Search results for: soft magnetic materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2296

Search results for: soft magnetic materials

2146 Numerical Investigation of Unsteady MHD Flow of Second Order Fluid in a Tube of Elliptical Cross-Section on the Porous Boundary

Authors: S. B. Kulkarni, Hasim A. Chikte, V. Murali Mohan

Abstract:

Exact solution of an unsteady MHD flow of elasticoviscous fluid through a porous media in a tube of elliptic cross section under the influence of magnetic field and constant pressure gradient has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of elliptical cross section by taking into account of the porosity factor and magnetic parameter of the bounding surface is investigated. The problem is solved in two-stages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a non-dimensional porosity parameter, magnetic parameter and elastico-viscosity parameter, which depends on the Non-Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter, magnetic parameter tends to zero, and porosity tends to infinity. The numerical results were simulated in MATLAB software to analyze the effect of Elastico-viscous parameter, porosity parameter, and magnetic parameter on velocity profile. Boundary conditions were satisfied. It is seen that the effect of elastico-viscosity parameter, porosity parameter and magnetic parameter of the bounding surface has significant effect on the velocity parameter.

Keywords: Elastico-viscous fluid, Porous media, Elliptic cross-section, Magnetic parameter, Numerical Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
2145 The Magnetized Quantum Breathing in Cylindrical Dusty Plasma

Authors: A. Abdikian

Abstract:

A quantum breathing mode has been theatrically studied in quantum dusty plasma. By using linear quantum hydrodynamic model, not only the quantum dispersion relation of rotation mode but also void structure has been derived in the presence of an external magnetic field. Although the phase velocity of the magnetized quantum breathing mode is greater than that of unmagnetized quantum breathing mode, attenuation of the magnetized quantum breathing mode along radial distance seems to be slower than that of unmagnetized quantum breathing mode. Clearly, drawing the quantum breathing mode in the presence and absence of a magnetic field, we found that the magnetic field alters the distribution of dust particles and changes the radial and azimuthal velocities around the axis. Because the magnetic field rotates the dust particles and collects them, it could compensate the void structure.

Keywords: The linear quantum hydrodynamic model, the magnetized quantum breathing mode, the quantum dispersion relation of rotation mode, void structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836
2144 Design of the Miniature Maglev Using Hybrid Magnets in Magnetic Levitation System

Authors: Jeong-Min Jo, Young-Jae Han, Chang-Young Lee

Abstract:

Attracting ferromagnetic forces between magnet and reaction rail provide the supporting force in Electromagnetic Suspension. Miniature maglev using permanent magnets and electromagnets is based on the idea to generate the nominal magnetic force by permanent magnets and superimpose the variable magnetic field required for stabilization by currents flowing through control windings in electromagnets. Permanent magnets with a high energy density have lower power losses with regard to supporting force and magnet weight. So the advantage of the maglev using electromagnets and permanent magnets is partially reduced by the power required to feed the remaining onboard supply system so that the overall onboard power is diminished as compared to that of the electromagnet. In this paper we proposed the how to design and control the miniature maglev and confirmed the feasibility of the levitation system using electromagnets and permanent magnets through the manufacturing the miniature maglev

Keywords: Magnetic Levitation system, Maglev, Permanent Magnets, Hybrid Magnet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2515
2143 Energy Recovery Soft Switching Improved Efficiency Half Bridge Inverter for Electronic Ballast Applications

Authors: A. Yazdanpanah Goharrizi

Abstract:

An improved topology of a voltage-fed quasi-resonant soft switching LCrCdc series-parallel half bridge inverter with a constant-frequency for electronic ballast applications is proposed in this paper. This new topology introduces a low-cost solution to reduce switching losses and circuit rating to achieve high-efficiency ballast. Switching losses effect on ballast efficiency is discussed through experimental point of view. In this discussion, an improved topology in which accomplishes soft switching operation over a wide power regulation range is proposed. The proposed structure uses reverse recovery diode to provide better operation for the ballast system. A symmetrical pulse wide modulation (PWM) control scheme is implemented to regulate a wide range of out-put power. Simulation results are kindly verified with the experimental measurements obtained by ballast-lamp laboratory prototype. Different load conditions are provided in order to clarify the performance of the proposed converter.

