Search results for: uniform temperature.
1009 Optimizing PelletPAVE™ Rubberized Asphalt Mix Design Using Gyratory Compaction and Volumetrics
Authors: H. Al-Baghli
Abstract:
In this investigation, rubberized HMA technology was examined to address the most critical forms of pavement distresses in the State of Kuwait, namely, high temperature rutting, and moisture induced raveling. PelletPAVE™ additive was selected as the preferred technology, since it offered a convenient method of directly modifying the exiting local HMA recipe without having to polymer modify the bitumen. Experimental work, using various Pelletpave contents was carried out at Kuwait Institute for Scientific Research (KISR) to design an optimum rubberized HMA formulation prior to conducting a pilot-scale road trial. With the aid of a gyratory compactor, the compaction and volumetric properties of HMAs containing 2.5% and 3.0% Pelletpave additive were investigated at a range of bitumen contents, all by mass of total mix.
Keywords: Modified bitumen, rubberized hot mix asphalt, gyratory compaction, volumetric properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3461008 Numerical Simulation of the Effects of Nanofluid on a Heat Pipe Thermal Performance
Authors: Barzin Gavtash, Khalid Hussain, Mohammad Layeghi, Saeed Sadeghi Lafmejani
Abstract:
This research aims at modeling and simulating the effects of nanofluids on cylindrical heat pipes thermal performance using the ANSYS-FLUENT CFD commercial software. The heat pipe outer wall temperature distribution, thermal resistance, liquid pressure and axial velocity in presence of suspended nano-scaled solid particle (i.e. Cu, Al2O3 and TiO2) within the fluid (water) were investigated. The effect of particle concentration and size were explored and it is concluded that the thermal performance of the heat pipe is improved when using nanofluid as the system working fluid. Additionally, it was observed that the thermal resistance of the heat pipe drops as the particle concentration level increases and particle radius decreases.
Keywords: CFD, Heat Pipe, Nanofluid, Thermal resistance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 448551007 Radiation Effects in the PVDF/Graphene Oxide Nanocomposites
Authors: Juliana V. Pereira, Adriana S. M. Batista, Jefferson P. Nascimento, Clascídia A. Furtado, Luiz O. Faria
Abstract:
Exposure to ionizing radiation has been found to induce changes in poly(vinylidene fluoride) (PVDF) homopolymers. The high dose gamma irradiation process induces the formation of C=C and C=O bonds in its [CH2-CF2]n main chain. The irradiation also provokes crosslinking and chain scission. All these radio-induced defects lead to changes in the PVDF crystalline structure. As a consequence, it is common to observe a decrease in the melting temperature (TM) and melting latent heat (LM) and some changes in its ferroelectric features. We have investigated the possibility of preparing nanocomposites of PVDF with graphene oxide (GO) through the radio-induction of molecular bonds. In this work, we discuss how the gamma radiation interacts with the nanocomposite crystalline structure.
Keywords: Gamma irradiation, grapheme oxide, nanocomposites, PVDF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12191006 Natural and Mixed Convection Heat Transfer Cooling of Discrete Heat Sources Placed Near the Bottom on a PCB
Authors: Tapano Kumar Hotta, S P Venkateshan
Abstract:
Steady state experiments have been conducted for natural and mixed convection heat transfer, from five different sized protruding discrete heat sources, placed at the bottom position on a PCB and mounted on a vertical channel. The characteristic length ( Lh ) of heat sources vary from 0.005 to 0.011 m. The study has been done for different range of Reynolds number and modified Grashof number. From the experiment, the surface temperature distribution and the Nusselt number of discrete heat sources have been obtained and the effects of Reynold number and Richardson number on them have been discussed. The objective is to find the rate of heat dissipation from heat sources, by placing them at the bottom position on a PCB and to compare both modes of cooling of heat sources.Keywords: Discrete heat source, mixed convection, natural convection, vertical channel
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20621005 Hydrogen Sensor Based on Surface Activated WO3 Films by Pd Nanoclusters
Authors: S.Fardindoost, A. Iraji Zad, S.M.Mahdavi
Abstract:
