Search results for: Protein Structure Data.
8028 Some Properties of Cut Locus of a Flat Torus
Authors: Pakkinee Chitsakul
Abstract:
In this article, we would like to show that there is no cut point of any point in a plane, but there exists the cut locus of a point in a flat torus. By the results, we would like to determine the structure of cut locus of a flat torus.
Keywords: Cut locus, flat torus, geodesics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20468027 Hepatotoxicity Induced by Arsenic Trioxide in Adult Mice and Their Progeny
Authors: H. Bouaziz, N. Soudania, M. Essafia, I. Ben Amara, A. Hakim, K. Jamoussi, Km. Zeghal, N. Zeghal
Abstract:
In this investigation, we have evaluated the effects of arsenic trioxide on hepatic function in pregnant and lactating Swiss albino mice and their suckling pups. Experiments were carried out on female mice given 175 ppm As2O3 in their drinking water from the 14th day of pregnancy until day 14 after delivery. Our results showed a significant decrease in plasma levels of total protein and albumin, cholesterol and triglyceride in As2O3 treated mice and their pups. The hyperbilirubinemia and the increased plasma total alkaline phosphatase activity suggested the presence of cholestasis. Transaminase activities as well as lactate deshydrogenase activity in plasma, known as biomarkers of hepatocellular injury, were elevated indicating hepatic cells’ damage after treatment with As2O3. Exposure to arsenic led to an increase of liver thiobarbituric acid reactive substances level along with a concomitant decrease in the activities of superoxide dismutase, catalase and glutathione peroxidase and in glutathione.
Keywords: Antioxidant status, arsenic trioxide, hepatotoxicity, mice, oxidative stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23648026 A Review: Comparative Analysis of Different Categorical Data Clustering Ensemble Methods
Authors: S. Sarumathi, N. Shanthi, M. Sharmila
Abstract:
Over the past epoch a rampant amount of work has been done in the data clustering research under the unsupervised learning technique in Data mining. Furthermore several algorithms and methods have been proposed focusing on clustering different data types, representation of cluster models, and accuracy rates of the clusters. However no single clustering algorithm proves to be the most efficient in providing best results. Accordingly in order to find the solution to this issue a new technique, called Cluster ensemble method was bloomed. This cluster ensemble is a good alternative approach for facing the cluster analysis problem. The main hope of the cluster ensemble is to merge different clustering solutions in such a way to achieve accuracy and to improve the quality of individual data clustering. Due to the substantial and unremitting development of new methods in the sphere of data mining and also the incessant interest in inventing new algorithms, makes obligatory to scrutinize a critical analysis of the existing techniques and the future novelty. This paper exposes the comparative study of different cluster ensemble methods along with their features, systematic working process and the average accuracy and error rates of each ensemble methods. Consequently this speculative and comprehensive analysis will be very useful for the community of clustering practitioners and also helps in deciding the most suitable one to rectify the problem in hand.
