Search results for: timing constraints.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 627

Search results for: timing constraints.

477 The Motivating and Limiting Factors of Learners’ Engagement in an Online Discussion Forum

Authors: K. Durairaj, I. N. Umar

Abstract:

Lately, asynchronous discussion forum is integrated in higher educational institutions as it may increase learning process, learners’ understanding, achievement and knowledge construction. The asynchronous discussion forum is used to complement the traditional, face-to-face learning session in hybrid learning courses. However, studies have proven that students’ engagement in online forums is still unconvincing. Thus, the aim of this study is to investigate the motivating factors and obstacles that affect the learners’ engagement in asynchronous discussion forum. This study is carried out in one of the public higher educational institutions in Malaysia with 18 postgraduate students as samples. The authors have developed a 40-items questionnaire based on literature review. The results indicate several factors that have encouraged or limited students’ engagement in asynchronous discussion forum: (a) the practices or behaviors of peers, or instructors, (b) the needs for the discussions, (c) the learners’ personalities, (d) constraints in continuing the discussion forum, (e) lack of ideas, (f) the level of thoughts, (g) the level of knowledge construction, (h) technical problems, (i) time constraints and (j) misunderstanding. This study suggests some recommendations to increase the students’ engagement in online forums. Finally, based upon the findings, some implications are proposed for further research.

Keywords: Asynchronous Discussion Forum, Engagement, Factors, Motivating, Limiting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1913
476 Network Reconfiguration of Distribution System Using Artificial Bee Colony Algorithm

Authors: S. Ganesh

Abstract:

Power distribution systems typically have tie and sectionalizing switches whose states determine the topological configuration of the network. The aim of network reconfiguration of the distribution network is to minimize the losses for a load arrangement at a particular time. Thus the objective function is to minimize the losses of the network by satisfying the distribution network constraints. The various constraints are radiality, voltage limits and the power balance condition. In this paper the status of the switches is obtained by using Artificial Bee Colony (ABC) algorithm. ABC is based on a particular intelligent behavior of honeybee swarms. ABC is developed based on inspecting the behaviors of real bees to find nectar and sharing the information of food sources to the bees in the hive. The proposed methodology has three stages. In stage one ABC is used to find the tie switches, in stage two the identified tie switches are checked for radiality constraint and if the radilaity constraint is satisfied then the procedure is proceeded to stage three otherwise the process is repeated. In stage three load flow analysis is performed. The process is repeated till the losses are minimized. The ABC is implemented to find the power flow path and the Forward Sweeper algorithm is used to calculate the power flow parameters. The proposed methodology is applied for a 33–bus single feeder distribution network using MATLAB.

Keywords: Artificial Bee Colony (ABC) algorithm, Distribution system, Loss reduction, Network reconfiguration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3810
475 Exercise and Cognitive Function: Time Course of the Effects

Authors: Simon B. Cooper, Stephan Bandelow, Maria L. Nute, John G. Morris, Mary E. Nevill

Abstract:

Previous research has indicated a variable effect of exercise on adolescents’ cognitive function. However, comparisons between studies are difficult to make due to differences in: the mode, intensity and duration of exercise employed; the components of cognitive function measured (and the tests used to assess them); and the timing of the cognitive function tests in relation to the exercise. Therefore, the aim of the present study was to assess the time course (10 and 60min post-exercise) of the effects of 15min intermittent exercise on cognitive function in adolescents. 45 adolescents were recruited to participate in the study and completed two main trials (exercise and resting) in a counterbalanced crossover design. Participants completed 15min of intermittent exercise (in cycles of 1 min exercise, 30s rest). A battery of computer based cognitive function tests (Stroop test, Sternberg paradigm and visual search test) were completed 30 min pre- and 10 and 60min post-exercise (to assess attention, working memory and perception respectively).The findings of the present study indicate that on the baseline level of the Stroop test, 10min following exercise response times were slower than at any other time point on either trial (trial by session time interaction, p = 0.0308). However, this slowing of responses also tended to produce enhanced accuracy 10min post-exercise on the baseline level of the Stroop test (trial by session time interaction, p = 0.0780). Similarly, on the complex level of the visual search test there was a slowing of response times 10 min post-exercise (trial by session time interaction, p = 0.0199). However, this was not coupled with an improvement in accuracy (trial by session time interaction, p = 0.2349). The mid-morning bout of exercise did not affect response times or accuracy across the morning on the Sternberg paradigm. In conclusion, the findings of the present study suggest an equivocal effect of exercise on adolescents' cognitive function. The mid-morning bout of exercise appears to cause a speed-accuracy trade off immediately following exercise on the Stroop test (participants become slower but more accurate), whilst slowing response times on the visual search test and having no effect on performance on the Sternberg paradigm. Furthermore, this work highlights the importance of the timing of the cognitive function tests relative to the exercise and the components of cognitive function examined in future studies. 

