Search results for: vector error correction mechanism.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2962

Search results for: vector error correction mechanism.

2812 Star-Hexagon Transformer Supported UPQC

Authors: Yash Pal, A.Swarup, Bhim Singh

Abstract:

A new topology of unified power quality conditioner (UPQC) is proposed for different power quality (PQ) improvement in a three-phase four-wire (3P-4W) distribution system. For neutral current mitigation, a star-hexagon transformer is connected in shunt near the load along with three-leg voltage source inverters (VSIs) based UPQC. For the mitigation of source neutral current, the uses of passive elements are advantageous over the active compensation due to ruggedness and less complexity of control. In addition to this, by connecting a star-hexagon transformer for neutral current mitigation the over all rating of the UPQC is reduced. The performance of the proposed topology of 3P-4W UPQC is evaluated for power-factor correction, load balancing, neutral current mitigation and mitigation of voltage and currents harmonics. A simple control algorithm based on Unit Vector Template (UVT) technique is used as a control strategy of UPQC for mitigation of different PQ problems. In this control scheme, the current/voltage control is applied over the fundamental supply currents/voltages instead of fast changing APFs currents/voltages, thereby reducing the computational delay. Moreover, no extra control is required for neutral source current compensation; hence the numbers of current sensors are reduced. The performance of the proposed topology of UPQC is analyzed through simulations results using MATLAB software with its Simulink and Power System Block set toolboxes.

Keywords: Power-factor correction, Load balancing, UPQC, Voltage and Current harmonics, Neutral current mitigation, Starhexagon transformer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2328
2811 Tongue Diagnosis System Based on PCA and SVM

Authors: Jin-Woong Park, Sun-Kyung Kang, Sung-Tae Jung

Abstract:

In this study, we propose a tongue diagnosis method which detects the tongue from face image and divides the tongue area into six areas, and finally generates tongue coating ratio of each area. To detect the tongue area from face image, we use ASM as one of the active shape models. Detected tongue area is divided into six areas widely used in the Korean traditional medicine and the distribution of tongue coating of the six areas is examined by SVM(Support Vector Machine). For SVM, we use a 3-dimensional vector calculated by PCA(Principal Component Analysis) from a 12-dimentional vector consisting of RGB, HIS, Lab, and Luv. As a result, we detected the tongue area stably using ASM and found that PCA and SVM helped raise the ratio of tongue coating detection.

Keywords: Active Shape Model, Principal Component Analysis, Support Vector Machine, Tongue diagnosis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
2810 Shift Invariant Support Vector Machines Face Recognition System

Authors: J. Ruiz-Pinales, J. J. Acosta-Reyes, A. Salazar-Garibay, R. Jaime-Rivas

Abstract:

In this paper, we present a new method for incorporating global shift invariance in support vector machines. Unlike other approaches which incorporate a feature extraction stage, we first scale the image and then classify it by using the modified support vector machines classifier. Shift invariance is achieved by replacing dot products between patterns used by the SVM classifier with the maximum cross-correlation value between them. Unlike the normal approach, in which the patterns are treated as vectors, in our approach the patterns are treated as matrices (or images). Crosscorrelation is computed by using computationally efficient techniques such as the fast Fourier transform. The method has been tested on the ORL face database. The tests indicate that this method can improve the recognition rate of an SVM classifier.

Keywords: Face recognition, support vector machines, shiftinvariance, image registration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
2809 Some Characterizations of Isotropic Curves In the Euclidean Space

Authors: Süha Yılmaz, Melih Turgut

Abstract:

The curves, of which the square of the distance between the two points equal to zero, are called minimal or isotropic curves [4]. In this work, first, necessary and sufficient conditions to be a Pseudo Helix, which is a special case of such curves, are presented. Thereafter, it is proven that an isotropic curve-s position vector and pseudo curvature satisfy a vector differential equation of fourth order. Additionally, In view of solution of mentioned equation, position vector of pseudo helices is obtained.

Keywords: Classical Differential Geometry, Euclidean space, Minimal Curves, Isotropic Curves, Pseudo Helix.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981
2808 A Cognitive Model of Character Recognition Using Support Vector Machines

Authors: K. Freedman

Abstract:

In the present study, a support vector machine (SVM) learning approach to character recognition is proposed. Simple feature detectors, similar to those found in the human visual system, were used in the SVM classifier. Alphabetic characters were rotated to 8 different angles and using the proposed cognitive model, all characters were recognized with 100% accuracy and specificity. These same results were found in psychiatric studies of human character recognition.