Keywords: Clustering, Cluster Ensemble methods, Co-association matrix, Consensus function, Median partition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26048025 Unsupervised Classification of DNA Barcodes Species Using Multi-Library Wavelet Networks
Authors: Abdesselem Dakhli, Wajdi Bellil, Chokri Ben Amar
Abstract:
DNA Barcode provides good sources of needed information to classify living species. The classification problem has to be supported with reliable methods and algorithms. To analyze species regions or entire genomes, it becomes necessary to use the similarity sequence methods. A large set of sequences can be simultaneously compared using Multiple Sequence Alignment which is known to be NP-complete. However, all the used methods are still computationally very expensive and require significant computational infrastructure. Our goal is to build predictive models that are highly accurate and interpretable. In fact, our method permits to avoid the complex problem of form and structure in different classes of organisms. The empirical data and their classification performances are compared with other methods. Evenly, in this study, we present our system which is consisted of three phases. The first one, is called transformation, is composed of three sub steps; Electron-Ion Interaction Pseudopotential (EIIP) for the codification of DNA Barcodes, Fourier Transform and Power Spectrum Signal Processing. Moreover, the second phase step is an approximation; it is empowered by the use of Multi Library Wavelet Neural Networks (MLWNN). Finally, the third one, is called the classification of DNA Barcodes, is realized by applying the algorithm of hierarchical classification.Keywords: DNA Barcode, Electron-Ion Interaction Pseudopotential, Multi Library Wavelet Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19678024 Ear Protectors and Their Action in Protecting Hearing System of Workers against Occupational Noise
Authors: F. Forouharmajd, S. Pourabdian, N. Ziayi Ghahnavieh
Abstract:
For many years, the ear protectors have been used to preventing the audio and non-audio effects of received noise from occupation environments. Despite performing hearing protection programs, there are many people which still suffer from noise-induced hearing loss. This study was conducted with the aim of determination of human hearing system response to received noise and the effectiveness of ear protectors on preventing of noise-induced hearing loss. Sound pressure microphones were placed in a simulated ear canal. The severity of noise measured inside and outside of ear canal. The noise reduction values due to installing ear protectors were calculated in the octave band frequencies and LabVIEW programmer. The results of noise measurement inside and outside of ear canal showed a different in received sound levels by ear canal. The effectiveness of ear protectors has been considerably reduced for the low frequency limits. A change in resonance frequency also was observed after using ear protectors. The study indicated the ear canal structure may affect the received noise and it may lead a difference between the received sound from the measured sound by a sound level meter, and hearing system. It means the human hearing system may probably respond different from a sound level meter. Hearing protectors’ efficiency declines by increasing the noise levels, and thus, they are not suitable to protect workers against industrial noise particularly low frequency noise. Hearing protectors may be solely a reason to damaging of hearing system in a special frequency via changing of human hearing system acoustical structure. We need developing the subjective method of hearing protectors testing, because their evaluation is not designed based on industrial noise or in the field.
Keywords: Ear protector, hearing system, occupational noise, workers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7618023 Application of Data Envelopment Analysis to Assess Quality Management Efficiency
Authors: Chuen Tse Kuah, Kuan Yew Wong, Farzad Behrouzi
Abstract:
This paper is aimed to give an illustration on the application of Data Envelopment Analysis (DEA) as a tool to assess Quality Management (QM) efficiency. A variant of DEA, slack based measure (SBM) is used for this purpose. From this study, it is found that DEA is suitable to measure QM efficiency and give improvement suggestions to the inefficient QM.Keywords: Quality Management, Data Envelopment Analysis, Slack Based Measure, Efficiency Measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20908022 Nonlinear Fuzzy Tracking Real-time-based Control of Drying Parameters
Authors: Marco Soares dos Santos, Camila Nicola Boeri, Jorge Augusto Ferreira, Fernando Neto da Silva
Abstract:
The highly nonlinear characteristics of drying processes have prompted researchers to seek new nonlinear control solutions. However, the relation between the implementation complexity, on-line processing complexity, reliability control structure and controller-s performance is not well established. The present paper proposes high performance nonlinear fuzzy controllers for a real-time operation of a drying machine, being developed under a consistent match between those issues. A PCI-6025E data acquisition device from National Instruments® was used, and the control system was fully designed with MATLAB® / SIMULINK language. Drying parameters, namely relative humidity and temperature, were controlled through MIMOs Hybrid Bang-bang+PI (BPI) and Four-dimensional Fuzzy Logic (FLC) real-time-based controllers to perform drying tests on biological materials. The performance of the drying strategies was compared through several criteria, which are reported without controllers- retuning. Controllers- performance analysis has showed much better performance of FLC than BPI controller. The absolute errors were lower than 8,85 % for Fuzzy Logic Controller, about three times lower than the experimental results with BPI control.Keywords: Drying control, Fuzzy logic control, Intelligent temperature-humidity control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23388021 Modal Analysis of Machine Tool Column Using Finite Element Method
Authors: Migbar Assefa
Abstract:
The performance of a machine tool is eventually assessed by its ability to produce a component of the required geometry in minimum time and at small operating cost. It is customary to base the structural design of any machine tool primarily upon the requirements of static rigidity and minimum natural frequency of vibration. The operating properties of machines like cutting speed, feed and depth of cut as well as the size of the work piece also have to be kept in mind by a machine tool structural designer. This paper presents a novel approach to the design of machine tool column for static and dynamic rigidity requirement. Model evaluation is done effectively through use of General Finite Element Analysis software ANSYS. Studies on machine tool column are used to illustrate finite element based concept evaluation technique. This paper also presents results obtained from the computations of thin walled box type columns that are subjected to torsional and bending loads in case of static analysis and also results from modal analysis. The columns analyzed are square and rectangle based tapered open column, column with cover plate, horizontal partitions and with apertures. For the analysis purpose a total of 70 columns were analyzed for bending, torsional and modal analysis. In this study it is observed that the orientation and aspect ratio of apertures have no significant effect on the static and dynamic rigidity of the machine tool structure.
