Search results for: Continuous Genetic Algorithm (C-GA)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4332

Search results for: Continuous Genetic Algorithm (C-GA)

2562 Prediction the Limiting Drawing Ratio in Deep Drawing Process by Back Propagation Artificial Neural Network

Authors: H.Mohammadi Majd, M.Jalali Azizpour, M. Goodarzi

Abstract:

In this paper back-propagation artificial neural network (BPANN) with Levenberg–Marquardt algorithm is employed to predict the limiting drawing ratio (LDR) of the deep drawing process. To prepare a training set for BPANN, some finite element simulations were carried out. die and punch radius, die arc radius, friction coefficient, thickness, yield strength of sheet and strain hardening exponent were used as the input data and the LDR as the specified output used in the training of neural network. As a result of the specified parameters, the program will be able to estimate the LDR for any new given condition. Comparing FEM and BPANN results, an acceptable correlation was found.

Keywords: BPANN, deep drawing, prediction, limiting drawingratio (LDR), Levenberg–Marquardt algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
2561 Implication and Genetic Variations on Lipid Profile of the Fasting Respondent

Authors: Rohayu Izanwati M. R., Muhamad Ridhwan M. R., Abbe Maleyki M. J., Ahmad Zubaidi A. L., Zahri M. K.

Abstract:

PPARs function as regulators of lipid and lipoprotein metabolism. The aim of the study was to compare the lipid profile between two phases of fasting and to examine the frequency and relationship of peroxisome proliferator-activated receptor, PPARα gene polymorphisms to lipid profile in fasting respondents. We conducted a case-control study protocol, which included 21 healthy volunteers without gender discrimination at the age of 18 years old. 3 ml of blood sample was drawn before the fasting phase and during the fasting phase (in Ramadhan month). 1ml of serum for the lipid profile was analyzed by using the automated chemistry analyser (Olympus, AU 400) and the data were analysed using the Paired T-Test (SPSS ver.20). DNA was extracted and PCR was conducted utilising 6 sets of primer. Primers were designed within 6 exons of interest in PPARα gene. Genetic and metabolic characteristics of fasting respondents and controls were estimated and compared. Fasting respondents were significantly have lowered the LDL levels (p=0.03). There were no polymorphisms detected except in exon 1 with 5% of this population study respectively. The polymorphisms in exon 1 of the PPARα gene were found in low frequency. Regarding the 1375G/T and 1386G/T polymorphisms in the exon 1 of the PPARα gene, the T-allele in fasting phase had no association with the decreased LDL levels (Fisher Exact Test). However this association is more promising when the sample size is larger in order to elucidate the precise impact of the polymorphisms on lipid profile in the population. In conclusion, the PPARα gene polymorphisms do not appear to affect the LDL of fasting respondents.

Keywords: Fasting, LDL, Peroxisome proliferator activated receptor alpha (PPAR-α), Polymorphisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
2560 A Fuzzy-Rough Feature Selection Based on Binary Shuffled Frog Leaping Algorithm

Authors: Javad Rahimipour Anaraki, Saeed Samet, Mahdi Eftekhari, Chang Wook Ahn

Abstract:

Feature selection and attribute reduction are crucial problems, and widely used techniques in the field of machine learning, data mining and pattern recognition to overcome the well-known phenomenon of the Curse of Dimensionality. This paper presents a feature selection method that efficiently carries out attribute reduction, thereby selecting the most informative features of a dataset. It consists of two components: 1) a measure for feature subset evaluation, and 2) a search strategy. For the evaluation measure, we have employed the fuzzy-rough dependency degree (FRFDD) of the lower approximation-based fuzzy-rough feature selection (L-FRFS) due to its effectiveness in feature selection. As for the search strategy, a modified version of a binary shuffled frog leaping algorithm is proposed (B-SFLA). The proposed feature selection method is obtained by hybridizing the B-SFLA with the FRDD. Nine classifiers have been employed to compare the proposed approach with several existing methods over twenty two datasets, including nine high dimensional and large ones, from the UCI repository. The experimental results demonstrate that the B-SFLA approach significantly outperforms other metaheuristic methods in terms of the number of selected features and the classification accuracy.

