misuse also has significantly increased, which may cause appreciable financial losses for both credit card holders and financial organizations issuing credit cards. As a result, financial organizations are working hard on developing and deploying credit card fraud detection methods, in order to adapt to ever-evolving, increasingly sophisticated defrauding strategies and identifying illicit transactions as quickly as possible to protect themselves and their customers. Compounding on the complex nature of such adverse strategies, credit card fraudulent activities are rare events compared to the number of legitimate transactions. Hence, the challenge to develop fraud detection that are accurate and efficient is substantially intensified and, as a consequence, credit card fraud detection has lately become a very active area of research. In this work, we provide a survey of current techniques most relevant to the problem of credit card fraud detection. We carry out our survey in two main parts. In the first part, we focus on studies utilizing classical machine learning models, which mostly employ traditional transnational features to make fraud predictions. These models typically rely on some static physical characteristics, such as what the user knows (knowledge-based method), or what he/she has access to (object-based method). In the second part of our survey, we review more advanced techniques of user authentication, which use behavioral biometrics to identify an individual based on his/her unique behavior while he/she is interacting with his/her electronic devices. These approaches rely on how people behave (instead of what they do), which cannot be easily forged. By providing an overview of current approaches and the results reported in the literature, this survey aims to drive the future research agenda for the community in order to develop more accurate, reliable and scalable models of credit card fraud detection.
Keywords: credit card fraud detection, user authentication, behavioral biometrics, machine learning, literature survey
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 54491 STLF Based on Optimized Neural Network Using PSO
Authors: H. Shayeghi, H. A. Shayanfar, G. Azimi
Abstract:
The quality of short term load forecasting can improve the efficiency of planning and operation of electric utilities. Artificial Neural Networks (ANNs) are employed for nonlinear short term load forecasting owing to their powerful nonlinear mapping capabilities. At present, there is no systematic methodology for optimal design and training of an artificial neural network. One has often to resort to the trial and error approach. This paper describes the process of developing three layer feed-forward large neural networks for short-term load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. Particle Swarm Optimization (PSO) is used to develop the optimum large neural network structure and connecting weights for one-day ahead electric load forecasting problem. PSO is a novel random optimization method based on swarm intelligence, which has more powerful ability of global optimization. Employing PSO algorithms on the design and training of ANNs allows the ANN architecture and parameters to be easily optimized. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. The experimental results show that the proposed method optimized by PSO can quicken the learning speed of the network and improve the forecasting precision compared with the conventional Back Propagation (BP) method. Moreover, it is not only simple to calculate, but also practical and effective. Also, it provides a greater degree of accuracy in many cases and gives lower percent errors all the time for STLF problem compared to BP method. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.
Keywords: Large Neural Network, Short-Term Load Forecasting, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222490 Smart Help at theWorkplace for Persons with Disabilities (SHW-PWD)
Authors: Ghassan Kbar, Shady Aly, Ibraheem Elsharawy, Akshay Bhatia, Nur Alhasan, Ronaldo Enriquez
Abstract:
The Smart Help for persons with disability (PWD) is a part of the project SMARTDISABLE which aims to develop relevant solution for PWD that target to provide an adequate workplace environment for them. It would support PWD needs smartly through smart help to allow them access to relevant information and communicate with other effectively and flexibly, and smart editor that assist them in their daily work. It will assist PWD in knowledge processing and creation as well as being able to be productive at the work place. The technical work of the project involves design of a technological scenario for the Ambient Intelligence (AmI) - based assistive technologies at the workplace consisting of an integrated universal smart solution that suits many different impairment conditions and will be designed to empower the Physically disabled persons (PDP) with the capability to access and effectively utilize the ICTs in order to execute knowledge rich working tasks with minimum efforts and with sufficient comfort level. The proposed technology solution for PWD will support voice recognition along with normal keyboard and mouse to control the smart help and smart editor with dynamic auto display interface that satisfies the requirements for different PWD group. In addition, a smart help will provide intelligent intervention based on the behavior of PWD to guide them and warn them about possible misbehavior. PWD can communicate with others using Voice over IP controlled by voice recognition. Moreover, Auto Emergency Help Response would be supported to assist PWD in case of emergency. This proposed technology solution intended to make PWD very effective at the work environment and flexible using voice to conduct their tasks at the work environment. The proposed solution aims to provide favorable outcomes that assist PWD at the work place, with the opportunity to participate in PWD assistive technology innovation market which is still small and rapidly growing as well as upgrading their quality of life to become similar to the normal people at the workplace. Finally, the proposed smart help solution is applicable in all workplace setting, including offices, manufacturing, hospital, etc.
Keywords: Ambient Intelligence, ICT, Persons with disability PWD, Smart application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 254189 Weaving Social Development: An Exploratory Study of Adapting Traditional Textiles Using Indigenous Organic Wool for the Modern Interior Textiles Market
Authors: Seema Singh, Puja Anand, Alok Bhasin
Abstract:
The interior design profession aims to create aesthetically pleasing design solutions for human habitats but of late, growing awareness about depleting environmental resources, both tangible and intangible, and damages to the eco-system led to the quest for creating healthy and sustainable interior environments. The paper proposes adapting traditionally produced organic wool textiles for the mainstream interior design industry. This can create sustainable livelihoods whereby eco-friendly bridges can be built between Interior designers and consumers and pastoral communities. This study focuses on traditional textiles produced by two pastoral communities from India that use organic wool from indigenous sheep varieties. The Gaddi communities of Himachal Pradesh use wool from the Gaddi sheep breed to create Pattu (a multi-purpose textile). The Kurumas of Telangana weave a blanket called the Gongadi, using wool from the Black Deccani variety of sheep. These communities have traditionally reared indigenous sheep breeds for their wool and produce hand-spun and hand-woven textiles for their own consumption, using traditional processes that are chemical free. Based on data collected personally from field visits and documentation of traditional crafts of these pastoral communities, and using traditionally produced indigenous organic wool, the authors have developed innovative textile samples by including design interventions and exploring dyeing and weaving techniques. As part of the secondary research, the role of pastoralism in sustaining the eco-systems of Himachal Pradesh and Telangana was studied, and also the role of organic wool in creating healthy interior environments. The authors found that natural wool from indigenous sheep breeds can be used to create interior textiles that have the potential to be marketed to an urban audience, and this will help create earnings for pastoral communities. Literature studies have shown that organic & sustainable wool can reduce indoor pollution & toxicity levels in interiors and further help in creating healthier interior environments. Revival of indigenous breeds of sheep can further help in rejuvenating dying crafts, and promotion of these indigenous textiles can help in sustaining traditional eco-systems and the pastoral communities whose way of life is endangered today. Based on research and findings, the authors propose that adapting traditional textiles can have potential for application in Interiors, creating eco-friendly spaces. Interior textiles produced through such sustainable processes can help reduce indoor pollution, give livelihood opportunities to traditional economies, and leave almost zero carbon foot-print while being in sync with available natural resources, hence ultimately benefiting the society. The win-win situation for all the stakeholders in this eco-friendly model makes it pertinent to re-think how we design lifestyle textiles for interiors. This study illustrates a specific example from the two pastoral communities and can be used as a model that can work equally well in any community, regardless of geography.Keywords: Design Intervention, Eco-Friendly, Healthy Interiors, Indigenous, Organic Wool, Pastoralism, Sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1392