Keywords: Adolescents, cognitive function, exercise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3137
474 Real-Time Digital Oscilloscope Implementation in 90nm CMOS Technology FPGA

Authors: Nasir Mehmood, Jens Ogniewski, Vinodh Ravinath

Abstract:

This paper describes the design of a real-time audiorange digital oscilloscope and its implementation in 90nm CMOS FPGA platform. The design consists of sample and hold circuits, A/D conversion, audio and video processing, on-chip RAM, clock generation and control logic. The design of internal blocks and modules in 90nm devices in an FPGA is elaborated. Also the key features and their implementation algorithms are presented. Finally, the timing waveforms and simulation results are put forward.

Keywords: CMOS, VLSI, Oscilloscope, Field Programmable Gate Array (FPGA), VHDL, Video Graphics Array (VGA)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3083
473 Testing a Flexible Manufacturing System Facility Production Capacity through Discrete Event Simulation: Automotive Case Study

Authors: Justyna Rybicka, Ashutosh Tiwari, Shane Enticott

Abstract:

In the age of automation and computation aiding manufacturing, it is clear that manufacturing systems have become more complex than ever before. Although technological advances provide the capability to gain more value with fewer resources, sometimes utilisation of the manufacturing capabilities available to organisations is difficult to achieve. Flexible manufacturing systems (FMS) provide a unique capability to manufacturing organisations where there is a need for product range diversification by providing line efficiency through production flexibility. This is very valuable in trend driven production set-ups or niche volume production requirements. Although FMS provides flexible and efficient facilities, its optimal set-up is key in achieving production performance. As many variables are interlinked due to the flexibility provided by the FMS, analytical calculations are not always sufficient to predict the FMS’ performance. Simulation modelling is capable of capturing the complexity and constraints associated with FMS. This paper demonstrates how discrete event simulation (DES) can address complexity in an FMS to optimise the production line performance. A case study of an automotive FMS is presented. The DES model demonstrates different configuration options depending on prioritising objectives: utilisation and throughput. Additionally, this paper provides insight into understanding the impact of system set-up constraints on the FMS performance and demonstrates the exploration into the optimal production set-up.

Keywords: Automotive, capacity performance, discrete event simulation, flexible manufacturing system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2932
472 Phenology of the Parah tree (Elateriospermumtapos) using a GAPS Model

Authors: S. Chumkiew, W. Srisang, K. Jaroensutasinee, M. Jaroensutasinee

Abstract:

This work investigated the phenology of Parah tree (Elateriospermum tapos) using the General Purpose Atmosphere Plant Soil Simulator (GAPS model) to determine the amount of Plant Available Water (PAW) in the soil. We found the correlation between PAW and the timing of budburst and flower burst at Khao Nan National Park, Nakhon Si Thammarat, Thailand. PAW from the GAPS model can be used as an indicator of soil water stress. The low amount of PAW may lead to leaf shedding in Parah trees.

Keywords: Basic GAPS, Parah (Elateriospermum tapos), Phenology, Climate, Nakhon Si Thammarat, Thailand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1721
471 Circadian Clock and Subjective Time Perception: A Simple Open Source Application for the Analysis of Induced Time Perception in Humans

Authors: Agata M. Kołodziejczyk, Mateusz Harasymczuk, Pierre-Yves Girardin, Lucie Davidová

Abstract:

Subjective time perception implies connection to cognitive functions, attention, memory and awareness, but a little is known about connections with homeostatic states of the body coordinated by circadian clock. In this paper, we present results from experimental study of subjective time perception in volunteers performing physical activity on treadmill in various phases of their circadian rhythms. Subjects were exposed to several time illusions simulated by programmed timing systems. This study brings better understanding for further improvement of of work quality in isolated areas. 

Keywords: Biological clock, light, time illusions, treadmill.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524
470 Vehicle Routing Problem with Mixed Fleet of Conventional and Heterogenous Electric Vehicles and Time Dependent Charging Costs

Authors: Ons Sassi, Wahiba Ramdane Cherif-Khettaf, Ammar Oulamara

Abstract:

In this paper, we consider the vehicle routing problem with mixed fleet of conventional and heterogenous electric vehicles and time dependent charging costs, denoted VRP-HFCC, in which a set of geographically scattered customers have to be served by a mixed fleet of vehicles composed of a heterogenous fleet of Electric Vehicles (EVs), having different battery capacities and operating costs, and Conventional Vehicles (CVs). We include the possibility of charging EVs in the available charging stations during the routes in order to serve all customers. Each charging station offers charging service with a known technology of chargers and time dependent charging costs. Charging stations are also subject to operating time windows constraints. EVs are not necessarily compatible with all available charging technologies and a partial charging is allowed. Intermittent charging at the depot is also allowed provided that constraints related to the electricity grid are satisfied. The objective is to minimize the number of employed vehicles and then minimize the total travel and charging costs. In this study, we present a Mixed Integer Programming Model and develop a Charging Routing Heuristic and a Local Search Heuristic based on the Inject-Eject routine with different insertion methods. All heuristics are tested on real data instances.

