Search results for: Galerkin technique
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3119

Search results for: Galerkin technique

1349 A Hybrid Radial-Based Neuro-GA Multiobjective Design of Laminated Composite Plates under Moisture and Thermal Actions

Authors: Mohammad Reza Ghasemi, Ali Ehsani

Abstract:

In this paper, the optimum weight and cost of a laminated composite plate is seeked, while it undergoes the heaviest load prior to a complete failure. Various failure criteria are defined for such structures in the literature. In this work, the Tsai-Hill theory is used as the failure criterion. The theory of analysis was based on the Classical Lamination Theory (CLT). A newly type of Genetic Algorithm (GA) as an optimization technique with a direct use of real variables was employed. Yet, since the optimization via GAs is a long process, and the major time is consumed through the analysis, Radial Basis Function Neural Networks (RBFNN) was employed in predicting the output from the analysis. Thus, the process of optimization will be carried out through a hybrid neuro-GA environment, and the procedure will be carried out until a predicted optimum solution is achieved.

Keywords: Composite Laminates, GA, Multi-objectiveOptimization, Neural Networks, RBFNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
1348 Prediction of Tool and Nozzle Flow Behavior in Ultrasonic Machining Process

Authors: Vinod Kumar, Jatinder Kumar

Abstract:

The use of hard and brittle material has become increasingly more extensive in recent years. Therefore processing of these materials for the parts fabrication has become a challenging problem. However, it is time-consuming to machine the hard brittle materials with the traditional metal-cutting technique that uses abrasive wheels. In addition, the tool would suffer excessive wear as well. However, if ultrasonic energy is applied to the machining process and coupled with the use of hard abrasive grits, hard and brittle materials can be effectively machined. Ultrasonic machining process is mostly used for the brittle materials. The present research work has developed models using finite element approach to predict the mechanical stresses sand strains produced in the tool during ultrasonic machining process. Also the flow behavior of abrasive slurry coming out of the nozzle has been studied for simulation using ANSYS CFX module. The different abrasives of different grit sizes have been used for the experimentation work.

Keywords: Stress, MRR, Flow, Ultrasonic Machining

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2810
1347 High Performance VLSI Architecture of 2D Discrete Wavelet Transform with Scalable Lattice Structure

Authors: Juyoung Kim, Taegeun Park

Abstract:

In this paper, we propose a fully-utilized, block-based 2D DWT (discrete wavelet transform) architecture, which consists of four 1D DWT filters with two-channel QMF lattice structure. The proposed architecture requires about 2MN-3N registers to save the intermediate results for higher level decomposition, where M and N stand for the filter length and the row width of the image respectively. Furthermore, the proposed 2D DWT processes in horizontal and vertical directions simultaneously without an idle period, so that it computes the DWT for an N×N image in a period of N2(1-2-2J)/3. Compared to the existing approaches, the proposed architecture shows 100% of hardware utilization and high throughput rates. To mitigate the long critical path delay due to the cascaded lattices, we can apply the pipeline technique with four stages, while retaining 100% of hardware utilization. The proposed architecture can be applied in real-time video signal processing.

Keywords: discrete wavelet transform, VLSI architecture, QMF lattice filter, pipelining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
1346 Mining Implicit Knowledge to Predict Political Risk by Providing Novel Framework with Using Bayesian Network

Authors: Siavash Asadi Ghajarloo

Abstract:

Nowadays predicting political risk level of country has become a critical issue for investors who intend to achieve accurate information concerning stability of the business environments. Since, most of the times investors are layman and nonprofessional IT personnel; this paper aims to propose a framework named GECR in order to help nonexpert persons to discover political risk stability across time based on the political news and events. To achieve this goal, the Bayesian Networks approach was utilized for 186 political news of Pakistan as sample dataset. Bayesian Networks as an artificial intelligence approach has been employed in presented framework, since this is a powerful technique that can be applied to model uncertain domains. The results showed that our framework along with Bayesian Networks as decision support tool, predicted the political risk level with a high degree of accuracy.