Keywords: Finite Element Modeling, Modal Analysis, Machine tool structure, Static Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50378020 Prototype of a Federative Factory Data Management for the Support of Factory Planning Processes
Authors: Christian Mosch, Reiner Anderl, Antonio Álvaro de Assis Moura, Klaus Schützer
Abstract:
Due to short product life cycles, increasing variety of products and short cycles of leap innovations manufacturing companies have to increase the flexibility of factory structures. Flexibility of factory structures is based on defined factory planning processes in which product, process and resource data of various partial domains have to be considered. Thus factory planning processes can be characterized as iterative, interdisciplinary and participative processes [1]. To support interdisciplinary and participative character of planning processes, a federative factory data management (FFDM) as a holistic solution will be described. FFDM is already implemented in form of a prototype. The interim results of the development of FFDM will be shown in this paper. The principles are the extracting of product, process and resource data from documents of various partial domains providing as web services on a server. The described data can be requested by the factory planner by using a FFDM-browser.Keywords: BRAGECRIM, Factory Planning Process, FactoryData Management, Web Services
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14968019 Optimisation of Structural Design by Integrating Genetic Algorithms in the Building Information Modelling Environment
Authors: Tofigh Hamidavi, Sepehr Abrishami, Pasquale Ponterosso, David Begg
Abstract:
Structural design and analysis is an important and time-consuming process, particularly at the conceptual design stage. Decisions made at this stage can have an enormous effect on the entire project, as it becomes ever costlier and more difficult to alter the choices made early on in the construction process. Hence, optimisation of the early stages of structural design can provide important efficiencies in terms of cost and time. This paper suggests a structural design optimisation (SDO) framework in which Genetic Algorithms (GAs) may be used to semi-automate the production and optimisation of early structural design alternatives. This framework has the potential to leverage conceptual structural design innovation in Architecture, Engineering and Construction (AEC) projects. Moreover, this framework improves the collaboration between the architectural stage and the structural stage. It will be shown that this SDO framework can make this achievable by generating the structural model based on the extracted data from the architectural model. At the moment, the proposed SDO framework is in the process of validation, involving the distribution of an online questionnaire among structural engineers in the UK.
Keywords: Building Information Modelling, BIM, Genetic Algorithm, GA, architecture-engineering-construction, AEC, Optimisation, structure, design, population, generation, selection, mutation, crossover, offspring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8228018 Effects of Dry Period Length on, Milk Production and Composition, Blood Metabolites and Complete Blood Count in Subsequent Lactation of Holstein Dairy Cows
Authors: Akbar Soleimani, Alireza Heravi Moussavi, Mohsen Danesh Mesgaran, Abolqasem Golian
Abstract:
Twenty - nine Holstein cows were used to evaluate the effects of different dry period (DP) lengths on milk yield and composition, some blood metabolites, and complete blood count (CBC). Cows were assigned to one of 2 treatments: 1) 60-d dry period, 2) 35-d DP. Milk yield, from calving to 60 days, was not different for cows on the treatments (p =0.130). Cows in the 35-d DP produced more milk protein and SNF compare with cows in treatment 1 (p ≤ 0.05). Serum glucose, non-esterified fatty acids (NEFA), beta hydroxyl butyrate acid (BHBA), blood urea nitrogen (BUN), urea, and glutamic oxaloacetic transaminase (GOT) were all similar among the treatments. Body condition score (BCS), body weight (BW), complete blood count (CBC) and health problems were similar between the treatments. The results of this study demonstrated we can reduce the dry period length to 35 days with no problems.