Keywords: Electronic ballast, Pulse wide modulation (PWM) Reverse recovery diode, Soft switching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
2142 Structural Study of Boron - Nitride Nanotube with Magnetic Resonance (NMR) Parameters Calculation via Density Functional Theory Method (DFT)

Authors: Asadollah Boshra, Ahmad Seif, Mehran Aghaei

Abstract:

A model of (4, 4) single-walled boron-nitride nanotube as a representative of armchair boron-nitride nanotubes studied. At first the structure optimization performed and then Nuclear Magnetic Resonance parameters (NMR) by Density Functional Theory (DFT) method at 11B and 15N nuclei calculated. Resulted parameters evaluation presents electrostatic environment heterogeneity along the nanotube and especially at the ends but the nuclei in a layer feel the same electrostatic environment. All of calculations carried out using Gaussian 98 Software package.

Keywords: Boron-nitride nanotube, Density Functional Theory, Nuclear Magnetic Resonance (NMR).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
2141 Simulation of a Boost PFC Converter with Electro Magnetic Interference Filter

Authors: P. Ram Mohan, M. Vijaya Kumar, O. V. Raghava Reddy

Abstract:

This paper deals with the simulation of a Boost Power Factor Correction (PFC) Converter with Electro Magnetic Interference (EMI) Filter. The diode rectifier with output capacitor gives poor power factor. The Boost Converter of PFC Circuit is analyzed and then simulated with diode rectifier. The Boost PFC Converter with EMI Filter is simulated for resistive load. The power factor is improved using the proposed converter.

Keywords: Boost Converter, Power Factor Correction, Electro Magnetic Interference, Diode Rectifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3435
2140 Application of Soft Systems Methodology in Solving Disaster Emergency Logistics Problems

Authors: Alhasan Hakami, Arun Kumar, Sung J Shim, Yousef Abu Nahleh

Abstract:

In recent years, many high intensity earthquakes have occurred around the world, such as the 2011 earthquake in Tohoku, Japan. These large-scale disasters caused huge casualties and losses. In addition, inefficient disaster response operations also caused the second wave of casualties and losses, and expanded the damage. Effective disaster management can be used to respond to the chaotic situation, and reduce the damage; however, some inefficient disaster response operations are still used. Therefore, this case study chose the 921 earthquake for analyzing disaster emergency logistics problems and proposed the Soft Systems Methodology (SSM) to solve disaster emergency logistics problems. Moreover, it analyses the effect of human factors on system operation, and suggests a solution to improve the system.

Keywords: Soft systems methodology, emergency logistics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3012
2139 Contrast-Enhanced Magnetic Resonance Angiography in Rats with Gadobenate Dimeglumine at 3T

Authors: Jo-Chi Jao, Yen-Ku Chen, Twei-Shiun Jaw, Po-Chou Chen

Abstract:

This study aimed to investigate the magnetic resonance (MR) signal enhancement ratio (ER) of contrast-enhanced MR angiography (CE-MRA) in normal rats with gadobenate dimeglumine (Gd-BOPTA) using a clinical 3T scanner and an extremity coil. The relaxivities of Gd-BOPTA with saline only and with 4.5% human serum albumin (HSA) were also measured. Compared with Gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA), Gd-BOPTA had higher relaxivities. The maximum ER of aorta (ERa), kidney, liver and muscle with Gd-BOPTA were higher than those with Gd-DTPA. The maximum ERa appeared at 1.2 min and decayed to half at 10 min after Gd-BOPTA injection. This information is helpful for the design of CE-MRA study of rats.

Keywords: Contrast-Enhanced Magnetic Resonance Angiography, Gd-BOPTA, Gd-DTPA, Rat.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
2138 Design Charts for Strip Footing on Untreated and Cement Treated Sand Mat over Underlying Natural Soft Clay

Authors: Sharifullah Ahmed, Sarwar Jahan Md. Yasin

Abstract:

Shallow foundations on unimproved soft natural soils can undergo a high consolidation and secondary settlement. For low and medium rise building projects on such soil condition, pile foundation may not be cost effective. In such cases an alternative to pile foundations may be shallow strip footings placed on a double layered improved soil system soil. The upper layer of this system is untreated or cement treated compacted sand and underlying layer is natural soft clay. This system will reduce the settlement to an allowable limit. The current research has been conducted with the settlement of a rigid plane-strain strip footing of 2.5 m width placed on the surface of a soil consisting of an untreated or cement treated sand layer overlying a bed of homogeneous soft clay. The settlement of the mentioned shallow foundation has been studied considering both cases with the thicknesses of the sand layer are 0.3 to 0.9 times the width of footing. The response of the clay layer is assumed as undrained for plastic loading stages and drained during consolidation stages. The response of the sand layer is drained during all loading stages. FEM analysis was done using PLAXIS 2D Version 8.0. A natural clay deposit of 15 m thickness and 18 m width has been modeled using Hardening Soil Model, Soft Soil Model, Soft Soil Creep Model, and upper improvement layer has been modeled using only Hardening Soil Model. The groundwater level is at the top level of the clay deposit that made the system fully saturated. Parametric study has been conducted to determine the effect of thickness, density, cementation of the sand mat and density, shear strength of the soft clay layer on the settlement of strip foundation under the uniformly distributed vertical load of varying value. A set of the chart has been established for designing shallow strip footing on the sand mat over thick, soft clay deposit through obtaining the particular thickness of sand mat for particular subsoil parameter to ensure no punching shear failure and no settlement beyond allowable level. Design guideline in the form of non-dimensional charts has been developed for footing pressure equivalent to medium-rise residential or commercial building foundation with strip footing on soft inorganic Normally Consolidated (NC) soil of Bangladesh having void ratio from 1.0 to 1.45.

Keywords: Design charts, ground improvement, PLAXIS 2D, primary and secondary settlement, sand Mat, soft clay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 670
2137 Mathematical Modeling of Switching Processes in Magnetically Controlled MEMS Switches

Authors: Sergey M. Karabanov, Dmitry V. Suvorov, Dmitry Yu. Tarabrin

Abstract:

The operating principle of magnetically controlled microelectromechanical system (MEMS) switches is based on controlling the beam movement under the influence of a magnetic field. Currently, there is a MEMS switch design with a flexible ferromagnetic electrode in the form of a fixed-terminal beam, with an electrode fastened on a straight or cranked anchor. The basic performance characteristics of magnetically controlled MEMS switches (service life, sensitivity, contact resistance, fast response) are largely determined by the flexible electrode design. To ensure the stable and controlled motion of the flexible electrode, it is necessary to provide the optimal design of a flexible electrode.

Keywords: MEMS switch, magnetic sensitivity, magnetic concentrator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 732
2136 Unsteady Flow of an Incompressible Viscous Electrically Conducting Fluid in Tube of Elliptical Cross Section under the Influence of Magnetic Field

Authors: Sanjay Baburao Kulkarni

Abstract:

Exact solution of an unsteady flow of elastico-viscous electrically conducting fluid through a porous media in a tube of elliptical cross section under the influence of constant pressure gradient and magnetic field has been obtained in this paper. Initially, the flow is generated by a constant pressure gradient. After attaining the steady state, the pressure gradient is suddenly withdrawn and the resulting fluid motion in a tube of elliptical cross section by taking into account of the transverse magnetic field and porosity factor of the bounding surface is investigated. The problem is solved in twostages the first stage is a steady motion in tube under the influence of a constant pressure gradient, the second stage concern with an unsteady motion. The problem is solved employing separation of variables technique. The results are expressed in terms of a nondimensional porosity parameter (K), magnetic parameter (m) and elastico-viscosity parameter (β), which depends on the Non- Newtonian coefficient. The flow parameters are found to be identical with that of Newtonian case as elastic-viscosity parameter and magnetic parameter tends to zero and porosity tends to infinity. It is seen that the effect of elastico-viscosity parameter, magnetic parameter and the porosity parameter of the bounding surface has significant effect on the velocity parameter.

Keywords: Elastico-viscous fluid, Elliptic cross-section, Porous media, Second order fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
2135 Microfluidic Continuous Approaches to Produce Magnetic Nanoparticles with Homogeneous Size Distribution

Authors: Ane Larrea, Victor Sebastian, Manuel Arruebo, Jesus Santamaria

Abstract:

We present a gas-liquid microfluidic system as a reactor to obtain magnetite nanoparticles with an excellent degree of control regarding their crystalline phase, shape and size. Several types of microflow approaches were selected to prevent nanomaterial aggregation and to promote homogenous size distribution. The selected reactor consists of a mixer stage aided by ultrasound waves and a reaction stage using a N2-liquid segmented flow to prevent magnetite oxidation to non-magnetic phases. A milli-fluidic reactor was developed to increase the production rate where a magnetite throughput close to 450 mg/h in a continuous fashion was obtained.