Keywords: charging problem, electric vehicle, heuristics, local search, optimization, routing problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2674
469 Optimum Design of Steel Space Frames by Hybrid Teaching-Learning Based Optimization and Harmony Search Algorithms

Authors: Alper Akın, İbrahim Aydoğdu

Abstract:

This study presents a hybrid metaheuristic algorithm to obtain optimum designs for steel space buildings. The optimum design problem of three-dimensional steel frames is mathematically formulated according to provisions of LRFD-AISC (Load and Resistance factor design of American Institute of Steel Construction). Design constraints such as the strength requirements of structural members, the displacement limitations, the inter-story drift and the other structural constraints are derived from LRFD-AISC specification. In this study, a hybrid algorithm by using teachinglearning based optimization (TLBO) and harmony search (HS) algorithms is employed to solve the stated optimum design problem. These algorithms are two of the recent additions to metaheuristic techniques of numerical optimization and have been an efficient tool for solving discrete programming problems. Using these two algorithms in collaboration creates a more powerful tool and mitigates each other’s weaknesses. To demonstrate the powerful performance of presented hybrid algorithm, the optimum design of a large scale steel building is presented and the results are compared to the previously obtained results available in the literature.

Keywords: Optimum structural design, hybrid techniques, teaching-learning based optimization, harmony search algorithm, minimum weight, steel space frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450
468 Thermal Management of Space Power Electronics using TLM-3D

Authors: R. Hocine, K. Belkacemi, A. Boukortt, A. Boudjemai

Abstract:

When designing satellites, one of the major issues aside for designing its primary subsystems is to devise its thermal. The thermal management of satellites requires solving different sets of issues with regards to modelling. If the satellite is well conditioned all other parts of the satellite will have higher temperature no matter what. The main issue of thermal modelling for satellite design is really making sure that all the other points of the satellite will be within the temperature limits they are designed. The insertion of power electronics in aerospace technologies is becoming widespread and the modern electronic systems used in space must be reliable and efficient with thermal management unaffected by outer space constraints. Many advanced thermal management techniques have been developed in recent years that have application in high power electronic systems. This paper presents a Three-Dimensional Modal Transmission Line Matrix (3D-TLM) implementation of transient heat flow in space power electronics. In such kind of components heat dissipation and good thermal management are essential. Simulation provides the cheapest tool to investigate all aspects of power handling. The 3DTLM has been successful in modeling heat diffusion problems and has proven to be efficient in terms of stability and complex geometry. The results show a three-dimensional visualisation of self-heating phenomena in the device affected by outer space constraints, and will presents possible approaches for increasing the heat dissipation capability of the power modules.

Keywords: Thermal management, conduction, heat dissipation, CTE, ceramic, heat spreader, nodes, 3D-TLM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2785
467 Accelerating Side Channel Analysis with Distributed and Parallelized Processing

Authors: Kyunghee Oh, Dooho Choi

Abstract:

Although there is no theoretical weakness in a cryptographic algorithm, Side Channel Analysis can find out some secret data from the physical implementation of a cryptosystem. The analysis is based on extra information such as timing information, power consumption, electromagnetic leaks or even sound which can be exploited to break the system. Differential Power Analysis is one of the most popular analyses, as computing the statistical correlations of the secret keys and power consumptions. It is usually necessary to calculate huge data and takes a long time. It may take several weeks for some devices with countermeasures. We suggest and evaluate the methods to shorten the time to analyze cryptosystems. Our methods include distributed computing and parallelized processing.

Keywords: DPA, distributed computing, parallelized processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1903
466 Motor Skill Adaptation Depends On the Level of Learning

Authors: Herbert Ugrinowitsch, Suziane Peixoto dos Santos-Naves, Michele Viviene Carbinatto, Rodolfo NovellinoBenda, Go Tani

Abstract:

An experiment was conducted to examine the effect of the level of performance stabilization on the human adaptability to perceptual-motor perturbation in a complex coincident timing task. Three levels of performance stabilization were established operationally: pre-stabilization, stabilization, and super-stabilization groups. Each group practiced the task until reached its level of stabilization in a constant sequence of movements and under a constant time constraint before exposure to perturbation. The results clearly showed that performance stabilization is a pre-condition for adaptation. Moreover, variability before reaching stabilization is harmful to adaptation and persistent variability after stabilization is beneficial. Moreover, the behavior of variability is specific to each measure.