Keywords: complete blood count, dairy cows, dry period, milk yield
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19378017 Time Effective Structural Frequency Response Testing with Oblique Impact
Authors: Khoo Shin Yee, Lian Yee Cheng, Ong Zhi Chao, Zubaidah Ismail, Siamak Noroozi
Abstract:
Structural frequency response testing is accurate in identifying the dynamic characteristic of a machinery structure. In practical perspective, conventional structural frequency response testing such as experimental modal analysis with impulse technique (also known as “impulse testing”) has limitation especially on its long acquisition time. The high acquisition time is mainly due to the redundancy procedure where the engineer has to repeatedly perform the test in 3 directions, namely the axial-, horizontal- and vertical-axis, in order to comprehensively define the dynamic behavior of a 3D structure. This is unfavorable to numerous industries where the downtime cost is high. This study proposes to reduce the testing time by using oblique impact. Theoretically, a single oblique impact can induce significant vibration responses and vibration modes in all the 3 directions. Hence, the acquisition time with the implementation of the oblique impulse technique can be reduced by a factor of three (i.e. for a 3D dynamic system). This study initiates an experimental investigation of impulse testing with oblique excitation. A motor-driven test rig has been used for the testing purpose. Its dynamic characteristic has been identified using the impulse testing with the conventional normal impact and the proposed oblique impact respectively. The results show that the proposed oblique impulse testing is able to obtain all the desired natural frequencies in all 3 directions and thus providing a feasible solution for a fast and time effective way of conducting the impulse testing.Keywords: Frequency response function, impact testing, modal analysis, oblique angle, oblique impact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9328016 Region Segmentation based on Gaussian Dirichlet Process Mixture Model and its Application to 3D Geometric Stricture Detection
Authors: Jonghyun Park, Soonyoung Park, Sanggyun Kim, Wanhyun Cho, Sunworl Kim
Abstract:
In general, image-based 3D scenes can now be found in many popular vision systems, computer games and virtual reality tours. So, It is important to segment ROI (region of interest) from input scenes as a preprocessing step for geometric stricture detection in 3D scene. In this paper, we propose a method for segmenting ROI based on tensor voting and Dirichlet process mixture model. In particular, to estimate geometric structure information for 3D scene from a single outdoor image, we apply the tensor voting and Dirichlet process mixture model to a image segmentation. The tensor voting is used based on the fact that homogeneous region in an image are usually close together on a smooth region and therefore the tokens corresponding to centers of these regions have high saliency values. The proposed approach is a novel nonparametric Bayesian segmentation method using Gaussian Dirichlet process mixture model to automatically segment various natural scenes. Finally, our method can label regions of the input image into coarse categories: “ground", “sky", and “vertical" for 3D application. The experimental results show that our method successfully segments coarse regions in many complex natural scene images for 3D.
Keywords: Region segmentation, tensor voting, image-based 3D, geometric structure, Gaussian Dirichlet process mixture model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18918015 Analysis of a WDM System for Tanzania
Authors: Shaban Pazi, Chris Chatwin, Rupert Young, Philip Birch
Abstract:
Internet infrastructures in most places of the world have been supported by the advancement of optical fiber technology, most notably wavelength division multiplexing (WDM) system. Optical technology by means of WDM system has revolutionized long distance data transport and has resulted in high data capacity, cost reductions, extremely low bit error rate, and operational simplification of the overall Internet infrastructure. This paper analyses and compares the system impairments, which occur at data transmission rates of 2.5Gb/s and 10 Gb/s per wavelength channel in our proposed optical WDM system for Internet infrastructure in Tanzania. The results show that the data transmission rate of 2.5 Gb/s has minimum system impairments compared with a rate of 10 Gb/s per wavelength channel, and achieves a sufficient system performance to provide a good Internet access service.Keywords: Internet infrastructure, WDM system, standard single mode fibers, system impairments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16638014 Evaluation of Seismic Behavior of Steel Shear Wall with Opening with Hardener and Beam with Reduced Cross Section under Cycle Loading with Finite Element Analysis Method
Authors: Masoud Mahdavi
Abstract:
During an earthquake, the structure is subjected to seismic loads that cause tension in the members of the building. The use of energy dissipation elements in the structure reduces the percentage of seismic forces on the main members of the building (especially the columns). Steel plate shear wall, as one of the most widely used types of energy dissipation element, has evolved today, and regular drilling of its inner plate is one of the common cases. In the present study, using a finite element method, the shear wall of the steel plate is designed as a floor (with dimensions of 447 × 6/246 cm) with Abacus software and in three different modes on which a cyclic load has been applied. The steel shear wall has a horizontal element (beam) with a reduced beam section (RBS). The hole in the interior plate of the models is created in such a way that it has the process of increasing the area, which makes the effect of increasing the surface area of the hole on the seismic performance of the steel shear wall completely clear. In the end, it was found that with increasing the opening level in the steel shear wall (with reduced cross-section beam), total displacement and plastic strain indicators increased, structural capacity and total energy indicators decreased and the Mises Monson stress index did not change much.