Tungsten trioxide has been prepared by using P-PTA as a precursor on alumina substrates by spin coating method. Palladium introduced on WO3 film via electrolysis deposition by using palladium chloride as catalytic precursor. The catalytic precursor was introduced on the series of films with different morphologies. X-ray diffractometry (XRD), Scanning electron microscopy (SEM) and XPS were applied to analyze structure and morphology of the fabricated thin films. Then we measured variation of samples- electrical conductivity of pure and Pd added films in air and diluted hydrogen. Addition of Pd resulted in a remarkable improvement of the hydrogen sensing properties of WO3 by detection of Hydrogen below 1% at room temperature. Also variation of the electrical conductivity in the presence of diluted hydrogen revealed that response of samples depends rather strongly on the palladium configuration on the surface.Keywords: Electrolysis, Hydrogen sensing, Palladium, WO3
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21921004 Comparison of Two-Phase Critical Flow Models for Estimation of Leak Flow Rate through Cracks
Authors: Tadashi Watanabe, Jinya Katsuyama, Akihiro Mano
Abstract:
The estimation of leak flow rates through narrow cracks in structures is of importance for nuclear reactor safety, since the leak flow could be detected before occurrence of loss-of-coolant accidents. The two-phase critical leak flow rates are calculated using the system analysis code, and two representative non-homogeneous critical flow models, Henry-Fauske model and Ransom-Trapp model, are compared. The pressure decrease and vapor generation in the crack, and the leak flow rates are found to be larger for the Henry-Fauske model. It is shown that the leak flow rates are not affected by the structural temperature, but affected largely by the roughness of crack surface.
Keywords: Crack, critical flow, leak, roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8421003 A Refined Energy-Based Model for Friction-Stir Welding
Authors: Samir A. Emam, Ali El Domiaty
Abstract:
Friction-stir welding has received a huge interest in the last few years. The many advantages of this promising process have led researchers to present different theoretical and experimental explanation of the process. The way to quantitatively and qualitatively control the different parameters of the friction-stir welding process has not been paved. In this study, a refined energybased model that estimates the energy generated due to friction and plastic deformation is presented. The effect of the plastic deformation at low energy levels is significant and hence a scale factor is introduced to control its effect. The predicted heat energy and the obtained maximum temperature using our model are compared to the theoretical and experimental results available in the literature and a good agreement is obtained. The model is applied to AA6000 and AA7000 series.
Keywords: Friction-stir welding, Energy, Aluminum Alloys.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17501002 Utilising Unground Oil Palm Ash in Producing Foamed Concrete and Its Implementation as an Interlocking Mortar-Less Block
Authors: Hanizam Awang, Mohammed Zuhear Al-Mulali
Abstract:
In this study, the possibility of using unground oil palm ash (UOPA) for producing foamed concrete is investigated. The UOPA used in this study is produced by incinerating palm oil biomass at a temperature exceeding 1000ºC. A semi-structural density of 1300kg/m3 was used with filler to binder ratio of 1.5 and preliminary water to binder ratio of 0.45. Cement was replaced by UOPA at replacement levels of 0, 25, 35, 45, 55 and 65% by weight of binder. Properties such as density, compressive strength, drying shrinkage and water absorption were investigated to the age of 90 days. The mix with a 35% of UOPA content was chosen to be used as the base material of a newly designed interlocking, mortar-less block system.
Keywords: Foamed concrete, oil palm ash, strength, interlocking block.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13581001 Energy Analysis of Pressurized Solid Oxide Fuel Cell Combined Power Turbine
Authors: M. Ayazi, R. Karami, B. Kamkari
Abstract:
Solid oxide fuel cells have been considered in the last years as one of the most promising technologies for very highefficiency electric energy generation from hydrogen or other hydrocarbons, both with simple fuel cell plants and with integrated gas turbine-fuel cell systems. In the present study, a detailed thermodynamic analysis has been carried out. Mass and exergy balances are performed not only for the whole plant but also for each component in order to evaluate the thermal efficiency of combined cycle. Moreover, different sources of irreversibilities within the SOFC stack have been discussed and a parametric study conducted to evaluate the effect of temperature as well as pressure on SOFC irreversibilities and its performance. In this investigation methane and hydrogen have been used for fueling the SOFC stack and combustion chamber.