Keywords: Microfluidics, magnetic nanoparticles, continuous production, nanomaterials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2987
2134 Porous Carbon Nanoparticles Co-Doped with Nitrogen and Iron as an Efficient Catalyst for Oxygen Reduction Reaction

Authors: Bita Bayatsarmadi, Shi-Zhang Qiao

Abstract:

Oxygen Reduction Reaction (ORR) performance of iron and nitrogen co-doped porous carbon nanoparticles (Fe-NPC) with various physical and (electro) chemical properties have been investigated. Fe-NPC nanoparticles are synthesized via a facile soft-templating procedure by using Iron (III) chloride hexa-hydrate as iron precursor and aminophenol-formaldehyde resin as both carbon and nitrogen precursor. Fe-NPC nanoparticles shows high surface area (443.83 m2g-1), high pore volume (0.52 m3g-1), narrow mesopore size distribution (ca. 3.8 nm), high conductivity (IG/ID=1.04), high kinetic limiting current (11.71 mAcm-2) and more positive onset potential (-0.106 V) compared to metal-free NPC nanoparticles (-0.295V) which make it high efficient ORR metal-free catalysts in alkaline solution. This study may pave the way of feasibly designing iron and nitrogen containing carbon materials (Fe-N-C) for highly efficient oxygen reduction electro-catalysis.

Keywords: Electro-catalyst, mesopore structure, oxygen reduction reaction, soft-template.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
2133 Improvement of Soft Clay Using Floating Cement Dust-Lime Columns

Authors: Adel Belal, Sameh Aboelsoud, Mohy Elmashad, Mohammed Abdelmonem

Abstract:

The two main criteria that control the design and performance of footings are bearing capacity and settlement of soil. In soft soils, the construction of buildings, storage tanks, warehouse, etc. on weak soils usually involves excessive settlement problems. To solve bearing capacity or reduce settlement problems, soil improvement may be considered by using different techniques, including encased cement dust–lime columns. The proposed research studies the effect of adding floating encased cement dust and lime mix columns to soft clay on the clay-bearing capacity. Four experimental tests were carried out. Columns diameters of 3.0 cm, 4.0 cm, and 5.0 cm and columns length of 60% of the clay layer thickness were used. Numerical model was constructed and verified using commercial finite element package (PLAXIS 2D, V8.5). The verified model was used to study the effect of distributing columns around the footing at different distances. The study showed that the floating cement dust lime columns enhanced the clay-bearing capacity with 262%. The numerical model showed that the columns around the footing have a limit effect on the clay improvement.

Keywords: Bearing capacity, cement dust – lime columns, ground improvement, soft clay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1116
2132 An Experimental Study of Structural, Optical and Magnetic Properties of Lithium Ferrite

Authors: S. Malathi, P. Seenuvasakumaran

Abstract:

Nanomaterials ferrites have applications in making permanent magnets, high density information devices, color imaging etc. In the present examination, lithium ferrite is synthesized by sol-gel process. The x-ray diffraction (XRD) result shows that the structure of lithium ferrite is monoclinic structure. The average particle size 22 nm is calculated by Scherer formula. The lattice parameters and dislocation density (δ) are calculated from XRD data. Strain (ε) values are evaluated from Williamson – hall plot. The FT-IR study reveals the formation of ferrites showing the significant absorption bands. The VU-VIS spectroscopic data is used to calculate direct and indirect optical band gap (Eg) of 1.57eV and 1.01eV respectively for lithium ferrite by using Tauc plot at the edge of the absorption band. The energy dispersive x-ray analysis spectra showed that the expected elements exist in the material. The magnetic behaviour of the materials studied using vibrating sample magnetometer (VSM).

Keywords: Sol-gel, dislocation density, energy band gap, VSM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1794
2131 Detection, Tracking and Classification of Vehicles and Aircraft based on Magnetic Sensing Technology

Authors: K. Dimitropoulos, N. Grammalidis, I. Gragopoulos, H. Gao, Th. Heuer, M. Weinmann, S. Voit, C. Stockhammer, U. Hartmann, N. Pavlidou

Abstract:

Existing ground movement surveillance technologies at airports are subjected to limitations due to shadowing effects or multiple reflections. Therefore, there is a strong demand for a new sensing technology, which will be cost effective and will provide detection of non-cooperative targets under any weather conditions. This paper aims to present a new intelligent system, developed within the framework of the EC-funded ISMAEL project, which is based on a new magnetic sensing technology and provides detection, tracking and automatic classification of targets moving on the airport surface. The system is currently being installed at two European airports. Initial experimental results under real airport traffic demonstrate the great potential of the proposed system.