Keywords: Steel plate shear wall with opening, cyclic loading, reduced cross-section beam, finite element method, Abaqus Software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6308013 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models
Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu
Abstract:
Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.
Keywords: DTM, unmanned aerial vehicle, UAV, random, Kriging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8108012 Stresses in Cast Metal Inlays Restored Molars
Authors: Sandu L., Topală F., Porojan S.
Abstract:
Cast metal inlays can be used on molars requiring a class II restoration instead amalgam and offer a durable alternative. Because it is known that class II inlays may increase the susceptibility to fracture, it is important to ensure optimal performance in selection of the adequate preparation design to reduce stresses in teeth structures and also in the restorations. The aim of the study was to investigate the influence of preparation design on stress distribution in molars with different class II preparations and in cast metal inlays. The first step of the study was to achieve 3D models in order to analyze teeth and cast metal class II inlays. The geometry of the intact tooth was obtained by 3D scanning using a manufactured device. With a NURBS modeling program the preparations and the appropriately inlays were designed. 3D models of first upper molars of the same shape and size were created. Inlay cavities designs were created using literature data. The geometrical model was exported and the mesh structure of the solid 3D model was created for structural simulations. Stresses were located around the occlusal contact areas. For the studied cases, the stress values were not significant influenced by the taper of the preparation. it was demonstrated stresses are higher in the cast metal restorations and therefore the strength of the teeth is not affected.Keywords: cast metal inlays, class II restoration, molars, 3D models, structural simulations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24268011 Frequent Itemset Mining Using Rough-Sets
Authors: Usman Qamar, Younus Javed
Abstract:
Frequent pattern mining is the process of finding a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set. It was proposed in the context of frequent itemsets and association rule mining. Frequent pattern mining is used to find inherent regularities in data. What products were often purchased together? Its applications include basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis. However, one of the bottlenecks of frequent itemset mining is that as the data increase the amount of time and resources required to mining the data increases at an exponential rate. In this investigation a new algorithm is proposed which can be uses as a pre-processor for frequent itemset mining. FASTER (FeAture SelecTion using Entropy and Rough sets) is a hybrid pre-processor algorithm which utilizes entropy and roughsets to carry out record reduction and feature (attribute) selection respectively. FASTER for frequent itemset mining can produce a speed up of 3.1 times when compared to original algorithm while maintaining an accuracy of 71%.