Keywords: SOFC, Energy, Power turbine, Irreversibility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18121000 The Effect of Molybdate on Corrosion Behaviour of AISI 316Ti Stainless Steel in Chloride Environment
Authors: Viera Zatkalíková, Lenka Markovičová, Aneta Tor-Swiatek
Abstract:
The effect of molybdate addition to chloride environment on resistance of AISI 316Ti stainless steel to pitting corrosion was studied. Potentiodynamic polarisation tests were performed in 1 M and 0.1 M chloride acidified solutions with various additions of sodium molybdate at room temperature. The presented results compare the effect of molybdate anions on quality of passive film (expressed by the pitting potential) in both chloride solutions. The pitting potential increases with the increase inhibitor concentration. The inhibitive effect of molybdate ions is stronger in chloride solution of lower aggressiveness (0.1M).
Keywords: AISI 316Ti steel, molybdate inhibitor, pitting corrosion, pitting potential, potentiodynamic polarization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188999 Fabrication and Characterization of Sawdust Composite Biodegradable Film
Authors: M.Z. Norashikin, M.Z. Ibrahim
Abstract:
This report shows the performance of composite biodegradable film from chitosan, starch and sawdust fiber. The main objectives of this research are to fabricate and characterize composite biodegradable film in terms of morphology and physical properties. The film was prepared by casting method. Sawdust fiber was used as reinforcing agent and starch as polymer matrix in the casting solution. The morphology of the film was characterized using atomic force microscope (AFM). The result showed that the film has smooth structure. Chemical composition of the film was investigated using Fourier transform infrared (FTIR) where the result revealed present of starch in the film. The thermal properties were characterized using thermal gravimetric analyzer (TGA) and differential scanning calorimetric (DSC) where the results showed that the film has small difference in melting and degradation temperature.Keywords: Sawdust, composite, film, biodegradable.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2605998 Daily and Seasonal Changes of Air Pollution in Kuwait
Authors: H. Ettouney, A. AL-Haddad, S. Saqer
Abstract:
This paper focuses on assessment of air pollution in Umm-Alhyman, Kuwait, which is located south to oil refineries, power station, oil field, and highways. The measurements were made over a period of four days in March and July in 2001, 2004, and 2008. The measured pollutants included methanated and nonmethanated hydrocarbons (MHC, NMHC), CO, CO2, SO2, NOX, O3, and PM10. Also, meteorological parameters were measured, which includes temperature, wind speed and direction, and solar radiation. Over the study period, data analysis showed increase in measured SO2, NOX and CO by factors of 1.2, 5.5 and 2, respectively. This is explained in terms of increase in industrial activities, motor vehicle density, and power generation. Predictions of the measured data were made by the ISC-AERMOD software package and by using the ISCST3 model option. Finally, comparison was made between measured data against international standards.
Keywords: Air pollution, Emission inventory, ISCST3 model, Modeling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2421997 Experimental Performance and Numerical Simulation of Double Glass Wall
Authors: Thana Ananacha
Abstract:
This paper reports the numerical and experimental performances of Double Glass Wall are investigated. Two configurations were considered namely, the Double Clear Glass Wall (DCGW) and the Double Translucent Glass Wall (DTGW). The coupled governing equations as well as boundary conditions are solved using the finite element method (FEM) via COMSOLTM Multiphysics. Temperature profiles and flow field of the DCGW and DTGW are reported and discussed. Different constant heat fluxes were considered as 400 and 800 W.m-2 the corresponding initial condition temperatures were 30.5 and 38.5ºC respectively. The results show that the simulation results are in agreement with the experimental data. Conclusively, the model considered in this study could reasonable be used simulate the thermal and ventilation performance of the DCGW and DTGW configurations.