Keywords: Binary shuffled frog leaping algorithm, feature selection, fuzzy-rough set, minimal reduct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
2559 An Improved Data Mining Method Applied to the Search of Relationship between Metabolic Syndrome and Lifestyles

Authors: Yi Chao Huang, Yu Ling Liao, Chiu Shuang Lin

Abstract:

A data cutting and sorting method (DCSM) is proposed to optimize the performance of data mining. DCSM reduces the calculation time by getting rid of redundant data during the data mining process. In addition, DCSM minimizes the computational units by splitting the database and by sorting data with support counts. In the process of searching for the relationship between metabolic syndrome and lifestyles with the health examination database of an electronics manufacturing company, DCSM demonstrates higher search efficiency than the traditional Apriori algorithm in tests with different support counts.

Keywords: Data mining, Data cutting and sorting method, Apriori algorithm, Metabolic syndrome

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
2558 Relevance Feedback within CBIR Systems

Authors: Mawloud Mosbah, Bachir Boucheham

Abstract:

We present here the results for a comparative study of some techniques, available in the literature, related to the relevance feedback mechanism in the case of a short-term learning. Only one method among those considered here is belonging to the data mining field which is the K-nearest neighbors algorithm (KNN) while the rest of the methods is related purely to the information retrieval field and they fall under the purview of the following three major axes: Shifting query, Feature Weighting and the optimization of the parameters of similarity metric. As a contribution, and in addition to the comparative purpose, we propose a new version of the KNN algorithm referred to as an incremental KNN which is distinct from the original version in the sense that besides the influence of the seeds, the rate of the actual target image is influenced also by the images already rated. The results presented here have been obtained after experiments conducted on the Wang database for one iteration and utilizing color moments on the RGB space. This compact descriptor, Color Moments, is adequate for the efficiency purposes needed in the case of interactive systems. The results obtained allow us to claim that the proposed algorithm proves good results; it even outperforms a wide range of techniques available in the literature.

Keywords: CBIR, Category Search, Relevance Feedback (RFB), Query Point Movement, Standard Rocchio’s Formula, Adaptive Shifting Query, Feature Weighting, Optimization of the Parameters of Similarity Metric, Original KNN, Incremental KNN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2342
2557 Modeling of Processes Running in Radical Clusters Formed by Ionizing Radiation with the Help of Continuous Petri Nets and Oxygen Effect

Authors: J. Barilla, M. Lokajíček, H. Pisaková, P. Simr

Abstract:

The final biological effect of ionizing particles may be influenced strongly by some chemical substances present in cells mainly in the case of low-LET radiation. The influence of oxygen may by particularly important because oxygen is always present in living cells. The corresponding processes are then running mainly in the chemical stage of radiobiological mechanism.

The radical clusters formed by densely ionizing ends of primary or secondary charged particles are mainly responsible for final biological effect. The damage effect depends then on radical concentration at a time when the cluster meets a DNA molecule. It may be strongly influenced by oxygen present in a cell as oxygen may act in different directions: at small concentration of it the interaction with hydrogen radicals prevails while at higher concentrations additional efficient oxygen radicals may be formed.

The basic radical concentration in individual clusters diminishes, which is influenced by two parallel processes: chemical reactions and diffusion of corresponding clusters. The given simultaneous evolution may be modeled and analyzed well with the help of Continuous Petri nets. The influence of other substances present in cells during irradiation may be studied, too. Some results concerning the impact of oxygen content will be presented.

Keywords: DSB formation, chemical stage, Petri nets, radiobiological mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
2556 On the Sphere Method of Linear Programming Using Multiple Interior Points Approach

Authors: Job H. Domingo, Carolina Bancayrin-Baguio

Abstract:

The Sphere Method is a flexible interior point algorithm for linear programming problems. This was developed mainly by Professor Katta G. Murty. It consists of two steps, the centering step and the descent step. The centering step is the most expensive part of the algorithm. In this centering step we proposed some improvements such as introducing two or more initial feasible solutions as we solve for the more favorable new solution by objective value while working with the rigorous updates of the feasible region along with some ideas integrated in the descent step. An illustration is given confirming the advantage of using the proposed procedure.