Keywords: Rough-sets, Classification, Feature Selection, Entropy, Outliers, Frequent itemset mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24358010 Analysis of Cross-Sectional and Retrograde Data on the Prevalence of Marginal Gingivitis
Authors: Ilma Robo, Saimir Heta, Nedja Hysi, Vera Ostreni
Abstract:
Introduction: Marginal gingivitis is a disease with considerable frequency among patients who present routinely for periodontal control and treatment. In fact, this disease may not have alarming symptoms in patients and may go unnoticed by themselves when personal hygiene conditions are optimal. The aim of this study was to collect retrograde data on the prevalence of marginal gingiva in the respective group of patients, evaluated according to specific periodontal diagnostic tools. Materials and methods: The study was conducted in two patient groups. The first group was with 34 patients, during December 2019-January 2020, and the second group was with 64 patients during 2010-2018 (each year in the mentioned monthly period). Bacterial plaque index, hemorrhage index, amount of gingival fluid, presence of xerostomia and candidiasis were recorded in patients. Results: Analysis of the collected data showed that susceptibility to marginal gingivitis shows higher values according to retrograde data, compared to cross-sectional ones. Susceptibility to candidiasis and the occurrence of xerostomia, even in the combination of both pathologies, as risk factors for the occurrence of marginal gingivitis, show higher values according to retrograde data. The female are presented with a reduced bacterial plaque index than the males, but more importantly, this index in the females is also associated with a reduced index of gingival hemorrhage, in contrast to the males. Conclusions: Cross-sectional data show that the prevalence of marginal gingivitis is more reduced, compared to retrograde data, based on the hemorrhage index and the bacterial plaque index together. Changes in production in the amount of gingival fluid show a higher prevalence of marginal gingivitis in cross-sectional data than in retrograde data; this is based on the sophistication of the way data are recorded, which evolves over time and also based on professional sensitivity to this phenomenon.
Keywords: Marginal gingivitis, cross-sectional, retrograde, prevalence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5128009 Reducing SAGE Data Using Genetic Algorithms
Authors: Cheng-Hong Yang, Tsung-Mu Shih, Li-Yeh Chuang
Abstract:
Serial Analysis of Gene Expression is a powerful quantification technique for generating cell or tissue gene expression data. The profile of the gene expression of cell or tissue in several different states is difficult for biologists to analyze because of the large number of genes typically involved. However, feature selection in machine learning can successfully reduce this problem. The method allows reducing the features (genes) in specific SAGE data, and determines only relevant genes. In this study, we used a genetic algorithm to implement feature selection, and evaluate the classification accuracy of the selected features with the K-nearest neighbor method. In order to validate the proposed method, we used two SAGE data sets for testing. The results of this study conclusively prove that the number of features of the original SAGE data set can be significantly reduced and higher classification accuracy can be achieved.Keywords: Serial Analysis of Gene Expression, Feature selection, Genetic Algorithm, K-nearest neighbor method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16108008 Growing Self Organising Map Based Exploratory Analysis of Text Data
Authors: Sumith Matharage, Damminda Alahakoon
Abstract:
Textual data plays an important role in the modern world. The possibilities of applying data mining techniques to uncover hidden information present in large volumes of text collections is immense. The Growing Self Organizing Map (GSOM) is a highly successful member of the Self Organising Map family and has been used as a clustering and visualisation tool across wide range of disciplines to discover hidden patterns present in the data. A comprehensive analysis of the GSOM’s capabilities as a text clustering and visualisation tool has so far not been published. These functionalities, namely map visualisation capabilities, automatic cluster identification and hierarchical clustering capabilities are presented in this paper and are further demonstrated with experiments on a benchmark text corpus.
Keywords: Text Clustering, Growing Self Organizing Map, Automatic Cluster Identification, Hierarchical Clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19968007 Antimicrobial Agents Produced by Yeasts
Authors: T. Buyuksirit, H. Kuleasan
Abstract:
Natural antimicrobials are used to preserve foods that can be found in plants, animals, and microorganisms. Antimicrobial substances are natural or artificial agents that produced by microorganisms or obtained semi/total chemical synthesis are used at low concentrations to inhibit the growth of other microorganisms. Food borne pathogens and spoilage microorganisms are inactivated by the use of antagonistic microorganisms and their metabolites. Yeasts can produce toxic proteins or glycoproteins (toxins) that cause inhibition of sensitive bacteria and yeast species. Antimicrobial substance producing phenotypes belonging different yeast genus were isolated from different sources. Toxins secreted by many yeast strains inhibiting the growth of other yeast strains. These strains show antimicrobial activity, inhibiting the growth of mold and bacteria. The effect of antimicrobial agents produced by yeasts can be extremely fast, and therefore may be used in various treatment procedures. Rapid inhibition of microorganisms is possibly caused by microbial cell membrane lipopolysaccharide binding and in activation (neutralization) effect. Antimicrobial agents inhibit the target cells via different mechanisms of action.