Keywords: Thermal simulation, Double Glass Wall, Velocity field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094996 Utilizing Fly Ash Cenosphere and Aerogel for Lightweight Thermal Insulating Cement-Based Composites
Authors: Asad Hanif, Pavithra Parthasarathy, Zongjin Li
Abstract:
Thermal insulating composites help to reduce the total power consumption in a building by creating a barrier between external and internal environment. Such composites can be used in the roofing tiles or wall panels for exterior surfaces. This study purposes to develop lightweight cement-based composites for thermal insulating applications. Waste materials like silica fume (an industrial by-product) and fly ash cenosphere (FAC) (hollow micro-spherical shells obtained as a waste residue from coal fired power plants) were used as partial replacement of cement and lightweight filler, respectively. Moreover, aerogel, a nano-porous material made of silica, was also used in different dosages for improved thermal insulating behavior, while poly vinyl alcohol (PVA) fibers were added for enhanced toughness. The raw materials including binders and fillers were characterized by X-Ray Diffraction (XRD), X-Ray Fluorescence spectroscopy (XRF), and Brunauer–Emmett–Teller (BET) analysis techniques in which various physical and chemical properties of the raw materials were evaluated like specific surface area, chemical composition (oxide form), and pore size distribution (if any). Ultra-lightweight cementitious composites were developed by varying the amounts of FAC and aerogel with 28-day unit weight ranging from 1551.28 kg/m3 to 1027.85 kg/m3. Excellent mechanical and thermal insulating properties of the resulting composites were obtained ranging from 53.62 MPa to 8.66 MPa compressive strength, 9.77 MPa to 3.98 MPa flexural strength, and 0.3025 W/m-K to 0.2009 W/m-K as thermal conductivity coefficient (QTM-500). The composites were also tested for peak temperature difference between outer and inner surfaces when subjected to heating (in a specially designed experimental set-up) by a 275W infrared lamp. The temperature difference up to 16.78 oC was achieved, which indicated outstanding properties of the developed composites to act as a thermal barrier for building envelopes. Microstructural studies were carried out by Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS) for characterizing the inner structure of the composite specimen. Also, the hydration products were quantified using the surface area mapping and line scale technique in EDS. The microstructural analyses indicated excellent bonding of FAC and aerogel in the cementitious system. Also, selective reactivity of FAC was ascertained from the SEM imagery where the partially consumed FAC shells were observed. All in all, the lightweight fillers, FAC, and aerogel helped to produce the lightweight composites due to their physical characteristics, while exceptional mechanical properties, owing to FAC partial reactivity, were achieved.
Keywords: Sustainable development, fly ash cenosphere, aerogel, lightweight, cement, composite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2209995 Excitonic Refractive Index Change in High Purity GaAs Modulator at Room Temperature for Optical Fiber Communication Network
Authors: Durga Prasad Sapkota, Madhu Sudan Kayastha, Koichi Wakita
Abstract:
In this paper, we have compared and analyzed the electroabsorption properties between with and without excitonic effect bulk in high purity GaAs spatial light modulator for optical fiber communication network. The eletroabsorption properties such as absorption spectra, change in absorption spectra, change in refractive index and extinction ration has been calculated. We have also compared the result of absorption spectra and change in absorption spectra with the experimental results and found close agreement with experimental results.
Keywords: Exciton, Refractive index change, Extinction ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2013994 Leaching of Flotation Concentrate of Oxide Copper Ore from Sepon Mine, Lao PDR
Authors: C. Rattanakawin, S. Vasailor
Abstract:
Acid leaching of flotation concentrate of oxide copper ore containing mainly of malachite was performed in a standard agitation tank with various parameters. The effects of solid to liquid ratio, sulfuric acid concentration, agitation speed, leaching temperature and time were examined to get proper conditions. The best conditions are 1:8 solid to liquid ratio, 10% concentration by weight, 250 rev/min, 30 oC and 5-min leaching time in respect. About 20% Cu grade assayed by atomic absorption technique with 98% copper recovery was obtained from these combined optimum conditions. Dissolution kinetics of the concentrate was approximated as a logarithmic function. As a result, the first-order reaction rate is suggested from this leaching study.Keywords: Agitation leaching, dissolution kinetics, flotation concentrate, oxide copper ore, sulfuric acid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691993 Tuning of PV Array Layout Configurations for Maximum Power Delivery
Authors: Hadj Bourdoucen, Adel Gastli
Abstract:
In this paper, an approach for finding optimized layouts for connecting PV units delivering maximum array output power is suggested. The approach is based on considering the different varying parameters of PV units that might be extracted from a general two-diode model. These are mainly, solar irradiation, reverse saturation currents, ideality factors, series and shunt resistances in addition to operating temperature. The approach has been tested on 19 possible 2×3 configurations and allowed to determine the optimized configurations as well as examine the effects of the different units- parameters on the maximum output power. Thus, using this approach, standard arrays with n×m units can be configured for maximum generated power and allows designing PV based systems having reduced surfaces to fit specific required power, as it is the case for solar cars and other mobile systems.Keywords: Photovoltaic, PV unit, optimum configuration, maximum power, Orcad.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747992 Predictability of the Two Commonly Used Models to Represent the Thin-layer Re-wetting Characteristics of Barley
Authors: M. A. Basunia
Abstract:
Thirty three re-wetting tests were conducted at different combinations of temperatures (5.7- 46.30C) and relative humidites (48.2-88.6%) with barley. Two most commonly used thinlayer drying and rewetting models i.e. Page and Diffusion were compared for their ability to the fit the experimental re-wetting data based on the standard error of estimate (SEE) of the measured and simulated moisture contents. The comparison shows both the Page and Diffusion models fit the re-wetting experimental data of barley well. The average SEE values for the Page and Diffusion models were 0.176 % d.b. and 0.199 % d.b., respectively. The Page and Diffusion models were found to be most suitable equations, to describe the thin-layer re-wetting characteristics of barley over a typically five day re-wetting. These two models can be used for the simulation of deep-bed re-wetting of barley occurring during ventilated storage and deep bed drying.Keywords: Thin-layer, barley, re-wetting parameters, temperature, relative humidity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1495991 Current Mode Logic Circuits for 10-bit 5GHz High Speed Digital to Analog Converter
Authors: Zhenguo Vincent Chia, Sheung Yan Simon Ng, Minkyu Je
Abstract:
This paper presents CMOS Current Mode Logic (CML) circuits for a high speed Digital to Analog Converter (DAC) using standard CMOS 65nm process. The CML circuits have the propagation delay advantage over its conventional CMOS counterparts due to smaller output voltage swing and tunable bias current. The CML circuits proposed in this paper can achieve a maximum propagation delay of only 9.3ps, which can satisfy the stringent requirement for the 5 GHz high speed DAC application. Another advantage for CML circuits is its dynamic symmetry characteristic resulting in a reduction of an additional inverter. Simulation results show that the proposed CML circuits can operate from 1.08V to 1.3V with temperature ranging from -40 to +120°C.
Keywords: Conventional, Current Mode Logic, DAC, Decoder
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5826990 Thermal Properties of the Ground in Cyprus and Their Correlations and Effect on the Efficiency of Ground Heat Exchangers
Authors: G. A. Florides, E. Theofanous, I. Iosif-Stylianou, P. Christodoulides, S. Kalogirou, V. Messarites, Z. Zomeni, E. Tsiolakis, P. D. Pouloupatis, G. P. Panayiotou
Abstract:
Ground Coupled Heat Pumps (GCHPs) exploit effectively the heat capacity of the ground, with the use of Ground Heat Exchangers (GHE). Depending on the mode of operation of the GCHPs, GHEs dissipate or absorb heat from the ground. For sizing the GHE the thermal properties of the ground need to be known. This paper gives information about the density, thermal conductivity, specific heat and thermal diffusivity of various lithologies encountered in Cyprus with various relations between these properties being examined through comparison and modeling. The results show that the most important correlation is the one encountered between thermal conductivity and thermal diffusivity with both properties showing similar response to the inlet and outlet flow temperature of vertical and horizontal heat exchangers.
Keywords: Ground heat exchangers, ground thermal conductivity, ground thermal diffusivity, ground thermal properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916989 Synthesis of Copper Sulfide Nanoparticles by Pulsed Plasma in Liquid Method
Authors: Zhypargul Abdullaeva, Emil Omurzak, Tsutomu Mashimo
Abstract:
Copper sulfide nanoparticles (CuS) were successfully synthesized by the pulsed plasma in liquid method, using two copper rod electrodes submerged in molten sulfur. Low electrical energy and no high temperature were applied for synthesis. Obtained CuS nanoparticles were then analyzed by means of X-ray diffraction, Low and High Resolution Transmission Electron Microscopy, Electron Diffraction, X-ray Photoelectron, Raman Spectroscopies and Field Emission Scanning Electron Microscopy. XRD analysis revealed peaks for CuS with hexagonal phase composition. TEM and HRTEM studies showed that sizes of CuS nanoparticles ranged between 10-60 nm, with the average size of about 20 nm. Copper sulfide nanoparticles have short nanorod-like structure. Raman spectroscopy found peak for CuS at 474.2cm-1of Raman region.