Keywords: Interior point, linear programming, sphere method, initial feasible solution, feasible region, centering and descent steps, optimal solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804
2555 Blind Speech Separation Using SRP-PHAT Localization and Optimal Beamformer in Two-Speaker Environments

Authors: Hai Quang Hong Dam, Hai Ho, Minh Hoang Le Ngo

Abstract:

This paper investigates the problem of blind speech separation from the speech mixture of two speakers. A voice activity detector employing the Steered Response Power - Phase Transform (SRP-PHAT) is presented for detecting the activity information of speech sources and then the desired speech signals are extracted from the speech mixture by using an optimal beamformer. For evaluation, the algorithm effectiveness, a simulation using real speech recordings had been performed in a double-talk situation where two speakers are active all the time. Evaluations show that the proposed blind speech separation algorithm offers a good interference suppression level whilst maintaining a low distortion level of the desired signal.

Keywords: Blind speech separation, voice activity detector, SRP-PHAT, optimal beamformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388
2554 Downlink Scheduling and Radio Resource Allocation in Adaptive OFDMA Wireless Communication Systems for User-Individual QoS

Authors: Lu Yanhui, Wang Chunming, Yin Changchuan, Yue Guangxin

Abstract:

In this paper, we address the problem of adaptive radio resource allocation (RRA) and packet scheduling in the downlink of a cellular OFDMA system, and propose a downlink multi-carrier proportional fair (MPF) scheduler and its joint with adaptive RRA algorithm to distribute radio resources among multiple users according to their individual QoS requirements. The allocation and scheduling objective is to maximize the total throughput, while at the same time maintaining the fairness among users. The simulation results demonstrate that the methods presented provide for user more explicit fairness relative to RRA algorithm, but the joint scheme achieves the higher sum-rate capacity with flexible parameters setting compared with MPF scheduler.

Keywords: OFDMA, adaptive radio resource allocation, scheduling, QoS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
2553 Dicotyledon Weed Quantification Algorithm for Selective Herbicide Application in Maize Crops: Statistical Evaluation of the Potential Herbicide Savings

Authors: Morten Stigaard Laursen, Rasmus Nyholm Jørgensen, Henrik Skov Midtiby, Anders Krogh Mortensen, Sanmohan Baby

Abstract:

This work contributes a statistical model and simulation framework yielding the best estimate possible for the potential herbicide reduction when using the MoDiCoVi algorithm all the while requiring a efficacy comparable to conventional spraying. In June 2013 a maize field located in Denmark were seeded. The field was divided into parcels which was assigned to one of two main groups: 1) Control, consisting of subgroups of no spray and full dose spraty; 2) MoDiCoVi algorithm subdivided into five different leaf cover thresholds for spray activation. In addition approximately 25% of the parcels were seeded with additional weeds perpendicular to the maize rows. In total 299 parcels were randomly assigned with the 28 different treatment combinations. In the statistical analysis, bootstrapping was used for balancing the number of replicates. The achieved potential herbicide savings was found to be 70% to 95% depending on the initial weed coverage. However additional field trials covering more seasons and locations are needed to verify the generalisation of these results. There is a potential for further herbicide savings as the time interval between the first and second spraying session was not long enough for the weeds to turn yellow, instead they only stagnated in growth.

Keywords: Weed crop discrimination, macrosprayer, herbicide reduction, site-specific, sprayer-boom.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1049
2552 Skin Detection using Histogram depend on the Mean Shift Algorithm

Authors: Soo- Young Ye, Ki-Gon Nam, Ki-Won Byun

Abstract:

In this paper, we were introduces a skin detection method using a histogram approximation based on the mean shift algorithm. The proposed method applies the mean shift procedure to a histogram of a skin map of the input image, generated by comparison with standard skin colors in the CbCr color space, and divides the background from the skin region by selecting the maximum value according to brightness level. The proposed method detects the skin region using the mean shift procedure to determine a maximum value that becomes the dividing point, rather than using a manually selected threshold value, as in existing techniques. Even when skin color is contaminated by illumination, the procedure can accurately segment the skin region and the background region. The proposed method may be useful in detecting facial regions as a pretreatment for face recognition in various types of illumination.