Keywords: Bayesian Networks, Data mining, GECRframework, Predicting political risk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
1345 Robot Vision Application based on Complex 3D Pose Computation

Authors: F. Rotaru, S. Bejinariu, C. D. Niţâ, R. Luca, I. Pâvâloi, C. Lazâr

Abstract:

The paper presents a technique suitable in robot vision applications where it is not possible to establish the object position from one view. Usually, one view pose calculation methods are based on the correspondence of image features established at a training step and exactly the same image features extracted at the execution step, for a different object pose. When such a correspondence is not feasible because of the lack of specific features a new method is proposed. In the first step the method computes from two views the 3D pose of feature points. Subsequently, using a registration algorithm, the set of 3D feature points extracted at the execution phase is aligned with the set of 3D feature points extracted at the training phase. The result is a Euclidean transform which have to be used by robot head for reorientation at execution step.

Keywords: features correspondence, registration algorithm, robot vision, triangulation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1472
1344 A Wavelet-Based Watermarking Method Exploiting the Contrast Sensitivity Function

Authors: John N. Ellinas, Panagiotis Kenterlis

Abstract:

The efficiency of an image watermarking technique depends on the preservation of visually significant information. This is attained by embedding the watermark transparently with the maximum possible strength. The current paper presents an approach for still image digital watermarking in which the watermark embedding process employs the wavelet transform and incorporates Human Visual System (HVS) characteristics. The sensitivity of a human observer to contrast with respect to spatial frequency is described by the Contrast Sensitivity Function (CSF). The strength of the watermark within the decomposition subbands, which occupy an interval on the spatial frequencies, is adjusted according to this sensitivity. Moreover, the watermark embedding process is carried over the subband coefficients that lie on edges where distortions are less noticeable. The experimental evaluation of the proposed method shows very good results in terms of robustness and transparency.

Keywords: Image watermarking, wavelet transform, human visual system, contrast sensitivity function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2092
1343 Retrieving Similar Segmented Objects Using Motion Descriptors

Authors: Konstantinos C. Kartsakalis, Angeliki Skoura, Vasileios Megalooikonomou

Abstract:

The fuzzy composition of objects depicted in images acquired through MR imaging or the use of bio-scanners has often been a point of controversy for field experts attempting to effectively delineate between the visualized objects. Modern approaches in medical image segmentation tend to consider fuzziness as a characteristic and inherent feature of the depicted object, instead of an undesirable trait. In this paper, a novel technique for efficient image retrieval in the context of images in which segmented objects are either crisp or fuzzily bounded is presented. Moreover, the proposed method is applied in the case of multiple, even conflicting, segmentations from field experts. Experimental results demonstrate the efficiency of the suggested method in retrieving similar objects from the aforementioned categories while taking into account the fuzzy nature of the depicted data.

Keywords: Fuzzy Object, Fuzzy Image Segmentation, Motion Descriptors, MRI Imaging, Object-Based Image Retrieval.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2302
1342 The Effect of Increment in Simulation Samples on a Combined Selection Procedure

Authors: Mohammad H. Almomani, Rosmanjawati Abdul Rahman

Abstract:

Statistical selection procedures are used to select the best simulated system from a finite set of alternatives. In this paper, we present a procedure that can be used to select the best system when the number of alternatives is large. The proposed procedure consists a combination between Ranking and Selection, and Ordinal Optimization procedures. In order to improve the performance of Ordinal Optimization, Optimal Computing Budget Allocation technique is used to determine the best simulation lengths for all simulation systems and to reduce the total computation time. We also argue the effect of increment in simulation samples for the combined procedure. The results of numerical illustration show clearly the effect of increment in simulation samples on the proposed combination of selection procedure.