Keywords: Copper sulfide, Nanoparticles, Pulsed plasma, Synthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4396988 Picture of the World by the Second Law of Thermodynamics
Authors: I. V. Kuzminov
Abstract:
According to its content, the proposed article is a collection of articles with comments and additions. All articles, in one way or another, have a connection with the Second Law of Thermodynamics. The content of the articles is given in a concise form. The articles were published in different journals at different times. Main topics are presented: gravity, biography of the Earth, physics of global warming-cooling cycles, multiverse. The articles are based on the laws of classical physics. Along the way, it should be noted that the Second Law of Thermodynamics can be formulated as the Law of Matter Cooling. As it cools down, the processes of condensation, separation, and changes in the aggregate states of matter occur. In accordance with these changes, a picture of the world is being formed. Also, the main driving force of these processes is the inverse temperature dependence of the forces of gravity. As matter cools, the forces of gravity increase. The actions of these phenomena in the compartment form a picture of the world.
Keywords: Gravitational forces, cooling of matter, second law of thermodynamics, planetary model of the atom.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87987 Predictive Semi-Empirical NOx Model for Diesel Engine
Authors: Saurabh Sharma, Yong Sun, Bruce Vernham
Abstract:
Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model. Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.
Keywords: Diesel engine, machine learning, NOx emission, semi-empirical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855986 Effect of Climate Change on Runoff in the Upper Mun River Basin, Thailand
Authors: Preeyaphorn Kosa, Thanutch Sukwimolseree
Abstract:
The climate change is a main parameter which affects the element of hydrological cycle especially runoff. Then, the purpose of this study is to determine the impact of the climate change on surface runoff using land use map on 2008 and daily weather data during January 1, 1979 to September 30, 2010 for SWAT model. SWAT continuously simulate time model and operates on a daily time step at basin scale. The results present that the effect of temperature change cannot be clearly presented on the change of runoff while the rainfall, relative humidity and evaporation are the parameters for the considering of runoff change. If there are the increasing of rainfall and relative humidity, there is also the increasing of runoff. On the other hand, if there is the increasing of evaporation, there is the decreasing of runoff.
Keywords: Climate, Runoff, SWAT, Upper Mun River Basin
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2356985 Ultra-Low Loss Dielectric Properties of (Mg1-xNix)2(Ti0.95Sn0.05)O4 Microwave Ceramics
Authors: Bing-Jing Li, Sih-Yin Wang, Tse-Chun Yeh, Yuan-Bin Chen
Abstract:
Microwave dielectric ceramic materials of (Mg1-xNix)2(Ti0.95Sn0.05)O4 for x = 0.01, 0.03, 0.05, 0.07 and 0.09 were prepared and sintered at 1250–1400 ºC. The microstructure and microwave dielectric properties of the ceramic materials were examined and measured. The observations shows that the content of Ni2+ ions has little effect on the crystal structure, dielectric constant, temperature coefficient of resonant frequency (τf) and sintering temperatures of the ceramics. However, the quality values (Q×f) are greatly improved due to the addition of Ni2+ ions. The present study showed that the ceramic material prepared for x = 0.05 and sintered at 1325ºC had the best Q×f value of 392,000 GHz, about 23% improvement compared with that of Mg2(Ti0.95Sn0.05)O4.
Keywords: (Mg1-xNix)2(Ti0.95Sn0.05)O4, microwave dielectric ceramics, high quality factor, high frequency wireless communication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2012984 Synthesis and Characterization of Gallosilicate Sodalite Containing NO2- Ions
Authors: Ashok V. Borhade, Sanjay G. Wakchaure
Abstract:
Pure phase gallosilicate nitrite sodalite has been synthesized in a single step by low temperature (373 oK) hydrothermal technique. The product obtained was characterized using a combination of techniques including X-ray powder diffraction, IR, Raman spectroscopy, SEM, MAS NMR spectroscopy as well as thermogravimetry. Sodalite with an ideal composition was obtained after synthesis at 3730K and seven days duration using alkaline medium. The structural features of the Na8[GaSiO4]6(NO2)2 sodalite were investigated by IR, MAS NMR spectroscopy of 29Si and 23Na nuclei and by Reitveld refinement of X-ray powder diffraction data. The crystal structure of this sodalite has been refined in the space group P 4 3n; with a cell parameter 8.98386Å, V= 726.9 Å, (Rwp= 0.077 and Rp=0.0537) and Si-O-Ga angle is found to be 132.920 . MAS NMR study confirms complete ordering of Si and Ga in the gallosilicate framework. The surface area of single entity with stoichiometry Na8[GaSiO4]6(NO2)2 was found to be 8.083 x10-15 cm2/g.