Keywords: Skin region detection, mean shift, histogram approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2264
2551 Comparison of Router Intelligent and Cooperative Host Intelligent Algorithms in a Continuous Model of Fixed Telecommunication Networks

Authors: Dávid Csercsik, Sándor Imre

Abstract:

The performance of state of the art worldwide telecommunication networks strongly depends on the efficiency of the applied routing mechanism. Game theoretical approaches to this problem offer new solutions. In this paper a new continuous network routing model is defined to describe data transfer in fixed telecommunication networks of multiple hosts. The nodes of the network correspond to routers whose latency is assumed to be traffic dependent. We propose that the whole traffic of the network can be decomposed to a finite number of tasks, which belong to various hosts. To describe the different latency-sensitivity, utility functions are defined for each task. The model is used to compare router and host intelligent types of routing methods, corresponding to various data transfer protocols. We analyze host intelligent routing as a transferable utility cooperative game with externalities. The main aim of the paper is to provide a framework in which the efficiency of various routing algorithms can be compared and the transferable utility game arising in the cooperative case can be analyzed.

Keywords: Routing, Telecommunication networks, Performance evaluation, Cooperative game theory, Partition function form games

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852
2550 Fast Painting with Different Colors Using Cross Correlation in the Frequency Domain

Authors: Hazem M. El-Bakry

Abstract:

In this paper, a new technique for fast painting with different colors is presented. The idea of painting relies on applying masks with different colors to the background. Fast painting is achieved by applying these masks in the frequency domain instead of spatial (time) domain. New colors can be generated automatically as a result from the cross correlation operation. This idea was applied successfully for faster specific data (face, object, pattern, and code) detection using neural algorithms. Here, instead of performing cross correlation between the input input data (e.g., image, or a stream of sequential data) and the weights of neural networks, the cross correlation is performed between the colored masks and the background. Furthermore, this approach is developed to reduce the computation steps required by the painting operation. The principle of divide and conquer strategy is applied through background decomposition. Each background is divided into small in size subbackgrounds and then each sub-background is processed separately by using a single faster painting algorithm. Moreover, the fastest painting is achieved by using parallel processing techniques to paint the resulting sub-backgrounds using the same number of faster painting algorithms. In contrast to using only faster painting algorithm, the speed up ratio is increased with the size of the background when using faster painting algorithm and background decomposition. Simulation results show that painting in the frequency domain is faster than that in the spatial domain.

Keywords: Fast Painting, Cross Correlation, Frequency Domain, Parallel Processing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
2549 Channels Splitting Strategy for Optical Local Area Networks of Passive Star Topology

Authors: Peristera Baziana

Abstract:

In this paper, we present a network configuration for a WDM LANs of passive star topology that assume that the set of data WDM channels is split into two separate sets of channels, with different access rights over them. Especially, a synchronous transmission WDMA access algorithm is adopted in order to increase the probability of successful transmission over the data channels and consequently to reduce the probability of data packets transmission cancellation in order to avoid the data channels collisions. Thus, a control pre-transmission access scheme is followed over a separate control channel. An analytical Markovian model is studied and the average throughput is mathematically derived. The performance is studied for several numbers of data channels and various values of control phase duration.

Keywords: Access algorithm, channels division, collisions avoidance, wavelength division multiplexing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014
2548 Neural Network Controller for Mobile Robot Motion Control

Authors: Jasmin Velagic, Nedim Osmic, Bakir Lacevic

Abstract:

In this paper the neural network-based controller is designed for motion control of a mobile robot. This paper treats the problems of trajectory following and posture stabilization of the mobile robot with nonholonomic constraints. For this purpose the recurrent neural network with one hidden layer is used. It learns relationship between linear velocities and error positions of the mobile robot. This neural network is trained on-line using the backpropagation optimization algorithm with an adaptive learning rate. The optimization algorithm is performed at each sample time to compute the optimal control inputs. The performance of the proposed system is investigated using a kinematic model of the mobile robot.