Keywords: Air traffic management, magnetic sensors, multitracking, A-SMGCS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
2130 Formation of (Ga,Mn)N Dilute Magnetic Semiconductor by Manganese Ion Implantation

Authors: N.S. Pradhan, S.K. Dubey, A. D.Yadav, Arvind Singh, D.C. Kothari

Abstract:

Un-doped GaN film of thickness 1.90 mm, grown on sapphire substrate were uniformly implanted with 325 keV Mn+ ions for various fluences varying from 1.75 x 1015 - 2.0 x 1016 ions cm-2 at 3500 C substrate temperature. The structural, morphological and magnetic properties of Mn ion implanted gallium nitride samples were studied using XRD, AFM and SQUID techniques. XRD of the sample implanted with various ion fluences showed the presence of different magnetic phases of Ga3Mn, Ga0.6Mn0.4 and Mn4N. However, the compositions of these phases were found to be depended on the ion fluence. AFM images of non-implanted sample showed micrograph with rms surface roughness 2.17 nm. Whereas samples implanted with the various fluences showed the presence of nano clusters on the surface of GaN. The shape, size and density of the clusters were found to vary with respect to ion fluence. Magnetic moment versus applied field curves of the samples implanted with various fluences exhibit the hysteresis loops. The Curie temperature estimated from zero field cooled and field cooled curves for the samples implanted with the fluence of 1.75 x 1015, 1.5 x 1016 and 2.0 x 1016 ions cm-2 was found to be 309 K, 342 K and 350 K respectively.

Keywords: GaN, Ion implantation, XRD, AFM, SQUID

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1945
2129 Numerical Simulation of Lightning Strike Direct Effects on Aircraft Skin Composite Laminate

Authors: Muhammad Khalil, Nader Abuelfoutouh, Gasser Abdelal, Adrian Murphy

Abstract:

Nowadays, the direct effects of lightning to aircrafts are of great importance because of the massive use of composite materials. In comparison with metallic materials, composites present several weaknesses for lightning strike direct effects. Especially, their low electrical and thermal conductivities lead to severe lightning strike damage. The lightning strike direct effects are burning, heating, magnetic force, sparking and arcing. As the problem is complex, we investigated it gradually. A magnetohydrodynamics (MHD) model is developed to simulate the lightning strikes in order to estimate the damages on the composite materials. Then, a coupled thermal-electrical finite element analysis is used to study the interaction between the lightning arc and the composite laminate and to investigate the material degradation.

Keywords: Composite structures, lightning multiphysics, magnetohydrodynamics, coupled thermal-electrical analysis, thermal plasmas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2623
2128 A Numerical Study on Electrophoresis of a Soft Particle with Charged Core Coated with Polyelectrolyte Layer

Authors: Partha Sarathi Majee, S. Bhattacharyya

Abstract:

Migration of a core-shell soft particle under the influence of an external electric field in an electrolyte solution is studied numerically. The soft particle is coated with a positively charged polyelectrolyte layer (PEL) and the rigid core is having a uniform surface charge density. The Darcy-Brinkman extended Navier-Stokes equations are solved for the motion of the ionized fluid, the non-linear Nernst-Planck equations for the ion transport and the Poisson equation for the electric potential. A pressure correction based iterative algorithm is adopted for numerical computations. The effects of convection on double layer polarization (DLP) and diffusion dominated counter ions penetration are investigated for a wide range of Debye layer thickness, PEL fixed surface charge density, and permeability of the PEL. Our results show that when the Debye layer is in order of the particle size, the DLP effect is significant and produces a reduction in electrophoretic mobility. However, the double layer polarization effect is negligible for a thin Debye layer or low permeable cases. The point of zero mobility and the existence of mobility reversal depending on the electrolyte concentration are also presented.