Keywords: Indifference-Zone, Optimal Computing Budget Allocation, Ordinal Optimization, Ranking and Selection, Subset Selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1242
1341 Flux Cored Arc Welding Parameter Optimization of AISI 316L (N) Austenitic Stainless Steel

Authors: D.Katherasan, Madana Sashikant, S.Sandeep Bhat, P.Sathiya

Abstract:

Bead-on-plate welds were carried out on AISI 316L (N) austenitic stainless steel (ASS) using flux cored arc welding (FCAW) process. The bead on plates weld was conducted as per L25 orthogonal array. In this paper, the weld bead geometry such as depth of penetration (DOP), bead width (BW) and weld reinforcement (R) of AISI 316L (N) ASS are investigated. Taguchi approach is used as statistical design of experiment (DOE) technique for optimizing the selected welding input parameters. Grey relational analysis and desirability approach are applied to optimize the input parameters considering multiple output variables simultaneously. Confirmation experiment has also been conducted to validate the optimized parameters.

Keywords: bead-on-plate welding, bead profiles, desirability approach, grey relational analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2398
1340 Use of Linear Programming for Optimal Production in a Production Line in Saudi Food Co.

Authors: Qasim M. Kriri

Abstract:

Few Saudi Arabia production companies face financial profit issues until this moment. This work presents a linear integer programming model that solves a production problem of a Saudi Food Company in Saudi Arabia. An optimal solution to the above-mentioned problem is a Linear Programming solution. In this regard, the main purpose of this project is to maximize profit. Linear Programming Technique has been used to derive the maximum profit from production of natural juice at Saudi Food Co. The operations of production of the company were formulated and optimal results are found out by using Lindo Software that employed Sensitivity Analysis and Parametric linear programming in order develop Linear Programming. In addition, the parameter values are increased, then the values of the objective function will be increased.

Keywords: Parameter linear programming, objective function, sensitivity analysis, optimize profit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2911
1339 Nature Inspired Metaheuristic Algorithms for Multilevel Thresholding Image Segmentation - A Survey

Authors: C. Deepika, J. Nithya

Abstract:

Segmentation is one of the essential tasks in image processing. Thresholding is one of the simplest techniques for performing image segmentation. Multilevel thresholding is a simple and effective technique. The primary objective of bi-level or multilevel thresholding for image segmentation is to determine a best thresholding value. To achieve multilevel thresholding various techniques has been proposed. A study of some nature inspired metaheuristic algorithms for multilevel thresholding for image segmentation is conducted. Here, we study about Particle swarm optimization (PSO) algorithm, artificial bee colony optimization (ABC), Ant colony optimization (ACO) algorithm and Cuckoo search (CS) algorithm.

Keywords: Ant colony optimization, Artificial bee colony optimization, Cuckoo search algorithm, Image segmentation, Multilevel thresholding, Particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3523
1338 Chemical and Vibrational Nonequilibrium Hypersonic Viscous Flow around an Axisymmetric Blunt Body

Authors: R. Haoui

Abstract:

Hypersonic flows around spatial vehicles during their reentry phase in planetary atmospheres are characterized by intense aerothermodynamics phenomena. The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium for air mixture species and the no slip condition at the wall. For this purpose, the Navier-Stokes equations system is resolved by the finite volume methodology to determine the flow parameters around the axisymmetric blunt body especially at the stagnation point and in the boundary layer along the wall of the blunt body. The code allows the capture of shock wave before a blunt body placed in hypersonic free stream. The numerical technique uses the Flux Vector Splitting method of Van Leer. CFL coefficient and mesh size level are selected to ensure the numerical convergence.