Keywords: Mobile robot, kinematic model, neural network, motion control, adaptive learning rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3332
2547 A New Edit Distance Method for Finding Similarity in Dna Sequence

Authors: Patsaraporn Somboonsak, Mud-Armeen Munlin

Abstract:

The P-Bigram method is a string comparison methods base on an internal two characters-based similarity measure. The edit distance between two strings is the minimal number of elementary editing operations required to transform one string into the other. The elementary editing operations include deletion, insertion, substitution two characters. In this paper, we address the P-Bigram method to sole the similarity problem in DNA sequence. This method provided an efficient algorithm that locates all minimum operation in a string. We have been implemented algorithm and found that our program calculated that smaller distance than one string. We develop PBigram edit distance and show that edit distance or the similarity and implementation using dynamic programming. The performance of the proposed approach is evaluated using number edit and percentage similarity measures.

Keywords: Edit distance, String Matching, String Similarity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3318
2546 SVM Based Model as an Optimal Classifier for the Classification of Sonar Signals

Authors: Suresh S. Salankar, Balasaheb M. Patre

Abstract:

Research into the problem of classification of sonar signals has been taken up as a challenging task for the neural networks. This paper investigates the design of an optimal classifier using a Multi layer Perceptron Neural Network (MLP NN) and Support Vector Machines (SVM). Results obtained using sonar data sets suggest that SVM classifier perform well in comparison with well-known MLP NN classifier. An average classification accuracy of 91.974% is achieved with SVM classifier and 90.3609% with MLP NN classifier, on the test instances. The area under the Receiver Operating Characteristics (ROC) curve for the proposed SVM classifier on test data set is found as 0.981183, which is very close to unity and this clearly confirms the excellent quality of the proposed classifier. The SVM classifier employed in this paper is implemented using kernel Adatron algorithm is seen to be robust and relatively insensitive to the parameter initialization in comparison to MLP NN.

Keywords: Classification, MLP NN, backpropagation algorithm, SVM, Receiver Operating Characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1820
2545 Simulation Data Summarization Based on Spatial Histograms

Authors: Jing Zhao, Yoshiharu Ishikawa, Chuan Xiao, Kento Sugiura

Abstract:

In order to analyze large-scale scientific data, research on data exploration and visualization has gained popularity. In this paper, we focus on the exploration and visualization of scientific simulation data, and define a spatial V-Optimal histogram for data summarization. We propose histogram construction algorithms based on a general binary hierarchical partitioning as well as a more specific one, the l-grid partitioning. For effective data summarization and efficient data visualization in scientific data analysis, we propose an optimal algorithm as well as a heuristic algorithm for histogram construction. To verify the effectiveness and efficiency of the proposed methods, we conduct experiments on the massive evacuation simulation data.

Keywords: Simulation data, data summarization, spatial histograms, exploration and visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753
2544 A Biomimetic Approach for the Multi-Objective Optimization of Kinetic Façade Design

Authors: Do-Jin Jang, Sung-Ah Kim

Abstract:

A kinetic façade responds to user requirements and environmental conditions.  In designing a kinetic façade, kinetic patterns play a key role in determining its performance. This paper proposes a biomimetic method for the multi-objective optimization for kinetic façade design. The autonomous decentralized control system is combined with flocking algorithm. The flocking agents are autonomously reacting to sensor values and bring about kinetic patterns changing over time. A series of experiments were conducted to verify the potential and limitations of the flocking based decentralized control. As a result, it could show the highest performance balancing multiple objectives such as solar radiation and openness among the comparison group.