Keywords: Adaptation, motor skill, perturbation, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1782
465 Uvulars Alternation in Hasawi Arabic: A Harmonic Serialism Approach

Authors: Huda Ahmed Al Taisan

Abstract:

This paper investigates a phonological phenomenon, which exhibits variation ‘alternation’ in terms of the uvular consonants [q] and [ʁ] in Hasawi Arabic. This dialect is spoken in Alahsa city, which is located in the Eastern province of Saudi Arabia. To the best of our knowledge, no such research has systematically studied this phenomenon in Hasawi Arabic dialect. This paper is significant because it fills the gap in the literature about this alternation phenomenon in this understudied dialect. A large amount of the data is extracted from several interviews the author has conducted with 10 participants, native speakers of the dialect, and complemented by additional forms from social media. The latter method of collecting the data adds to the significance of the research. The analysis of the data is carried out in Harmonic Serialism Optimality Theory (HS-OT), a version of the Optimality Theoretic (OT) framework, which holds that linguistic forms are the outcome of the interaction among violable universal constraints, and in the recent development of OT into a model that accounts for linguistic variation in harmonic derivational steps. This alternation process is assumed to be phonologically unconditioned and in free variation in other varieties of Arabic dialects in the area. The goal of this paper is to investigate whether this phenomenon is in free variation or governed, what governs this alternation between [q] and [ʁ] and whether the alternation is phonological or other linguistic constraints are in action. The results show that the [q] and [ʁ] alternation is not free and it occurs due to different assimilation processes. Positional, segmental sequence and vowel adjacency factors are in action in Hasawi Arabic.

Keywords: Harmonic serialism, Hasawi, uvular, alternation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 652
464 Optimization of Air Pollution Control Model for Mining

Authors: Zunaira Asif, Zhi Chen

Abstract:

The sustainable measures on air quality management are recognized as one of the most serious environmental concerns in the mining region. The mining operations emit various types of pollutants which have significant impacts on the environment. This study presents a stochastic control strategy by developing the air pollution control model to achieve a cost-effective solution. The optimization method is formulated to predict the cost of treatment using linear programming with an objective function and multi-constraints. The constraints mainly focus on two factors which are: production of metal should not exceed the available resources, and air quality should meet the standard criteria of the pollutant. The applicability of this model is explored through a case study of an open pit metal mine, Utah, USA. This method simultaneously uses meteorological data as a dispersion transfer function to support the practical local conditions. The probabilistic analysis and the uncertainties in the meteorological conditions are accomplished by Monte Carlo simulation. Reasonable results have been obtained to select the optimized treatment technology for PM2.5, PM10, NOx, and SO2. Additional comparison analysis shows that baghouse is the least cost option as compared to electrostatic precipitator and wet scrubbers for particulate matter, whereas non-selective catalytical reduction and dry-flue gas desulfurization are suitable for NOx and SO2 reduction respectively. Thus, this model can aid planners to reduce these pollutants at a marginal cost by suggesting control pollution devices, while accounting for dynamic meteorological conditions and mining activities.

Keywords: Air pollution, linear programming, mining, optimization, treatment technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1606
463 Enhanced GA-Fuzzy OPF under both Normal and Contingent Operation States

Authors: Ashish Saini, A.K. Saxena

Abstract:

The genetic algorithm (GA) based solution techniques are found suitable for optimization because of their ability of simultaneous multidimensional search. Many GA-variants have been tried in the past to solve optimal power flow (OPF), one of the nonlinear problems of electric power system. The issues like convergence speed and accuracy of the optimal solution obtained after number of generations using GA techniques and handling system constraints in OPF are subjects of discussion. The results obtained for GA-Fuzzy OPF on various power systems have shown faster convergence and lesser generation costs as compared to other approaches. This paper presents an enhanced GA-Fuzzy OPF (EGAOPF) using penalty factors to handle line flow constraints and load bus voltage limits for both normal network and contingency case with congestion. In addition to crossover and mutation rate adaptation scheme that adapts crossover and mutation probabilities for each generation based on fitness values of previous generations, a block swap operator is also incorporated in proposed EGA-OPF. The line flow limits and load bus voltage magnitude limits are handled by incorporating line overflow and load voltage penalty factors respectively in each chromosome fitness function. The effects of different penalty factors settings are also analyzed under contingent state.

Keywords: Contingent operation state, Fuzzy rule base, Genetic Algorithms, Optimal Power Flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1615
462 Effects of Intake Temperature and Intake Pressure on Combustion and Exhaust Emissions of HCCI Engine

Authors: Fridhi Hadia, Soua Wadhah, Hidouri Ammar, Omri Ahmed

Abstract:

In this paper, the effect of the intake temperature (IT) and intake pressure (IP) on ignition timing and pollutants emission of Homogeneous Charge Compression Ignition (HCCI) engine is investigated. Numerical computations are performed using the CHEMKIN computer code. The numerical temperature obtained using different boundary conditions is compared to published data and a good agreement is assigned. Results show that the HCCI combustion engine is significantly improved by increasing the IT. With a value of IT lower than 390 K, combustion cannot occur. However, with an IT greater than 420 K, the cylinder pressure decreases. An optimum crank rotation angle is achieved by using IT of 420 K. So, we can conclude that the variation of the IT and IP influence notably the emission concentration.