Keywords: Antimicrobial agents, Glycoprotein, Toxic protein, Yeast.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45498006 Effect of Stocking Density on Monosex Nile Tilapia Growth during Pond Culture in India
Authors: Suman B. Chakraborty, Samir Banerjee
Abstract:
Stocking density is considered one of the important factors affecting fish growth. But, information related to impact of stocking density on growth performance of monosex tilapia population under the ecological conditions of Gangetic plains in West Bengal, India is limited. The aim of our study was to compare the growth potential of monosex tilapia at various stocking densities and to determine an ideal stocking density for culture of all-male monosex fish. The males were isolated by examination of genital papilla region and were stocked separately in 0.01 ha earthen ponds at different stocking densities (5000, 10000, 15000, 20000, 25000 and 30000 fingerlings/ha). It was found that the highest weight, length, daily weight gain, growth rate and protein content were observed for the 20000 fish/ha density class. Thus, culture of monosex tilapia at a density of 20000 fish/ha can be considered ideal for augmented production of the fish under Indian context.Keywords: Growth potential, Nile tilapia, Pond culture, Stockingdensity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 58598005 Impact of Fixation Time on Subjective Video Quality Metric: a New Proposal for Lossy Compression Impairment Assessment
Authors: M. G. Albanesi, R. Amadeo
Abstract:
In this paper, a new approach for quality assessment tasks in lossy compressed digital video is proposed. The research activity is based on the visual fixation data recorded by an eye tracker. The method involved both a new paradigm for subjective quality evaluation and the subsequent statistical analysis to match subjective scores provided by the observer to the data obtained from the eye tracker experiments. The study brings improvements to the state of the art, as it solves some problems highlighted in literature. The experiments prove that data obtained from an eye tracker can be used to classify videos according to the level of impairment due to compression. The paper presents the methodology, the experimental results and their interpretation. Conclusions suggest that the eye tracker can be useful in quality assessment, if data are collected and analyzed in a proper way.Keywords: eye tracker, video compression, video qualityassessment, visual attention
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16068004 The Capacity Building in the Natural Disaster Management of Thailand
Authors: Eakarat Boonreang
Abstract:
The past two decades, Thailand faced the natural disasters, for instance, Gay typhoon in 1989, tsunami in 2004, and huge flood in 2011. The disaster management in Thailand was improved both structure and mechanism for cope with the natural disaster since 2007. However, the natural disaster management in Thailand has various problems, for examples, cooperation between related an organizations have not unity, inadequate resources, the natural disaster management of public sectors not proactive, people has not awareness the risk of the natural disaster, and communities did not participate in the natural disaster management. Objective of this study is to find the methods for capacity building in the natural disaster management of Thailand. The concept and information about the capacity building and the natural disaster management of Thailand were reviewed and analyzed by classifying and organizing data. The result found that the methods for capacity building in the natural disaster management of Thailand should be consist of 1) link operation and information in the natural disaster management between nation, province, local and community levels, 2) enhance competency and resources of public sectors which relate to the natural disaster management, 3) establish proactive natural disaster management both planning and implementation, 4) decentralize the natural disaster management to local government organizations, 5) construct public awareness in the natural disaster management to community, 6) support Community Based Disaster Risk Management (CBDRM) seriously, and 7) emphasis on participation in the natural disaster management of all stakeholders.