Keywords: Biomimicry, flocking algorithm, autonomous decentralized control, multi-objective optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
2543 An Efficient and Generic Hybrid Framework for High Dimensional Data Clustering

Authors: Dharmveer Singh Rajput , P. K. Singh, Mahua Bhattacharya

Abstract:

Clustering in high dimensional space is a difficult problem which is recurrent in many fields of science and engineering, e.g., bioinformatics, image processing, pattern reorganization and data mining. In high dimensional space some of the dimensions are likely to be irrelevant, thus hiding the possible clustering. In very high dimensions it is common for all the objects in a dataset to be nearly equidistant from each other, completely masking the clusters. Hence, performance of the clustering algorithm decreases. In this paper, we propose an algorithmic framework which combines the (reduct) concept of rough set theory with the k-means algorithm to remove the irrelevant dimensions in a high dimensional space and obtain appropriate clusters. Our experiment on test data shows that this framework increases efficiency of the clustering process and accuracy of the results.

Keywords: High dimensional clustering, sub-space, k-means, rough set, discernibility matrix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
2542 Supporting QoS-aware Multicasting in Differentiated Service Networks

Authors: Manas Ranjan Kabat, Rajib Mall, Chita Ranjan Tripathy

Abstract:

A scalable QoS aware multicast deployment in DiffServ networks has become an important research dimension in recent years. Although multicasting and differentiated services are two complementary technologies, the integration of the two technologies is a non-trivial task due to architectural conflicts between them. A popular solution proposed is to extend the functionality of the DiffServ components to support multicasting. In this paper, we propose an algorithm to construct an efficient QoSdriven multicast tree, taking into account the available bandwidth per service class. We also present an efficient way to provision the limited available bandwidth for supporting heterogeneous users. The proposed mechanism is evaluated using simulated tests. The simulated result reveals that our algorithm can effectively minimize the bandwidth use and transmission cost

Keywords: Differentiated Services, multicasting, QoSheterogeneity, DSCP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
2541 Solving Facility Location Problem on Cluster Computing

Authors: Ei Phyo Wai, Nay Min Tun

Abstract:

Computation of facility location problem for every location in the country is not easy simultaneously. Solving the problem is described by using cluster computing. A technique is to design parallel algorithm by using local search with single swap method in order to solve that problem on clusters. Parallel implementation is done by the use of portable parallel programming, Message Passing Interface (MPI), on Microsoft Windows Compute Cluster. In this paper, it presents the algorithm that used local search with single swap method and implementation of the system of a facility to be opened by using MPI on cluster. If large datasets are considered, the process of calculating a reasonable cost for a facility becomes time consuming. The result shows parallel computation of facility location problem on cluster speedups and scales well as problem size increases.

Keywords: cluster, cost, demand, facility location

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
2540 A Method of Protecting Relational Databases Copyright with Cloud Watermark

Authors: Yong ZHANG, Xiamu NIU, Dongning ZHAO

Abstract:

With the development of Internet and databases application techniques, the demand that lots of databases in the Internet are permitted to remote query and access for authorized users becomes common, and the problem that how to protect the copyright of relational databases arises. This paper simply introduces the knowledge of cloud model firstly, includes cloud generators and similar cloud. And then combined with the property of the cloud, a method of protecting relational databases copyright with cloud watermark is proposed according to the idea of digital watermark and the property of relational databases. Meanwhile, the corresponding watermark algorithms such as cloud watermark embedding algorithm and detection algorithm are proposed. Then, some experiments are run and the results are analyzed to validate the correctness and feasibility of the watermark scheme. In the end, the foreground of watermarking relational database and its research direction are prospected.

Keywords: cloud watermark, copyright protection, digitalwatermark, relational database

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1915
2539 Similarity Measure Functions for Strategy-Based Biometrics

Authors: Roman V. Yampolskiy, Venu Govindaraju

Abstract:

Functioning of a biometric system in large part depends on the performance of the similarity measure function. Frequently a generalized similarity distance measure function such as Euclidian distance or Mahalanobis distance is applied to the task of matching biometric feature vectors. However, often accuracy of a biometric system can be greatly improved by designing a customized matching algorithm optimized for a particular biometric application. In this paper we propose a tailored similarity measure function for behavioral biometric systems based on the expert knowledge of the feature level data in the domain. We compare performance of a proposed matching algorithm to that of other well known similarity distance functions and demonstrate its superiority with respect to the chosen domain.