Keywords: Character recognition, cognitive model, support vector machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
2807 Efficient Implementation of Serial and Parallel Support Vector Machine Training with a Multi-Parameter Kernel for Large-Scale Data Mining

Authors: Tatjana Eitrich, Bruno Lang

Abstract:

This work deals with aspects of support vector learning for large-scale data mining tasks. Based on a decomposition algorithm that can be run in serial and parallel mode we introduce a data transformation that allows for the usage of an expensive generalized kernel without additional costs. In order to speed up the decomposition algorithm we analyze the problem of working set selection for large data sets and analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our modifications and settings lead to improvement of support vector learning performance and thus allow using extensive parameter search methods to optimize classification accuracy.

Keywords: Support Vector Machines, Shared Memory Parallel Computing, Large Data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
2806 Fuzzy Cost Support Vector Regression

Authors: Hadi Sadoghi Yazdi, Tahereh Royani, Mehri Sadoghi Yazdi, Sohrab Effati

Abstract:

In this paper, a new version of support vector regression (SVR) is presented namely Fuzzy Cost SVR (FCSVR). Individual property of the FCSVR is operation over fuzzy data whereas fuzzy cost (fuzzy margin and fuzzy penalty) are maximized. This idea admits to have uncertainty in the penalty and margin terms jointly. Robustness against noise is shown in the experimental results as a property of the proposed method and superiority relative conventional SVR.

Keywords: Support vector regression, Fuzzy input, Fuzzy cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372
2805 Off-Line Signature Recognition Based On Angle Features and GRNN Neural Networks

Authors: Laila Y. Fannas, Ahmed Y. Ben Sasi

Abstract:

This research presents a handwritten signature recognition based on angle feature vector using Artificial Neural Network (ANN). Each signature image will be represented by an Angle vector. The feature vector will constitute the input to the ANN. The collection of signature images will be divided into two sets. One set will be used for training the ANN in a supervised fashion. The other set which is never seen by the ANN will be used for testing. After training, the ANN will be tested for recognition of the signature. When the signature is classified correctly, it is considered correct recognition otherwise it is a failure.

Keywords: Signature Recognition, Artificial Neural Network, Angle Features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2495
2804 1 kW Power Factor Correction Soft Switching Boost Converter with an Active Snubber Cell

Authors: Yakup Sahin, Naim Suleyman Ting, Ismail Aksoy

Abstract:

A 1 kW power factor correction boost converter with an active snubber cell is presented in this paper. In the converter, the main switch turns on under zero voltage transition (ZVT) and turns off under zero current transition (ZCT) without any additional voltage or current stress. The auxiliary switch turns on and off under zero current switching (ZCS). Besides, the main diode turns on under ZVS and turns off under ZCS. The output current and voltage are controlled by the PFC converter in wide line and load range. The simulation results of converter are obtained for 1 kW and 100 kHz. One of the most important feature of the given converter is that it has direct power transfer as well as excellent soft switching techniques. Also, the converter has 0.99 power factor with the sinusoidal input current shape.

Keywords: Power factor correction, direct power transfer, zero-voltage transition, zero-current transition, soft switching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
2803 Exact Evaluation Method for Error Performance Analysis of Arbitrary 2-D Modulation OFDM Systems with CFO

Authors: Jaeyoon Lee, Dongweon Yoon, Hoon Yoo, Sanggoo Kim

Abstract:

Orthogonal frequency division multiplexing (OFDM) has developed into a popular scheme for wideband digital communications used in consumer applications such as digital broadcasting, wireless networking and broadband internet access. In the OFDM system, carrier frequency offset (CFO) causes intercarrier interference (ICI) which significantly degrades the system error performance. In this paper we provide an exact evaluation method for error performance analysis of arbitrary 2-D modulation OFDM systems with CFO, and analyze the effect of CFO on error performance.

Keywords: Carrier frequency offset, Probability of error, Inter-channel interference, Orthogonal frequency division multiplexing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
2802 Compensation–Based Current Decomposition

Authors: Mihaela Popescu, Alexandru Bitoleanu, Mircea Dobriceanu

Abstract:

This paper deals with the current space-vector decomposition in three-phase, three-wire systems on the basis of some case studies. We propose four components of the current spacevector in terms of DC and AC components of the instantaneous active and reactive powers. The term of supplementary useless current vector is also pointed out. The analysis shows that the current decomposition which respects the definition of the instantaneous apparent power vector is useful for compensation reasons only if the supply voltages are sinusoidal. A modified definition of the components of the current is proposed for the operation under nonsinusoidal voltage conditions.