Keywords: Capacity Building, Community Based Disaster Risk Management, Natural Disaster Management, Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32478003 Miniaturization of a Rectangular Microstrip Patch Antenna Loaded with Metamaterial
Authors: Anahita Ghaznavi Jahromi, Farzad Mohajeri, Nooshin Feiz
Abstract:
In this paper a novel structure of metamaterial is proposed in order to miniaturize a rectangular microstrip patch antenna. The metamaterial is composed of two nested split octagons which are located on a 10 mmKeywords: Metamaterial, miniaturization, patch antenna, sub- wavelength resonance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43298002 Lessons to Management from the Control Loop Phenomenon
Authors: Raied Salman, Nazar Younis
Abstract:
In a none-super-competitive environment the concepts of closed system, management control remains to be the dominant guiding concept to management. The merits of closed loop have been the sources of most of the management literature and culture for many decades. It is a useful exercise to investigate and poke into the dynamics of the control loop phenomenon and draws some lessons to use for refining the practice of management. This paper examines the multitude of lessons abstracted from the behavior of the Input /output /feedback control loop model, which is the core of control theory. There are numerous lessons that can be learned from the insights this model would provide and how it parallels the management dynamics of the organization. It is assumed that an organization is basically a living system that interacts with the internal and external variables. A viable control loop is the one that reacts to the variation in the environment and provide or exert a corrective action. In managing organizations this is reflected in organizational structure and management control practices. This paper will report findings that were a result of examining several abstract scenarios that are exhibited in the design, operation, and dynamics of the control loop and how they are projected on the functioning of the organization. Valuable lessons are drawn in trying to find parallels and new paradigms, and how the control theory science is reflected in the design of the organizational structure and management practices. The paper is structured in a logical and perceptive format. Further research is needed to extend these findings.Keywords: Management theory, control theory, feed back, input/output, strategy, change, information technology, informationsystems, IS, organizational environment, organizations, opensystems, closed systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14358001 Reliable Consensus Problem for Multi-Agent Systems with Sampled-Data
Authors: S. H. Lee, M. J. Park, O. M. Kwon
Abstract:
In this paper, reliable consensus of multi-agent systems with sampled-data is investigated. By using a suitable Lyapunov-Krasovskii functional and some techniques such as Wirtinger Inequality, Schur Complement and Kronecker Product, the results of such system are obtained by solving a set of Linear Matrix Inequalities (LMIs). One numerical example is included to show the effectiveness of the proposed criteria.
Keywords: Multi-agent, Linear Matrix Inequalities (LMIs), Kronecker Product, Sampled-Data, Lyapunov method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17478000 Degree of Hydrolysis of Proteinaceous Components of Porang Flour Using Papain
Authors: Fadilah Fadilah, Rochmadi Rochmadi, Siti Syamsiah, Djagal W. Marseno
Abstract:
Glucomannan can be found in the tuber of porang together with starch and proteinaceous components which were regarded as impurities. An enzymatic process for obtaining higher glucomannan content from Porang flour have been conducted. Papain was used for hydrolysing proteinaceous components in Porang flour which was conducted after a simultaneous extraction of glucomannan and enzymatic starch hydrolysis. Three variables affecting the rate were studied, i.e. temperature, the amount of enzyme and the stirring speed. The ninhydrin method was used to determine degree of protein hydrolysis. Results showed that the rising of degree of hydrolysis were fast in the first ten minutes of the reaction and then proceeded slowly afterward. The optimum temperature for hydrolysis was 60 oC. Increasing the amount of enzyme showed a remarkable effect to degree of hydrolysis, but the stirring speed had no significant effect. This indicated that the reaction controlled the rate of hydrolysis.Keywords: Degree of hydrolysis, ninhydrin, papain, porang flour, proteinaceous components.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12767999 Deep-Learning Based Approach to Facial Emotion Recognition Through Convolutional Neural Network
Authors: Nouha Khediri, Mohammed Ben Ammar, Monji Kherallah
Abstract:
Recently, facial emotion recognition (FER) has become increasingly essential to understand the state of the human mind. However, accurately classifying emotion from the face is a challenging task. In this paper, we present a facial emotion recognition approach named CV-FER benefiting from deep learning, especially CNN and VGG16. First, the data are pre-processed with data cleaning and data rotation. Then, we augment the data and proceed to our FER model, which contains five convolutions layers and five pooling layers. Finally, a softmax classifier is used in the output layer to recognize emotions. Based on the above contents, this paper reviews the works of facial emotion recognition based on deep learning. Experiments show that our model outperforms the other methods using the same FER2013 database and yields a recognition rate of 92%. We also put forward some suggestions for future work.
Keywords: CNN, deep-learning, facial emotion recognition, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 710