Keywords: Behavioral Biometrics, Euclidian Distance, Matching, Similarity Measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
2538 Multi-Objective Optimal Design of a Cascade Control System for a Class of Underactuated Mechanical Systems

Authors: Yuekun Chen, Yousef Sardahi, Salam Hajjar, Christopher Greer

Abstract:

This paper presents a multi-objective optimal design of a cascade control system for an underactuated mechanical system. Cascade control structures usually include two control algorithms (inner and outer). To design such a control system properly, the following conflicting objectives should be considered at the same time: 1) the inner closed-loop control must be faster than the outer one, 2) the inner loop should fast reject any disturbance and prevent it from propagating to the outer loop, 3) the controlled system should be insensitive to measurement noise, and 4) the controlled system should be driven by optimal energy. Such a control problem can be formulated as a multi-objective optimization problem such that the optimal trade-offs among these design goals are found. To authors best knowledge, such a problem has not been studied in multi-objective settings so far. In this work, an underactuated mechanical system consisting of a rotary servo motor and a ball and beam is used for the computer simulations, the setup parameters of the inner and outer control systems are tuned by NSGA-II (Non-dominated Sorting Genetic Algorithm), and the dominancy concept is used to find the optimal design points. The solution of this problem is not a single optimal cascade control, but rather a set of optimal cascade controllers (called Pareto set) which represent the optimal trade-offs among the selected design criteria. The function evaluation of the Pareto set is called the Pareto front. The solution set is introduced to the decision-maker who can choose any point to implement. The simulation results in terms of Pareto front and time responses to external signals show the competing nature among the design objectives. The presented study may become the basis for multi-objective optimal design of multi-loop control systems.

Keywords: Cascade control, multi-loop control systems, multi-objective optimization, optimal control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 923
2537 Adaptive Filtering in Subbands for Supervised Source Separation

Authors: Bruna Luisa Ramos Prado Vasques, Mariane Rembold Petraglia, Antonio Petraglia

Abstract:

This paper investigates MIMO (Multiple-Input Multiple-Output) adaptive filtering techniques for the application of supervised source separation in the context of convolutive mixtures. From the observation that there is correlation among the signals of the different mixtures, an improvement in the NSAF (Normalized Subband Adaptive Filter) algorithm is proposed in order to accelerate its convergence rate. Simulation results with mixtures of speech signals in reverberant environments show the superior performance of the proposed algorithm with respect to the performances of the NLMS (Normalized Least-Mean-Square) and conventional NSAF, considering both the convergence speed and SIR (Signal-to-Interference Ratio) after convergence.

Keywords: Adaptive filtering, multirate processing, normalized subband adaptive filter, source separation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 962
2536 Interannual Variations in Snowfall and Continuous Snow Cover Duration in Pelso, Central Finland, Linked to Teleconnection Patterns, 1944-2010

Authors: M. Irannezhad, E. H. N. Gashti, S. Mohammadighavam, M. Zarrini, B. Kløve

Abstract:

Climate warming would increase rainfall by shifting precipitation falling form from snow to rain, and would accelerate snow cover disappearing by increasing snowpack. Using temperature and precipitation data in the temperature-index snowmelt model, we evaluated variability of snowfall and continuous snow cover duration (CSCD) during 1944-2010 over Pelso, central Finland. Mann- Kendall non-parametric test determined that annual precipitation increased by 2.69 (mm/year, p<0.05) during the study period, but no clear trend in annual temperature. Both annual rainfall and snowfall increased by 1.67 and 0.78 (mm/year, p<0.05), respectively. CSCD was generally about 205 days from 14 October to 6 May. No clear trend was found in CSCD over Pelso. Spearman’s rank correlation showed most significant relationships of annual snowfall with the East Atlantic (EA) pattern, and CSCD with the East Atlantic/West Russia (EA/WR) pattern. Increased precipitation with no warming temperature caused the rainfall and snowfall to increase, while no effects on CSCD.