Keywords: Debye length, double layer polarization, electrophoresis, mobility reversal, soft particle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1143
2127 Recovery of Post-Consumer PET Bottles in a Composite Material Preparation

Authors: Rafenomananjara Tsinjo Nirina, Tomoo Sekito, Andrianaivoravelona Jaconnet Oliva

Abstract:

Manufacturing a composite material from post-consumer bottles is an interesting outlet since Madagascar is still facing the challenges of managing plastic waste on the one hand and appropriate waste treatment facilities are not yet developed on the other hand. New waste management options are needed to divert End-Of-Life (EOL) soft plastic wastes from landfills and incineration. Waste polyethylene terephthalate (PET) bottles might be considered as a valuable resource and recovered into polymer concrete. The methodology is easy to implement and appropriate to the local context in Madagascar. This approach will contribute to the production of ecological building materials that might be profitable for the environment and the construction sector. This work aims to study the feasibility of using the post-consumer PET bottles as an alternative binding agent instead of the conventional Portland cement and water. Then, the mechanical and physical properties of the materials were evaluated.

Keywords: PET recycling, polymer concrete, ecological building materials, pollution mitigation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 955
2126 1 kW Power Factor Correction Soft Switching Boost Converter with an Active Snubber Cell

Authors: Yakup Sahin, Naim Suleyman Ting, Ismail Aksoy

Abstract:

A 1 kW power factor correction boost converter with an active snubber cell is presented in this paper. In the converter, the main switch turns on under zero voltage transition (ZVT) and turns off under zero current transition (ZCT) without any additional voltage or current stress. The auxiliary switch turns on and off under zero current switching (ZCS). Besides, the main diode turns on under ZVS and turns off under ZCS. The output current and voltage are controlled by the PFC converter in wide line and load range. The simulation results of converter are obtained for 1 kW and 100 kHz. One of the most important feature of the given converter is that it has direct power transfer as well as excellent soft switching techniques. Also, the converter has 0.99 power factor with the sinusoidal input current shape.

Keywords: Power factor correction, direct power transfer, zero-voltage transition, zero-current transition, soft switching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840
2125 Study of Two Writing Schemes for a Magnetic Tunnel Junction Based On Spin Orbit Torque

Authors: K. Jabeur, L. D. Buda-Prejbeanu, G. Prenat, G. Di Pendina

Abstract:

MRAM technology provides a combination of fast access time, non-volatility, data retention and endurance. While a growing interest is given to two-terminal Magnetic Tunnel Junctions (MTJ) based on Spin-Transfer Torque (STT) switching as the potential candidate for a universal memory, its reliability is dramatically decreased because of the common writing/reading path. Three-terminal MTJ based on Spin-Orbit Torque (SOT) approach revitalizes the hope of an ideal MRAM. It can overcome the reliability barrier encountered in current two-terminal MTJs by separating the reading and the writing path. In this paper, we study two possible writing schemes for the SOT-MTJ device based on recently fabricated samples. While the first is based on precessional switching, the second requires the presence of permanent magnetic field. Based on an accurate Verilog-A model, we simulate the two writing techniques and we highlight advantages and drawbacks of each one. Using the second technique, pioneering logic circuits based on the three-terminal architecture of the SOT-MTJ described in this work are under development with preliminary attractive results.

Keywords: Spin orbit Torque, Magnetic Tunnel Junction, MRAM, Spintronic, Circuit simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3572
2124 Comparison of Zero Voltage Soft Switching and Hard Switching Boost Converter with Maximum Power Point Tracking

Authors: N. Ravi Kumar, R. Kamalakannan

Abstract:

The inherent nature of normal boost converter has more voltage stress across the power electronics switch and ripple. The presented formation of the front end rectifier stage for a photovoltaic (PV) organization is mainly used to give the supply. Further increasing of the solar efficiency is achieved by connecting the zero voltage soft switching boost converter. The zero voltage boost converter is used to convert the low level DC voltage to high level DC voltage. The inherent nature of zero voltage switching boost converter is used to shrink the voltage tension across the power electronics switch and ripple. The input stage allows the determined power point tracking to be used to extract supreme power from the sun when it is available. The hardware setup was implemented by using PIC Micro controller (16F877A).