Keywords: HCCI engine, CEMKIN, intake temperature, intake pressure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1075
461 Embedded Semantic Segmentation Network Optimized for Matrix Multiplication Accelerator

Authors: Jaeyoung Lee

Abstract:

Autonomous driving systems require high reliability to provide people with a safe and comfortable driving experience. However, despite the development of a number of vehicle sensors, it is difficult to always provide high perceived performance in driving environments that vary from time to season. The image segmentation method using deep learning, which has recently evolved rapidly, provides high recognition performance in various road environments stably. However, since the system controls a vehicle in real time, a highly complex deep learning network cannot be used due to time and memory constraints. Moreover, efficient networks are optimized for GPU environments, which degrade performance in embedded processor environments equipped simple hardware accelerators. In this paper, a semantic segmentation network, matrix multiplication accelerator network (MMANet), optimized for matrix multiplication accelerator (MMA) on Texas instrument digital signal processors (TI DSP) is proposed to improve the recognition performance of autonomous driving system. The proposed method is designed to maximize the number of layers that can be performed in a limited time to provide reliable driving environment information in real time. First, the number of channels in the activation map is fixed to fit the structure of MMA. By increasing the number of parallel branches, the lack of information caused by fixing the number of channels is resolved. Second, an efficient convolution is selected depending on the size of the activation. Since MMA is a fixed, it may be more efficient for normal convolution than depthwise separable convolution depending on memory access overhead. Thus, a convolution type is decided according to output stride to increase network depth. In addition, memory access time is minimized by processing operations only in L3 cache. Lastly, reliable contexts are extracted using the extended atrous spatial pyramid pooling (ASPP). The suggested method gets stable features from an extended path by increasing the kernel size and accessing consecutive data. In addition, it consists of two ASPPs to obtain high quality contexts using the restored shape without global average pooling paths since the layer uses MMA as a simple adder. To verify the proposed method, an experiment is conducted using perfsim, a timing simulator, and the Cityscapes validation sets. The proposed network can process an image with 640 x 480 resolution for 6.67 ms, so six cameras can be used to identify the surroundings of the vehicle as 20 frame per second (FPS). In addition, it achieves 73.1% mean intersection over union (mIoU) which is the highest recognition rate among embedded networks on the Cityscapes validation set.

Keywords: Edge network, embedded network, MMA, matrix multiplication accelerator and semantic segmentation network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 466
460 Optimal Duty-Cycle Modulation Scheme for Analog-To-Digital Conversion Systems

Authors: G. Sonfack, J. Mbihi, B. Lonla Moffo

Abstract:

This paper presents an optimal duty-cycle modulation (ODCM) scheme for analog-to-digital conversion (ADC) systems. The overall ODCM-Based ADC problem is decoupled into optimal DCM and digital filtering sub-problems, while taking into account constraints of mutual design parameters between the two. Using a set of three lemmas and four morphological theorems, the ODCM sub-problem is modelled as a nonlinear cost function with nonlinear constraints. Then, a weighted least pth norm of the error between ideal and predicted frequency responses is used as a cost function for the digital filtering sub-problem. In addition, MATLAB fmincon and MATLAB iirlnorm tools are used as optimal DCM and least pth norm solvers respectively. Furthermore, the virtual simulation scheme of an overall prototyping ODCM-based ADC system is implemented and well tested with the help of Simulink tool according to relevant set of design data, i.e., 3 KHz of modulating bandwidth, 172 KHz of maximum modulation frequency and 25 MHZ of sampling frequency. Finally, the results obtained and presented show that the ODCM-based ADC achieves under 3 KHz of modulating bandwidth: 57 dBc of SINAD (signal-to-noise and distorsion), 58 dB of SFDR (Surpious free dynamic range) -80 dBc of THD (total harmonic distorsion), and 10 bits of minimum resolution. These performance levels appear to be a great challenge within the class of oversampling ADC topologies, with 2nd order IIR (infinite impulse response) decimation filter.

Keywords: Digital IIR filter, morphological lemmas and theorems, optimal DCM-based DAC, virtual simulation, weighted least pth norm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 933
459 Fast and Efficient On-Chip Interconnection Modeling for High Speed VLSI Systems

Authors: A.R. Aswatha, T. Basavaraju, S. Sandeep Kumar

Abstract:

Timing driven physical design, synthesis, and optimization tools need efficient closed-form delay models for estimating the delay associated with each net in an integrated circuit (IC) design. The total number of nets in a modern IC design has increased dramatically and exceeded millions. Therefore efficient modeling of interconnection is needed for high speed IC-s. This paper presents closed–form expressions for RC and RLC interconnection trees in current mode signaling, which can be implemented in VLSI design tool. These analytical model expressions can be used for accurate calculation of delay after the design clock tree has been laid out and the design is fully routed. Evaluation of these analytical models is several orders of magnitude faster than simulation using SPICE.