Keywords: Hypersonic flow, viscous flow, chemical kinetic, dissociation, finite volumes, frozen and non-equilibrium flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
1337 Risk Assessment of Building Information Modelling Adoption in Construction Projects

Authors: Amirhossein Karamoozian, Desheng Wu, Behzad Abbasnejad

Abstract:

Building information modelling (BIM) is a new technology to enhance the efficiency of project management in the construction industry. In addition to the potential benefits of this useful technology, there are various risks and obstacles to applying it in construction projects. In this study, a decision making approach is presented for risk assessment in BIM adoption in construction projects. Various risk factors of exerting BIM during different phases of the project lifecycle are identified with the help of Delphi method, experts’ opinions and related literature. Afterward, Shannon’s entropy and Fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Situation) are applied to derive priorities of the identified risk factors. Results indicated that lack of knowledge between professional engineers about workflows in BIM and conflict of opinions between different stakeholders are the risk factors with the highest priority.

Keywords: Risk, BIM, Shannon’s entropy, Fuzzy TOPSIS, construction projects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
1336 Screened Potential in a Reverse Monte Carlo (RMC) Simulation

Authors: M. Habchi, S. M. Mesli, M. Kotbi

Abstract:

A structural study of an aqueous electrolyte whose experimental results are available. It is a solution of LiCl-6H2O type at glassy state (120K) contrasted with pure water at room temperature by means of Partial Distribution Functions (PDF) issue from neutron scattering technique. Based on these partial functions, the Reverse Monte Carlo method (RMC) computes radial and angular correlation functions which allow exploring a number of structural features of the system. The obtained curves include some artifacts. To remedy this, we propose to introduce a screened potential as an additional constraint. Obtained results show a good matching between experimental and computed functions and a significant improvement in PDFs curves with potential constraint. It suggests an efficient fit of pair distribution functions curves.

Keywords: RMC simulation; Screened potential; partial and pair distribution functions; glassy and liquid state

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
1335 Novel Process Formulation of Multiple Unit Tablet of Pantoprazole

Authors: Vipin Saini, Sunil Kamboj, Suman Bala, A. Pandurangan

Abstract:

The present invention relates to multiple-unit tablet dosage forms, which is composed of several subunits (multiparticulates/pellets). Each small multiparticulate further composed of many layers. Some layer contains drug substance; others are rate controlling polymer. The resulting multiple-unit tablet dosage forms of pantoprazole were satisfactory fabricated. Pelletization technique has some advantages over coated tablet formulation. In coated tablet the coating may be damaged and a pinhole possibly formed that would result in increased release of drug in stomach and may be deactivated in stomach juices. If the coat of some pellets may be damaged that would not affect the release properties of the multiple-unit tablet. Hence they are beneficial in this aspect. The results confirmed the successful preparation of stable and bioequivalent once daily controlled release multiple-unit tablets of pantoprazole.

Keywords: Controlled release, multiple unit tablets, pantoprazole, pelletization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3257
1334 Observations about the Principal Components Analysis and Data Clustering Techniques in the Study of Medical Data

Authors: Cristina G. Dascâlu, Corina Dima Cozma, Elena Carmen Cotrutz

Abstract:

The medical data statistical analysis often requires the using of some special techniques, because of the particularities of these data. The principal components analysis and the data clustering are two statistical methods for data mining very useful in the medical field, the first one as a method to decrease the number of studied parameters, and the second one as a method to analyze the connections between diagnosis and the data about the patient-s condition. In this paper we investigate the implications obtained from a specific data analysis technique: the data clustering preceded by a selection of the most relevant parameters, made using the principal components analysis. Our assumption was that, using the principal components analysis before data clustering - in order to select and to classify only the most relevant parameters – the accuracy of clustering is improved, but the practical results showed the opposite fact: the clustering accuracy decreases, with a percentage approximately equal with the percentage of information loss reported by the principal components analysis.

Keywords: Data clustering, medical data, principal components analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502
1333 Effect of Preheating Temperature and Chamber Pressure on the Properties of Porous NiTi Alloy Prepared by SHS Technique

Authors: Wisutmethangoon S., Denmud N., Sikong L.