Keywords: Boost converter, duty cycle, hard switching, MOSFET, maximum power point tracking, photovoltaic, soft switching, zero voltage switching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204
2123 Surface and Bulk Magnetization Behavior of Isolated Ferromagnetic NiFe Nanowires

Authors: Musaab Salman Sultan

Abstract:

The surface and bulk magnetization behavior of template released isolated ferromagnetic Ni60Fe40 nanowires of relatively thick diameters (~200 nm), deposited from a dilute suspension onto pre-patterned insulating chips have been investigated experimentally, using a highly sensitive Magneto-Optical Ker Effect (MOKE) magnetometry and Magneto-Resistance (MR) measurements, respectively. The MR data were consistent with the theoretical predictions of the anisotropic magneto-resistance (AMR) effect. The MR measurements, in all the angles of investigations, showed large features and a series of nonmonotonic "continuous small features" in the resistance profiles. The extracted switching fields from these features and from MOKE loops were compared with each other and with the switching fields reported in the literature that adopted the same analytical techniques on the similar compositions and dimensions of nanowires. A large difference between MOKE and MR measurments was noticed. The disparate between MOKE and MR results is attributed to the variance in the micro-magnetic structure of the surface and the bulk of such ferromagnetic nanowires. This result was ascertained using micro-magnetic simulations on an individual: cylindrical and rectangular cross sections NiFe nanowires, with the same diameter/thickness of the experimental wires, using the Object Oriented Micro-magnetic Framework (OOMMF) package where the simulated loops showed different switching events, indicating that such wires have different magnetic states in the reversal process and the micro-magnetic spin structures during switching behavior was complicated. These results further supported the difference between surface and bulk magnetization behavior in these nanowires. This work suggests that a combination of MOKE and MR measurements is required to fully understand the magnetization behavior of such relatively thick isolated cylindrical ferromagnetic nanowires.

Keywords: MOKE magnetometry, MR measurements, OOMMF package, micro-magnetic simulations, ferromagnetic nanowires, surface magnetic properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 763
2122 Influence of PLA Film Packaging on the Shelf Life of Soft Cheese Kleo

Authors: Lija Dukalska, Sandra Muizniece-Brasava, Irisa Murniece, Ilona Dabina-Bicka, Emils Kozlinskis, Svetlana Sarvi

Abstract:

Experiments were carried out at the Faculty of Food Technology of Latvia University of Agriculture (LLU). Soft cheese Kleo produced in Latvia was packed in a biodegradable PLA without barrierproperties and VC999 BioPack lidding film PLA, coated with a barrier of pure silicon oxide (SiOx) and in combination with modified atmosphere (MAP) the influence on the shelf life was investigated and compared with some conventional (OPP, PE/PA, PE/OPA and Multibarrier 60) polymer film impact. Modified atmosphere consisted of carbon dioxide CO2 (E 290) 30% and nitrogen N2 (E 941) 70%. The analyzable samples were stored at the temperature of +4.0±0.5 °C up to 32 days- and analyzed before packaging and in the 0, 5th, 11th, 15th, 18th, 22nd, 25th, 29th and 32nd day of storage. The shelf life was extended along to 32 days, good outside appearance and lactic acid aroma was observed.

Keywords: Soft cheese, modified atmosphere, conventional andbiodegradable PLA film, shelf life

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2690
2121 Evaluation of Baking Properties and Sensory Quality of Wheat-Cowpea Flour

Authors: Mohamed A. Ahmed, Lydia J. Campbell

Abstract:

The fortified of soft wheat flour with cowpea flour in bread making was investigated. The Soft wheat flour (SWF) was substituted by cowpea flour at levels of 5, 15 and 20%. The protein content of composite breads ranged from 6.1 – 9.9%. Significant difference was observed in moisture, protein and crude fibre contents of control (wheat bread) and composite bread at 5% addition of cowpea. Water absorption capacities of composite flours increased with increasing levels of cowpea flour in the blend. The specific loaf volume decreased significantly with increased cowpea content of blends. The overall acceptability of the 5% cowpea flour content of composite bread was not significantly different from the control (Soft Wheat-bread) but there is significantly different with increasing the levels of cowpea flour in the blend more than 5%.

Keywords: Cowpea flour, wheat flour, baking properties, sensory quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2202
2120 Analytical and Experimental Study on the Effect of Air-Core Coil Parameters on Magnetic Force Used in a Linear Optical Scanner

Authors: Loke Kean Koay, Horizon Gitano-Briggs, Mani Maran Ratnam

Abstract:

Today air-core coils (ACC) are a viable alternative to ferrite-core coils in a range of applications due to their low induction effect. An analytical study was carried out and the results were used as a guide to understand the relationship between the magnet-coil distance and the resulting attractive magnetic force. Four different ACC models were fabricated for experimental study. The variation in the models included the dimensions, the number of coil turns and the current supply to the coil. Comparison between the analytical and experimental results for all the models shows an average discrepancy of less than 10%. An optimized ACC design was selected for the scanner which can provide maximum magnetic force.