Keywords: Active current, Active filtering, p–q theory, Reactive current.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516
2801 Protein Residue Contact Prediction using Support Vector Machine

Authors: Chan Weng Howe, Mohd Saberi Mohamad

Abstract:

Protein residue contact map is a compact representation of secondary structure of protein. Due to the information hold in the contact map, attentions from researchers in related field were drawn and plenty of works have been done throughout the past decade. Artificial intelligence approaches have been widely adapted in related works such as neural networks, genetic programming, and Hidden Markov model as well as support vector machine. However, the performance of the prediction was not generalized which probably depends on the data used to train and generate the prediction model. This situation shown the importance of the features or information used in affecting the prediction performance. In this research, support vector machine was used to predict protein residue contact map on different combination of features in order to show and analyze the effectiveness of the features.

Keywords: contact map, protein residue contact, support vector machine, protein structure prediction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1896
2800 Stiffness Modeling of 3-PRS Mechanism

Authors: Xiaohui Han, Yuhan Wang, Jing Shi

Abstract:

This paper proposed a stiffness analysis method for a 3-PRS mechanism for welding thick aluminum plate using FSW technology. In the molding process, elastic deformation of lead-screws and links are taken into account. This method is based on the virtual work principle. Through a survey of the commonly used stiffness performance indices, the minimum and maximum eigenvalues of the stiffness matrix are used to evaluate the stiffness of the 3-PRS mechanism. Furthermore, A FEA model has been constructed to verify the method. Finally, we redefined the workspace using the stiffness analysis method.

Keywords: 3-PRS, parallel mechanism, stiffness analysis, workspace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2266
2799 Research of Dynamics Picking Mechanism of Sulzer Projectile Loom

Authors: A. Jomartov, K. Jomartova

Abstract:

One of the main and responsible units of Sulzer projectile loom is picking mechanism. It is specifically designed to accelerate projectile to speed of 25 m / s. Initial speed projectile of Sulzer projectile loom is independent of speed loom and determined the potential energy torsion rod. This paper investigates the dynamics picking mechanism of Sulzer projectile loom during its discharge. A result of calculation model, we obtain the law of motion lever of picking mechanism during its discharge. Construction of dynamic model the picking mechanism of Sulzer projectile loom on software complex SimulationX can make calculations for different thickness of torsion rods taking into account the backlashes in the connections, the dissipative forces and resistance forces

Keywords: Dynamics, loom, picking mechanism, projectile, SimulationX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3589
2798 Evaluation of the MCFLIRT Correction Algorithm in Head Motion from Resting State fMRI Data

Authors: V. Sacca, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

In the last few years, resting-state functional MRI (rs-fMRI) was widely used to investigate the architecture of brain networks by investigating the Blood Oxygenation Level Dependent response. This technique represented an interesting, robust and reliable approach to compare pathologic and healthy subjects in order to investigate neurodegenerative diseases evolution. On the other hand, the elaboration of rs-fMRI data resulted to be very prone to noise due to confounding factors especially the head motion. Head motion has long been known to be a source of artefacts in task-based functional MRI studies, but it has become a particularly challenging problem in recent studies using rs-fMRI. The aim of this work was to evaluate in MS patients a well-known motion correction algorithm from the FMRIB's Software Library - MCFLIRT - that could be applied to minimize the head motion distortions, allowing to correctly interpret rs-fMRI results.

Keywords: Head motion correction, MCFLIRT algorithm, multiple sclerosis, resting state fMRI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1183
2797 ABURAS Index: A Statistically Developed Index for Dengue-Transmitting Vector Population Prediction

Authors: Hani M. Aburas

Abstract:

“Dengue" is an African word meaning “bone breaking" because it causes severe joint and muscle pain that feels like bones are breaking. It is an infectious disease mainly transmitted by female mosquito, Aedes aegypti, and causes four serotypes of dengue viruses. In recent years, a dramatic increase in the dengue fever confirmed cases around the equator-s belt has been reported. Several conventional indices have been designed so far to monitor the transmitting vector populations known as House Index (HI), Container Index (CI), Breteau Index (BI). However, none of them describes the adult mosquito population size which is important to direct and guide comprehensive control strategy operations since number of infected people has a direct relationship with the vector density. Therefore, it is crucial to know the population size of the transmitting vector in order to design a suitable and effective control program. In this context, a study is carried out to report a new statistical index, ABURAS Index, using Poisson distribution based on the collection of vector population in Jeddah Governorate, Saudi Arabia.