Abstract:

The fabrication of porous NiTi shape memory alloys (SMAs) from elemental powder compacts was conducted by selfpropagating high temperature synthesis (SHS). Effects of the preheating temperature and the chamber pressure on the combustion characteristics as well as the final morphology and the composition of products were studied. The samples with porosity between 56.4 and 59.0% under preheating temperature in the range of 200-300°C and Ar-gas chamber pressure of 138 and 201 kPa were obtained. The pore structures were found to be dissimilar only in the samples processed with different preheating temperature. The major phase in the porous product is NiTi with small amounts of secondary phases, NiTi2 and Ni4Ti3. The preheating temperature and the chamber pressure have very little effect on the phase constituent. While the combustion temperature of the sample was notably increased by increasing the preheating temperature, they were slightly changed by varying the chamber pressure.

Keywords: Combustion synthesis, porous materials, self propagating high temperature synthesis, shape memory alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
1332 A Multiagent System for Distributed Systems Management

Authors: H. M. Kelash, H. M. Faheem, M. Amoon

Abstract:

The demand for autonomous resource management for distributed systems has increased in recent years. Distributed systems require an efficient and powerful communication mechanism between applications running on different hosts and networks. The use of mobile agent technology to distribute and delegate management tasks promises to overcome the scalability and flexibility limitations of the currently used centralized management approach. This work proposes a multiagent system that adopts mobile agents as a technology for tasks distribution, results collection, and management of resources in large-scale distributed systems. A new mobile agent-based approach for collecting results from distributed system elements is presented. The technique of artificial intelligence based on intelligent agents giving the system a proactive behavior. The presented results are based on a design example of an application operating in a mobile environment.

Keywords: distributed management, distributed systems, efficiency, mobile agent, multiagent, response time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085
1331 Experimental Studies on Multiphase Flow in Porous Media and Pore Wettability

Authors: Xingxun Li, Xianfeng Fan

Abstract:

Multiphase flow transport in porous medium is very common and significant in science and engineering applications. For example, in CO2 Storage and Enhanced Oil Recovery processes, CO2 has to be delivered to the pore spaces in reservoirs and aquifers. CO2 storage and enhance oil recovery are actually displacement processes, in which oil or water is displaced by CO2. This displacement is controlled by pore size, chemical and physical properties of pore surfaces and fluids, and also pore wettability. In this study, a technique was developed to measure the pressure profile for driving gas/liquid to displace water in pores. Through this pressure profile, the impact of pore size on the multiphase flow transport and displacement can be analyzed. The other rig developed can be used to measure the static and dynamic pore wettability and investigate the effects of pore size, surface tension, viscosity and chemical structure of liquids on pore wettability.

Keywords: Enhanced oil recovery, Multiphase flow, Pore size, Pore wettability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2327
1330 New Approach for Load Modeling

Authors: S. Chokri

Abstract:

Load modeling is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques.

Keywords: Neural network, Load Forecasting, Fuzzy inference, Machine learning, Fuzzy modeling and rule extraction, Support Vector Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
1329 Generation of Photo-Mosaic Images through Block Matching and Color Adjustment

Authors: Hae-Yeoun Lee

Abstract:

Mosaic refers to a technique that makes image by gathering lots of small materials in various colors. This paper presents an automatic algorithm that makes the photo-mosaic image using photos. The algorithm is composed of 4 steps: partition and feature extraction, block matching, redundancy removal and color adjustment. The input image is partitioned in the small block to extract feature. Each block is matched to find similar photo in database by comparing similarity with Euclidean difference between blocks. The intensity of the block is adjusted to enhance the similarity of image by replacing the value of light and darkness with that of relevant block. Further, the quality of image is improved by minimizing the redundancy of tiles in the adjacent blocks. Experimental results support that the proposed algorithm is excellent in quantitative analysis and qualitative analysis.