Keywords: IC design, RC/RLC Interconnection, VLSI Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
458 A hybrid Tabu Search Algorithm to Cell Formation Problem and its Variants

Authors: Tai-Hsi Wu, Jinn-Yi Yeh, Chin-Chih Chang

Abstract:

Cell formation is the first step in the design of cellular manufacturing systems. In this study, a general purpose computational scheme employing a hybrid tabu search algorithm as the core is proposed to solve the cell formation problem and its variants. In the proposed scheme, great flexibilities are left to the users. The core solution searching algorithm embedded in the scheme can be easily changed to any other meta-heuristic algorithms, such as the simulated annealing, genetic algorithm, etc., based on the characteristics of the problems to be solved or the preferences the users might have. In addition, several counters are designed to control the timing of conducting intensified solution searching and diversified solution searching strategies interactively.

Keywords: Cell formation problem, Tabu search

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
457 Predictive Semi-Empirical NOx Model for Diesel Engine

Authors: Saurabh Sharma, Yong Sun, Bruce Vernham

Abstract:

Accurate prediction of NOx emission is a continuous challenge in the field of diesel engine-out emission modeling. Performing experiments for each conditions and scenario cost significant amount of money and man hours, therefore model-based development strategy has been implemented in order to solve that issue. NOx formation is highly dependent on the burn gas temperature and the O2 concentration inside the cylinder. The current empirical models are developed by calibrating the parameters representing the engine operating conditions with respect to the measured NOx. This makes the prediction of purely empirical models limited to the region where it has been calibrated. An alternative solution to that is presented in this paper, which focus on the utilization of in-cylinder combustion parameters to form a predictive semi-empirical NOx model. The result of this work is shown by developing a fast and predictive NOx model by using the physical parameters and empirical correlation. The model is developed based on the steady state data collected at entire operating region of the engine and the predictive combustion model, which is developed in Gamma Technology (GT)-Power by using Direct Injected (DI)-Pulse combustion object. In this approach, temperature in both burned and unburnt zone is considered during the combustion period i.e. from Intake Valve Closing (IVC) to Exhaust Valve Opening (EVO). Also, the oxygen concentration consumed in burnt zone and trapped fuel mass is also considered while developing the reported model.  Several statistical methods are used to construct the model, including individual machine learning methods and ensemble machine learning methods. A detailed validation of the model on multiple diesel engines is reported in this work. Substantial numbers of cases are tested for different engine configurations over a large span of speed and load points. Different sweeps of operating conditions such as Exhaust Gas Recirculation (EGR), injection timing and Variable Valve Timing (VVT) are also considered for the validation. Model shows a very good predictability and robustness at both sea level and altitude condition with different ambient conditions. The various advantages such as high accuracy and robustness at different operating conditions, low computational time and lower number of data points requires for the calibration establishes the platform where the model-based approach can be used for the engine calibration and development process. Moreover, the focus of this work is towards establishing a framework for the future model development for other various targets such as soot, Combustion Noise Level (CNL), NO2/NOx ratio etc.

Keywords: Diesel engine, machine learning, NOx emission, semi-empirical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 855
456 An Efficient Tool for Mitigating Voltage Unbalance with Reactive Power Control of Distributed Grid-Connected Photovoltaic Systems

Authors: Malinwo Estone Ayikpa

Abstract:

With the rapid increase of grid-connected PV systems over the last decades, genuine challenges have arisen for engineers and professionals of energy field in the planning and operation of existing distribution networks with the integration of new generation sources. However, the conventional distribution network, in its design was not expected to receive other generation outside the main power supply. The tools generally used to analyze the networks become inefficient and cannot take into account all the constraints related to the operation of grid-connected PV systems. Some of these constraints are voltage control difficulty, reverse power flow, and especially voltage unbalance which could be due to the poor distribution of single-phase PV systems in the network. In order to analyze the impact of the connection of small and large number of PV systems to the distribution networks, this paper presents an efficient optimization tool that minimizes voltage unbalance in three-phase distribution networks with active and reactive power injections from the allocation of single-phase and three-phase PV plants. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. Good reduction of voltage unbalance can be achieved by reactive power control of the PV systems. The presented tool is based on the three-phase current injection method and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems.