Keywords: Poisson distribution, statistical index, prediction, Aedes aegypti.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
2796 On the Efficient Implementation of a Serial and Parallel Decomposition Algorithm for Fast Support Vector Machine Training Including a Multi-Parameter Kernel

Authors: Tatjana Eitrich, Bruno Lang

Abstract:

This work deals with aspects of support vector machine learning for large-scale data mining tasks. Based on a decomposition algorithm for support vector machine training that can be run in serial as well as shared memory parallel mode we introduce a transformation of the training data that allows for the usage of an expensive generalized kernel without additional costs. We present experiments for the Gaussian kernel, but usage of other kernel functions is possible, too. In order to further speed up the decomposition algorithm we analyze the critical problem of working set selection for large training data sets. In addition, we analyze the influence of the working set sizes onto the scalability of the parallel decomposition scheme. Our tests and conclusions led to several modifications of the algorithm and the improvement of overall support vector machine learning performance. Our method allows for using extensive parameter search methods to optimize classification accuracy.

Keywords: Support Vector Machine Training, Multi-ParameterKernels, Shared Memory Parallel Computing, Large Data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1443
2795 A Control Strategy Based on UTT and ISCT for 3P4W UPQC

Authors: Yash Pal, A.Swarup, Bhim Singh

Abstract:

This paper presents a novel control strategy of a threephase four-wire Unified Power Quality (UPQC) for an improvement in power quality. The UPQC is realized by integration of series and shunt active power filters (APFs) sharing a common dc bus capacitor. The shunt APF is realized using a thee-phase, four leg voltage source inverter (VSI) and the series APF is realized using a three-phase, three leg VSI. A control technique based on unit vector template technique (UTT) is used to get the reference signals for series APF, while instantaneous sequence component theory (ISCT) is used for the control of Shunt APF. The performance of the implemented control algorithm is evaluated in terms of power-factor correction, load balancing, neutral source current mitigation and mitigation of voltage and current harmonics, voltage sag and swell in a three-phase four-wire distribution system for different combination of linear and non-linear loads. In this proposed control scheme of UPQC, the current/voltage control is applied over the fundamental supply currents/voltages instead of fast changing APFs currents/voltages, there by reducing the computational delay and the required sensors. MATLAB/Simulink based simulations are obtained, which support the functionality of the UPQC. MATLAB/Simulink based simulations are obtained, which support the functionality of the UPQC.

Keywords: Power Quality, UPQC, Harmonics, Load Balancing, Power Factor Correction, voltage harmonic mitigation, currentharmonic mitigation, voltage sag, swell

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2270
2794 Motivated Support Vector Regression using Structural Prior Knowledge

Authors: Wei Zhang, Yao-Yu Li, Yi-Fan Zhu, Qun Li, Wei-Ping Wang

Abstract:

It-s known that incorporating prior knowledge into support vector regression (SVR) can help to improve the approximation performance. Most of researches are concerned with the incorporation of knowledge in the form of numerical relationships. Little work, however, has been done to incorporate the prior knowledge on the structural relationships among the variables (referred as to Structural Prior Knowledge, SPK). This paper explores the incorporation of SPK in SVR by constructing appropriate admissible support vector kernel (SV kernel) based on the properties of reproducing kernel (R.K). Three-levels specifications of SPK are studied with the corresponding sub-levels of prior knowledge that can be considered for the method. These include Hierarchical SPK (HSPK), Interactional SPK (ISPK) consisting of independence, global and local interaction, Functional SPK (FSPK) composed of exterior-FSPK and interior-FSPK. A convenient tool for describing the SPK, namely Description Matrix of SPK is introduced. Subsequently, a new SVR, namely Motivated Support Vector Regression (MSVR) whose structure is motivated in part by SPK, is proposed. Synthetic examples show that it is possible to incorporate a wide variety of SPK and helpful to improve the approximation performance in complex cases. The benefits of MSVR are finally shown on a real-life military application, Air-toground battle simulation, which shows great potential for MSVR to the complex military applications.