Keywords: Photo-mosaic, Euclidean distance, Block matching, Intensity adjustment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3571
1328 An Approach to Noise Variance Estimation in Very Low Signal-to-Noise Ratio Stochastic Signals

Authors: Miljan B. Petrović, Dušan B. Petrović, Goran S. Nikolić

Abstract:

This paper describes a method for AWGN (Additive White Gaussian Noise) variance estimation in noisy stochastic signals, referred to as Multiplicative-Noising Variance Estimation (MNVE). The aim was to develop an estimation algorithm with minimal number of assumptions on the original signal structure. The provided MATLAB simulation and results analysis of the method applied on speech signals showed more accuracy than standardized AR (autoregressive) modeling noise estimation technique. In addition, great performance was observed on very low signal-to-noise ratios, which in general represents the worst case scenario for signal denoising methods. High execution time appears to be the only disadvantage of MNVE. After close examination of all the observed features of the proposed algorithm, it was concluded it is worth of exploring and that with some further adjustments and improvements can be enviably powerful.

Keywords: Noise, signal-to-noise ratio, stochastic signals, variance estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
1327 Low-Level Modeling for Optimal Train Routing and Scheduling in Busy Railway Stations

Authors: Quoc Khanh Dang, Thomas Bourdeaud’huy, Khaled Mesghouni, Armand Toguy´eni

Abstract:

This paper studies a train routing and scheduling problem for busy railway stations. Our objective is to allow trains to be routed in dense areas that are reaching saturation. Unlike traditional methods that allocate all resources to setup a route for a train and until the route is freed, our work focuses on the use of resources as trains progress through the railway node. This technique allows a larger number of trains to be routed simultaneously in a railway node and thus reduces their current saturation. To deal with this problem, this study proposes an abstract model and a mixed-integer linear programming formulation to solve it. The applicability of our method is illustrated on a didactic example.

Keywords: Busy railway stations, mixed-integer linear programming, offline railway station management, train platforming, train routing, train scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 733
1326 An Investigation on Efficient Spreading Codes for Transmitter Based Techniques to Mitigate MAI and ISI in TDD/CDMA Downlink

Authors: Abhijit Mitra, C. Ardil

Abstract:

We investigate efficient spreading codes for transmitter based techniques of code division multiple access (CDMA) systems. The channel is considered to be known at the transmitter which is usual in a time division duplex (TDD) system where the channel is assumed to be the same on uplink and downlink. For such a TDD/CDMA system, both bitwise and blockwise multiuser transmission schemes are taken up where complexity is transferred to the transmitter side so that the receiver has minimum complexity. Different spreading codes are considered at the transmitter to spread the signal efficiently over the entire spectrum. The bit error rate (BER) curves portray the efficiency of the codes in presence of multiple access interference (MAI) as well as inter symbol interference (ISI).

Keywords: Code division multiple access, time division duplex, transmitter technique, precoding, pre-rake, rake, spreading code.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1474
1325 Effect of Adaptation Gain on system Performance for Model Reference Adaptive Control Scheme using MIT Rule

Authors: Pankaj Swarnkar, Shailendra Jain, R.K Nema

Abstract:

Adaptive control involves modifying the control law used by the controller to cope with the fact that the parameters of the system being controlled change drastically due to change in environmental conditions or in system itself. This technique is based on the fundamental characteristic of adaptation of living organism. The adaptive control process is one that continuously and automatically measures the dynamic behavior of plant, compares it with the desired output and uses the difference to vary adjustable system parameters or to generate an actuating signal in such a way so that optimal performance can be maintained regardless of system changes. This paper deals with application of model reference adaptive control scheme in first order system. The rule which is used for this application is MIT rule. This paper also shows the effect of adaptation gain on the system performance. Simulation is done in MATLAB and results are discussed in detail.