Keywords: Air-Core Coils, Electromagnetic, Linear Optical Scanner

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380
2119 Localisation of Anatomical Soft Tissue Landmarks of the Head in CT Images

Authors: M. Ovinis, D. Kerr, K. Bouazza-Marouf, M. Vloeberghs

Abstract:

In this paper, algorithms for the automatic localisation of two anatomical soft tissue landmarks of the head the medial canthus (inner corner of the eye) and the tragus (a small, pointed, cartilaginous flap of the ear), in CT images are describet. These landmarks are to be used as a basis for an automated image-to-patient registration system we are developing. The landmarks are localised on a surface model extracted from CT images, based on surface curvature and a rule based system that incorporates prior knowledge of the landmark characteristics. The approach was tested on a dataset of near isotropic CT images of 95 patients. The position of the automatically localised landmarks was compared to the position of the manually localised landmarks. The average difference was 1.5 mm and 0.8 mm for the medial canthus and tragus, with a maximum difference of 4.5 mm and 2.6 mm respectively.The medial canthus and tragus can be automatically localised in CT images, with performance comparable to manual localisation

Keywords: Anatomical soft tissue landmarks, automatic localisation, Computed Tomography (CT)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1844
2118 Nanoparticles-Protein Hybrid Based Magnetic Liposome

Authors: Amlan Kumar Das, Avinash Marwal, Vikram Pareek

Abstract:

Liposome plays an important role in medical and pharmaceutical science as e.g. nano scale drug carriers. Liposomes are vesicles of varying size consisting of a spherical lipid bilayer and an aqueous inner compartment. Magnet-driven liposome used for the targeted delivery of drugs to organs and tissues. These liposome preparations contain encapsulated drug components and finely dispersed magnetic particles. Liposomes are vesicles of varying size consisting of a spherical lipid bilayer and an aqueous inner compartment that are generated in vitro. These are useful in terms of biocompatibility, biodegradability, and low toxicity, and can control biodistribution by changing the size, lipid composition, and physical characteristics. Furthermore, liposomes can entrap both hydrophobic and hydrophilic drugs and are able to continuously release the entrapped substrate, thus being useful drug carriers. Magnetic liposomes (MLs) are phospholipid vesicles that encapsulate magneticor paramagnetic nanoparticles. They are applied as contrast agents for magnetic resonance imaging (MRI). The biological synthesis of nanoparticles using plant extracts plays an important role in the field of nanotechnology. Green-synthesized magnetite nanoparticles-protein hybrid has been produced by treating Iron (III) / Iron (II) chloride with the leaf extract of Datura inoxia. The phytochemicals present in the leaf extracts act as a reducing as well stabilizing agents preventing agglomeration, which include flavonoids, phenolic compounds, cardiac glycosides, proteins and sugars. The magnetite nanoparticles-protein hybrid has been trapped inside the aqueous core of the liposome prepared by reversed phase evaporation (REV) method using oleic and linoleic acid which has been shown to be driven under magnetic field confirming the formation magnetic liposome (ML). Chemical characterization of stealth magnetic liposome has been performed by breaking the liposome and release of magnetic nanoparticles. The presence iron has been confirmed by colour complex formation with KSCN and UV-Vis study using spectrophotometer Cary 60, Agilent. This magnet driven liposome using nanoparticles-protein hybrid can be a smart vesicles for the targeted drug delivery.

Keywords: Nanoparticles-Protein Hybrid, Magnetic Liposome.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3023
2117 Impedance of an Encircling Coil due to a Cylindrical Tube with Varying Properties

Authors: Valentina Koliskina

Abstract:

Change in impedance of an encircling coil is obtained in the present paper for the case where the electric conductivity and magnetic permeability of a metal cylindrical tube depend on the radial coordinate. The system of equations for the vector potential is solved by means of the Fourier cosine transform. The solution is expressed in terms of improper integral containing modified Bessel functions of complex order.

Keywords: Eddy currents, magnetic permeability, Besselfunctions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773