Keywords: admissible support vector kernel, reproducing kernel, structural prior knowledge, motivated support vector regression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1623
2793 Motivated Support Vector Regression with Structural Prior Knowledge

Authors: Wei Zhang, Yao-Yu Li, Yi-Fan Zhu, Qun Li, Wei-Ping Wang

Abstract:

It-s known that incorporating prior knowledge into support vector regression (SVR) can help to improve the approximation performance. Most of researches are concerned with the incorporation of knowledge in form of numerical relationships. Little work, however, has been done to incorporate the prior knowledge on the structural relationships among the variables (referred as to Structural Prior Knowledge, SPK). This paper explores the incorporation of SPK in SVR by constructing appropriate admissible support vector kernel (SV kernel) based on the properties of reproducing kernel (R.K). Three-levels specifications of SPK are studies with the corresponding sub-levels of prior knowledge that can be considered for the method. These include Hierarchical SPK (HSPK), Interactional SPK (ISPK) consisting of independence, global and local interaction, Functional SPK (FSPK) composed of exterior-FSPK and interior-FSPK. A convenient tool for describing the SPK, namely Description Matrix of SPK is introduced. Subsequently, a new SVR, namely Motivated Support Vector Regression (MSVR) whose structure is motivated in part by SPK, is proposed. Synthetic examples show that it is possible to incorporate a wide variety of SPK and helpful to improve the approximation performance in complex cases. The benefits of MSVR are finally shown on a real-life military application, Air-toground battle simulation, which shows great potential for MSVR to the complex military applications.

Keywords: admissible support vector kernel, reproducing kernel, structural prior knowledge, motivated support vector regression

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400
2792 A Study of Methods for Preservation of River Banks in order to Reduce Sediments

Authors: Emad Hazbkhah. Abdolreza Zahiri, Hossein Ghorbanizade Kharazi

Abstract:

Reducing river sediments through path correction and preservation of river walls leads to considerable reduction of sedimentation at the pumping stations. Path correction and preservation of walls is not limited to one particular method but, depending on various conditions, a combination of several methods can be employed. In this article, we try to review and evaluate methods for preservation of river banks in order to reduce sediments.

Keywords: Erosion , River Banks , Sediments

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
2791 Data Mining in Medicine Domain Using Decision Trees and Vector Support Machine

Authors: Djamila Benhaddouche, Abdelkader Benyettou

Abstract:

In this paper, we used data mining to extract biomedical knowledge. In general, complex biomedical data collected in studies of populations are treated by statistical methods, although they are robust, they are not sufficient in themselves to harness the potential wealth of data. For that you used in step two learning algorithms: the Decision Trees and Support Vector Machine (SVM). These supervised classification methods are used to make the diagnosis of thyroid disease. In this context, we propose to promote the study and use of symbolic data mining techniques.

Keywords: A classifier, Algorithms decision tree, knowledge extraction, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
2790 A Generator from Cascade Markov Model for Packet Loss and Subsequent Bit Error Description

Authors: Jaroslav Polec, Viliam Hirner, Michal Martinovič, Kvetoslava Kotuliaková

Abstract:

In this paper we present a novel error model for packet loss and subsequent error description. The proposed model simulates the error performance of wireless communication link. The model is designed as two independent Markov chains, where the first one is used for packet generation and the second one generates correctly and incorrectly transmitted bits for received packets from the first chain. The statistical analyses of real communication on the wireless link are used for determination of model-s parameters. Using the obtained parameters and the implementation of the generator, we collected generated traffic. The obtained results generated by proposed model are compared with the real data collection.

Keywords: Wireless channel, error model, Markov chain, Elliot model, Gilbert model, generator, IEEE 802.11.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
2789 Identification of an Mechanism Systems by Using the Modified PSO Method

Authors: Chih-Cheng Kao, Hsin- Hua Chu

Abstract:

This paper mainly proposes an efficient modified particle swarm optimization (MPSO) method, to identify a slidercrank mechanism driven by a field-oriented PM synchronous motor. In system identification, we adopt the MPSO method to find parameters of the slider-crank mechanism. This new algorithm is added with “distance" term in the traditional PSO-s fitness function to avoid converging to a local optimum. It is found that the comparisons of numerical simulations and experimental results prove that the MPSO identification method for the slider-crank mechanism is feasible.

Keywords: Slider-crank mechanism, distance, systemidentification, modified particle swarm optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
2788 The Comparative Analysis of Two Typical Fluidic Thrust Vectoring Exhaust Nozzles on Aerodynamic Characteristics

Authors: Xin H. Zou, Qiang Wang

Abstract:

The comparisons of two typical fluidic thrust vectoring exhaust nozzles including two-dimensional(2-D) nozzle and axisymmetric nozzle on aerodynamic characteristics was presented by numerical simulation. The results show: the thrust vector angles increased with the increasing secondary flow but decreased with the nozzle pressure ratio (NPR) increasing. With the same secondary flow and NPR, the thrust vector angles of 2-D nozzle were higher than the axisymmetric nozzle-s. So with the lower NPR and more secondary weight flow, the much higher thrust vector angle was caused by 2-D fluidic nozzle. And with the higher NPR and less secondary weight flow, there was not much difference in angular dimension between two nozzles.