Keywords: Photovoltaic generation, primal-dual interior point method, three-phase optimal power flow, unbalanced system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1088
455 Non-Convex Multi Objective Economic Dispatch Using Ramp Rate Biogeography Based Optimization

Authors: Susanta Kumar Gachhayat, S. K. Dash

Abstract:

Multi objective non-convex economic dispatch problems of a thermal power plant are of grave concern for deciding the cost of generation and reduction of emission level for diminishing the global warming level for improving green-house effect. This paper deals with ramp rate constraints for achieving better inequality constraints so as to incorporate valve point loading for cost of generation in thermal power plant through ramp rate biogeography based optimization involving mutation and migration. Through 50 out of 100 trials, the cost function and emission objective function were found to have outperformed other classical methods such as lambda iteration method, quadratic programming method and many heuristic methods like particle swarm optimization method, weight improved particle swarm optimization method, constriction factor based particle swarm optimization method, moderate random particle swarm optimization method etc. Ramp rate biogeography based optimization applications prove quite advantageous in solving non convex multi objective economic dispatch problems subjected to nonlinear loads that pollute the source giving rise to third harmonic distortions and other such disturbances.

Keywords: Economic load dispatch, Biogeography based optimization, Ramp rate biogeography based optimization, Valve Point loading, Moderate random particle swarm optimization method, Weight improved particle swarm optimization method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1050
454 Efficiency of Robust Heuristic Gradient Based Enumerative and Tunneling Algorithms for Constrained Integer Programming Problems

Authors: Vijaya K. Srivastava, Davide Spinello

Abstract:

This paper presents performance of two robust gradient-based heuristic optimization procedures based on 3n enumeration and tunneling approach to seek global optimum of constrained integer problems. Both these procedures consist of two distinct phases for locating the global optimum of integer problems with a linear or non-linear objective function subject to linear or non-linear constraints. In both procedures, in the first phase, a local minimum of the function is found using the gradient approach coupled with hemstitching moves when a constraint is violated in order to return the search to the feasible region. In the second phase, in one optimization procedure, the second sub-procedure examines 3n integer combinations on the boundary and within hypercube volume encompassing the result neighboring the result from the first phase and in the second optimization procedure a tunneling function is constructed at the local minimum of the first phase so as to find another point on the other side of the barrier where the function value is approximately the same. In the next cycle, the search for the global optimum commences in both optimization procedures again using this new-found point as the starting vector. The search continues and repeated for various step sizes along the function gradient as well as that along the vector normal to the violated constraints until no improvement in optimum value is found. The results from both these proposed optimization methods are presented and compared with one provided by popular MS Excel solver that is provided within MS Office suite and other published results.

Keywords: Constrained integer problems, enumerative search algorithm, Heuristic algorithm, tunneling algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 800
453 Integrated Design in Additive Manufacturing Based on Design for Manufacturing

Authors: E. Asadollahi-Yazdi, J. Gardan, P. Lafon

Abstract:

Nowadays, manufactures are encountered with production of different version of products due to quality, cost and time constraints. On the other hand, Additive Manufacturing (AM) as a production method based on CAD model disrupts the design and manufacturing cycle with new parameters. To consider these issues, the researchers utilized Design For Manufacturing (DFM) approach for AM but until now there is no integrated approach for design and manufacturing of product through the AM. So, this paper aims to provide a general methodology for managing the different production issues, as well as, support the interoperability with AM process and different Product Life Cycle Management tools. The problem is that the models of System Engineering which is used for managing complex systems cannot support the product evolution and its impact on the product life cycle. Therefore, it seems necessary to provide a general methodology for managing the product’s diversities which is created by using AM. This methodology must consider manufacture and assembly during product design as early as possible in the design stage. The latest approach of DFM, as a methodology to analyze the system comprehensively, integrates manufacturing constraints in the numerical model in upstream. So, DFM for AM is used to import the characteristics of AM into the design and manufacturing process of a hybrid product to manage the criteria coming from AM. Also, the research presents an integrated design method in order to take into account the knowledge of layers manufacturing technologies. For this purpose, the interface model based on the skin and skeleton concepts is provided, the usage and manufacturing skins are used to show the functional surface of the product. Also, the material flow and link between the skins are demonstrated by usage and manufacturing skeletons. Therefore, this integrated approach is a helpful methodology for designer and manufacturer in different decisions like material and process selection as well as, evaluation of product manufacturability.

Keywords: Additive manufacturing, 3D printing, design for manufacturing, integrated design, interoperability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2255
452 Efficient Hardware Implementation of an Elliptic Curve Cryptographic Processor Over GF (2 163)

Authors: Massoud Masoumi, Hosseyn Mahdizadeh

Abstract:

A new and highly efficient architecture for elliptic curve scalar point multiplication which is optimized for a binary field recommended by NIST and is well-suited for elliptic curve cryptographic (ECC) applications is presented. To achieve the maximum architectural and timing improvements we have reorganized and reordered the critical path of the Lopez-Dahab scalar point multiplication architecture such that logic structures are implemented in parallel and operations in the critical path are diverted to noncritical paths. With G=41, the proposed design is capable of performing a field multiplication over the extension field with degree 163 in 11.92 s with the maximum achievable frequency of 251 MHz on Xilinx Virtex-4 (XC4VLX200) while 22% of the chip area is occupied, where G is the digit size of the underlying digit-serial finite field multiplier.