Keywords: Variations, snowfall, snow cover duration, temperature-index snowmelt model, teleconnection patterns.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
2535 Investigating Polynomial Interpolation Functions for Zooming Low Resolution Digital Medical Images

Authors: Maninder Pal

Abstract:

Medical digital images usually have low resolution because of nature of their acquisition. Therefore, this paper focuses on zooming these images to obtain better level of information, required for the purpose of medical diagnosis. For this purpose, a strategy for selecting pixels in zooming operation is proposed. It is based on the principle of analog clock and utilizes a combination of point and neighborhood image processing. In this approach, the hour hand of clock covers the portion of image to be processed. For alignment, the center of clock points at middle pixel of the selected portion of image. The minute hand is longer in length, and is used to gain information about pixels of the surrounding area. This area is called neighborhood pixels region. This information is used to zoom the selected portion of the image. The proposed algorithm is implemented and its performance is evaluated for many medical images obtained from various sources such as X-ray, Computerized Tomography (CT) scan and Magnetic Resonance Imaging (MRI). However, for illustration and simplicity, the results obtained from a CT scanned image of head is presented. The performance of algorithm is evaluated in comparison to various traditional algorithms in terms of Peak signal-to-noise ratio (PSNR), maximum error, SSIM index, mutual information and processing time. From the results, the proposed algorithm is found to give better performance than traditional algorithms.

Keywords: Zooming, interpolation, medical images, resolution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
2534 Finding Fuzzy Association Rules Using FWFP-Growth with Linguistic Supports and Confidences

Authors: Chien-Hua Wang, Chin-Tzong Pang

Abstract:

In data mining, the association rules are used to search for the relations of items of the transactions database. Following the data is collected and stored, it can find rules of value through association rules, and assist manager to proceed marketing strategy and plan market framework. In this paper, we attempt fuzzy partition methods and decide membership function of quantitative values of each transaction item. Also, by managers we can reflect the importance of items as linguistic terms, which are transformed as fuzzy sets of weights. Next, fuzzy weighted frequent pattern growth (FWFP-Growth) is used to complete the process of data mining. The method above is expected to improve Apriori algorithm for its better efficiency of the whole association rules. An example is given to clearly illustrate the proposed approach.

Keywords: Association Rule, Fuzzy Partition Methods, FWFP-Growth, Apiroir algorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
2533 A New Composition Method of Admissible Support Vector Kernel Based on Reproducing Kernel

Authors: Wei Zhang, Xin Zhao, Yi-Fan Zhu, Xin-Jian Zhang

Abstract:

Kernel function, which allows the formulation of nonlinear variants of any algorithm that can be cast in terms of dot products, makes the Support Vector Machines (SVM) have been successfully applied in many fields, e.g. classification and regression. The importance of kernel has motivated many studies on its composition. It-s well-known that reproducing kernel (R.K) is a useful kernel function which possesses many properties, e.g. positive definiteness, reproducing property and composing complex R.K by simple operation. There are two popular ways to compute the R.K with explicit form. One is to construct and solve a specific differential equation with boundary value whose handicap is incapable of obtaining a unified form of R.K. The other is using a piecewise integral of the Green function associated with a differential operator L. The latter benefits the computation of a R.K with a unified explicit form and theoretical analysis, whereas there are relatively later studies and fewer practical computations. In this paper, a new algorithm for computing a R.K is presented. It can obtain the unified explicit form of R.K in general reproducing kernel Hilbert space. It avoids constructing and solving the complex differential equations manually and benefits an automatic, flexible and rigorous computation for more general RKHS. In order to validate that the R.K computed by the algorithm can be used in SVM well, some illustrative examples and a comparison between R.K and Gaussian kernel (RBF) in support vector regression are presented. The result shows that the performance of R.K is close or slightly superior to that of RBF.

Keywords: admissible support vector kernel, reproducing kernel, reproducing kernel Hilbert space, Green function, support vectorregression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544