Keywords: Aerodynamic characteristics, fluidic nozzle, vector angle, thrust coefficient comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
2787 The Optimal Indirect Vector Controller Design via an Adaptive Tabu Search Algorithm

Authors: P. Sawatnatee, S. Udomsuk, K-N. Areerak, K-L. Areerak, A. Srikaew

Abstract:

The paper presents how to design the indirect vector control of three-phase induction motor drive systems using the artificial intelligence technique called the adaptive tabu search. The results from the simulation and the experiment show that the drive system with the controller designed from the proposed method can provide the best output speed response compared with those of the conventional method. The controller design using the proposed technique can be used to create the software package for engineers to achieve the optimal controller design of the induction motor speed control based on the indirect vector concept.

 

Keywords: Indirect Vector Control, Induction Motor, Adaptive Tabu Search, Control Design, Artificial Intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
2786 The Impact of Revenue Gap on Economic Growth: A Case Study of Pakistan

Authors: M. Ilyas, M. W. Siddiqi

Abstract:

This study employs auto-regressive distributed lag (ARDL) bounds approach to cointegration for long run and errorcorrection modeling (ECM) for short run analysis to examine the relationship between revenue gap and economic growth for Pakistan using annual time series data over the period 1980 to 2008. The short and long run results indicate that revenue gap is statistical significant and negatively effect economic growth. The significant and negative coefficient of error correction term in ECM indicates that after a shock, the long rum equilibrium will again converge towards equilibrium about 10.406 percent within a year.

Keywords: ARDL cointegration, Economic Growth, RevenueGap, Pakistan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2566
2785 A Single Phase ZVT-ZCT Power Factor Correction Boost Converter

Authors: Yakup Sahin, Naim Suleyman Ting, Ismail Aksoy

Abstract:

In this paper, a single phase soft switched Zero Voltage Transition and Zero Current Transition (ZVT-ZCT) Power Factor Correction (PFC) boost converter is proposed. In the proposed PFC converter, the main switch turns on with ZVT and turns off with ZCT without any additional voltage or current stresses. Auxiliary switch turns on and off with zero current switching (ZCS). Also, the main diode turns on with zero voltage switching (ZVS) and turns off with ZCS. The proposed converter has features like low cost, simple control and structure. The output current and voltage are controlled by the proposed PFC converter in wide line and load range. The theoretical analysis of converter is clarified and the operating steps are given in detail. The simulation results of converter are obtained for 500 W and 100 kHz. It is observed that the semiconductor devices operate with soft switching (SS) perfectly. So, the switching power losses are minimum. Also, the proposed converter has 0.99 power factor with sinusoidal current shape.

Keywords: Power factor correction, zero-voltage transition, zero-current transition, soft switching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
2784 A Method for Improving the Embedded Runge Kutta Fehlberg 4(5)

Authors: Sunyoung Bu, Wonkyu Chung, Philsu Kim

Abstract:

In this paper, we introduce a method for improving the embedded Runge-Kutta-Fehlberg4(5) method. At each integration step, the proposed method is comprised of two equations for the solution and the error, respectively. These solution and error are obtained by solving an initial value problem whose solution has the information of the error at each integration step. The constructed algorithm controls both the error and the time step size simultaneously and possesses a good performance in the computational cost compared to the original method. For the assessment of the effectiveness, EULR problem is numerically solved.

Keywords: Embedded Runge-Kutta-Fehlberg method, Initial value problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2752
2783 Forecasting of Grape Juice Flavor by Using Support Vector Regression

Authors: Ren-Jieh Kuo, Chun-Shou Huang

Abstract:

The research of juice flavor forecasting has become more important in China. Due to the fast economic growth in China, many different kinds of juices have been introduced to the market. If a beverage company can understand their customers’ preference well, the juice can be served more attractive. Thus, this study intends to introducing the basic theory and computing process of grapes juice flavor forecasting based on support vector regression (SVR). Applying SVR, BPN, and LR to forecast the flavor of grapes juice in real data shows that SVR is more suitable and effective at predicting performance.

Keywords: Flavor forecasting, artificial neural networks, support vector regression, grape juice flavor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216