Keywords: Elliptic curve cryptography, FPGA implementation, scalar point multiplication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2556
451 Traffic Flow Prediction using Adaboost Algorithm with Random Forests as a Weak Learner

Authors: Guy Leshem, Ya'acov Ritov

Abstract:

Traffic Management and Information Systems, which rely on a system of sensors, aim to describe in real-time traffic in urban areas using a set of parameters and estimating them. Though the state of the art focuses on data analysis, little is done in the sense of prediction. In this paper, we describe a machine learning system for traffic flow management and control for a prediction of traffic flow problem. This new algorithm is obtained by combining Random Forests algorithm into Adaboost algorithm as a weak learner. We show that our algorithm performs relatively well on real data, and enables, according to the Traffic Flow Evaluation model, to estimate and predict whether there is congestion or not at a given time on road intersections.

Keywords: Machine Learning, Boosting, Classification, TrafficCongestion, Data Collecting, Magnetic Loop Detectors, SignalizedIntersections, Traffic Signal Timing Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3910
450 A Game Design Framework for Vocational Education

Authors: Heide Lukosch, Roy Van Bussel, Sebastiaan Meijer

Abstract:

Serious games have proven to be a useful instrument to engage learners and increase motivation. Nevertheless, a broadly accepted, practical instructional design approach to serious games does not exist. In this paper, we introduce the use of an instructional design model that has not been applied to serious games yet, and has some advantages compared to other design approaches. We present the case of mechanics mechatronics education to illustrate the close match with timing and role of knowledge and information that the instructional design model prescribes and how this has been translated to a rigidly structured game design. The structured approach answers the learning needs of applicable knowledge within the target group. It combines advantages of simulations with strengths of entertainment games to foster learner-s motivation in the best possible way. A prototype of the game will be evaluated along a well-respected evaluation method within an advanced test setting including test and control group.

Keywords: Serious Gaming, Simulation, Complex Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1766
449 Frequent and Systematic Timing Enhancement of Congestion Window in Typical Transmission Control Protocol

Authors: Ghassan A. Abed, Akbal O. Salman, Bayan M. Sabbar

Abstract:

Transmission Control Protocol (TCP) among the wired and wireless networks, it still has a practical problem; where the congestion control mechanism does not permit the data stream to get complete bandwidth over the existing network links. To solve this problem, many TCP protocols have been introduced with high speed performance. Therefore, an enhanced congestion window (cwnd) for the congestion control mechanism is proposed in this article to improve the performance of TCP by increasing the number of cycles of the new window to improve the transmitted packet number. The proposed algorithm used a new mechanism based on the available bandwidth of the connection to detect the capacity of network path in order to improve the regular clocking of congestion avoidance mechanism. The work in this paper based on using Network Simulator 2 (NS-2) to simulate the proposed algorithm.

Keywords: TCP, cwnd, Congestion Control, NS-2.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
448 Fuzzy Optimization in Metabolic Systems

Authors: Feng-Sheng Wang, Wu-Hsiung Wu, Kai-Cheng Hsu

Abstract:

The optimization of biological systems, which is a branch of metabolic engineering, has generated a lot of industrial and academic interest for a long time. In the last decade, metabolic engineering approaches based on mathematical optimizations have been used extensively for the analysis and manipulation of metabolic networks. In practical optimization of metabolic reaction networks, designers have to manage the nature of uncertainty resulting from qualitative characters of metabolic reactions, e.g., the possibility of enzyme effects. A deterministic approach does not give an adequate representation for metabolic reaction networks with uncertain characters. Fuzzy optimization formulations can be applied to cope with this problem. A fuzzy multi-objective optimization problem can be introduced for finding the optimal engineering interventions on metabolic network systems considering the resilience phenomenon and cell viability constraints. The accuracy of optimization results depends heavily on the development of essential kinetic models of metabolic networks. Kinetic models can quantitatively capture the experimentally observed regulation data of metabolic systems and are often used to find the optimal manipulation of external inputs. To address the issues of optimizing the regulatory structure of metabolic networks, it is necessary to consider qualitative effects, e.g., the resilience phenomena and cell viability constraints. Combining the qualitative and quantitative descriptions for metabolic networks makes it possible to design a viable strain and accurately predict the maximum possible flux rates of desired products. Considering the resilience phenomena in metabolic networks can improve the predictions of gene intervention and maximum synthesis rates in metabolic engineering. Two case studies will present in the conference to illustrate the phenomena.

Keywords: Fuzzy multi-objective optimization problem, kinetic model, metabolic engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018