Keywords: Adaptive control system, Adaptation gain, MIT rule, Model reference adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2227
1324 LabVIEW with Fuzzy Logic Controller Simulation Panel for Condition Monitoring of Oil and Dry Type Transformer

Authors: N. A. Muhamad, S.A.M. Ali

Abstract:

Condition monitoring of electrical power equipment has attracted considerable attention for many years. The aim of this paper is to use Labview with Fuzzy Logic controller to build a simulation system to diagnose transformer faults and monitor its condition. The front panel of the system was designed using LabVIEW to enable computer to act as customer-designed instrument. The dissolved gas-in-oil analysis (DGA) method was used as technique for oil type transformer diagnosis; meanwhile terminal voltages and currents analysis method was used for dry type transformer. Fuzzy Logic was used as expert system that assesses all information keyed in at the front panel to diagnose and predict the condition of the transformer. The outcome of the Fuzzy Logic interpretation will be displayed at front panel of LabVIEW to show the user the conditions of the transformer at any time.

Keywords: LabVIEW, Fuzzy Logic, condition monitoring, oiltransformer, dry transformer, DGA, terminal values.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3232
1323 Assessing the Effect of the Shift of Rural Labor towards Non-Agricultural Sectors on Rice Cultivation in the African Environment: Evidence from Sierra Leone

Authors: Alhaji M. H Conteh, Xiangbin Yan, Alfred V Gborie

Abstract:

The crop rice is the staple food of most Sierra Leone with no close substitute. However, its cultivation has been on its last legs over the years. The decline in the domestic rice cultivation has had vicious socio-economic implications such as hiking consumer prices, balance of payment dilemmas with debt burden. The objective of this study is thus, to assess the effect of the shift of rural labour towards non-agricultural sectors on rice cultivation. The tools utilized for analyzing the problem under consideration involved a thorough descriptive statistics and generalized linear model using OLS technique. Increased rural population was established positive and significant in affecting rice cultivation. Fertilizer utilization was insignificant in rice cultivation. For reducing the shift of rural labor force towards nonagricultural sectors, the government should make the agricultural sector very lucrative.

Keywords: Regression Model, Rice Cultivation, Rural Migration, Sierra Leone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
1322 Design of Power System Stabilizer Based on Sliding Mode Control Theory for Multi- Machine Power System

Authors: Hossein Shahinzadeh, Ladan Darougaran, Ebrahim Jalili Sani, Hamed Yavari, Mahdi Mozaffari Legha

Abstract:

This paper present a new method for design of power system stabilizer (PSS) based on sliding mode control (SMC) technique. The control objective is to enhance stability and improve the dynamic response of the multi-machine power system. In order to test effectiveness of the proposed scheme, simulation will be carried out to analyze the small signal stability characteristics of the system about the steady state operating condition following the change in reference mechanical torque and also parameters uncertainties. For comparison, simulation of a conventional control PSS (lead-lag compensation type) will be carried out. The main approach is focusing on the control performance which later proven to have the degree of shorter reaching time and lower spike.

Keywords: Power system stabilizer (PSS), multi-machine power system, sliding mode control

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2372
1321 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall

Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.

Keywords: Building energy management, machine learning, simulation-based optimization, operation planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990
1320 Evaluation of Groundwater Quality and Its Suitability for Drinking and Agricultural Purposes Using Self-Organizing Maps

Authors: L. Belkhiri, L. Mouni, A. Tiri, T.S. Narany

Abstract:

In the present study, the self-organizing map (SOM) clustering technique was applied to identify homogeneous clusters of hydrochemical parameters in El Milia plain, Algeria, to assess the quality of groundwater for potable and agricultural purposes. The visualization of SOM-analysis indicated that 35 groundwater samples collected in the study area were classified into three clusters, which showed progressive increase in electrical conductivity from cluster one to cluster three. Samples belonging to cluster one are mostly located in the recharge zone showing hard fresh water type, however, water type gradually changed to hard-brackish type in the discharge zone, including clusters two and three. Ionic ratio studies indicated the role of carbonate rock dissolution in increases on groundwater hardness, especially in cluster one. However, evaporation and evapotranspiration are the main processes increasing salinity in cluster two and three.

Keywords: Drinking water, groundwater quality, irrigation water, self-organizing maps.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244