Keywords: Gallosilicate, hydrothermal, nitrite, Reitveldrefinement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1622983 Study of Heat Transfer of Nanofluids in a Circular Tube
Authors: M. Amoura, M. Alloti, A. Mouassi, N. Zeraibi
Abstract:
Heat transfer behavior of three different types of nanofluids flowing through a horizontal tube under laminar regime has been investigated numerically. The wall of tube is maintained at constant temperature. Al2O3-water, CuO-water and TiO2-water are used with different Reynolds number and different volume fraction. The numerical results of heat transfer indicate that the Nusselt number of nanofluids is larger than that of the base fluid. The Pressure loss coefficient decreases by increasing Reynolds number for all types of nanofluids. Results of Nusselt number enhancement and pressure loss coefficient enhancement indicate that Al2O3 nanoparticules give the best results in term of thermal-hydrolic properties.
Keywords: Heat transfer, Laminar flow, Nanofluid, Numerical study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3067982 Structural Properties of Polar Liquids in Binary Mixture Using Microwave Technique
Authors: Shagufta Tabassum, V. P. Pawar
Abstract:
The study of static dielectric properties in a binary mixture of 1,2 dichloroethane (DE) and n,n dimethylformamide (DMF) polar liquids has been carried out in the frequency range of 10 MHz to 30 GHz for 11 different concentration using time domain reflectometry technique at 10ºC temperature. The dielectric relaxation study of solute-solvent mixture at microwave frequencies gives information regarding the creation of monomers and multimers as well as interaction between the molecules of the binary mixture. The least squares fit method is used to determine the values of dielectric parameters such as static dielectric constant (ε0), dielectric constant at high frequency (ε∞) and relaxation time (τ).
Keywords: Excess parameters, relaxation time, static dielectric constant, time domain reflectometry.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725981 The Design Process of an Interactive Seat for Improving Workplace Productivity
Authors: Carlos Ferreira, Paulo Freitas, Valentim Freitas
Abstract:
Creative industries’ workers are becoming more prominent as countries move towards intellectual-based economies. Consequently, the nature and essence of the workplace needs to be reconfigured so that creativity and productivity can be better promoted at these spaces. Using a multidisciplinary approach and a user-centered methodology, combining product design, electronic engineering, software and human-computer interaction, we have designed and developed a new seat that uses embedded sensors and actuators to increase the overall well-being of its users, their productivity and their creativity. Our contribution focuses on the parameters that most affect the user’s work on these kinds of spaces, which are, according to our study, noise and temperature. We describe the design process for a new interactive seat targeted at improving workspace productivity.
Keywords: Human-computer interaction, usability, user interface, creativity, ergonomics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1033980 The Gasification of Acetone via Partial Oxidation in Supercritical Water
Authors: Shyh-Ming Chern, Kai-Ting Hsieh
Abstract:
Organic solvents find various applications in many industrial sectors and laboratories as dilution solvents, dispersion solvents, cleaners and even lubricants. Millions of tons of spent organic solvents (SOS) are generated each year worldwide, prompting the need for more efficient, cleaner and safer methods for the treatment and resource recovery of SOS. As a result, acetone, selected as a model compound for SOS, was gasified in supercritical water to assess the feasibility of resource recovery of SOS by means of supercritical water processes. Experiments were conducted with an autoclave reactor. Gaseous product is mainly consists of H2, CO, CO2 and CH4. The effects of three major operating parameters, the reaction temperature, from 673 to 773K, the dosage of oxidizing agent, from 0.3 to 0.5 stoichiometric oxygen, and the concentration of acetone in the feed, 0.1 and 0.2M, on the product gas composition, yield and heating value were evaluated with the water density fixed at about 0.188g/ml.
Keywords: Acetone, gasification, SCW, supercritical water.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2142