Search results for: Standalone PV Inverter
52 Current Mode Logic Circuits for 10-bit 5GHz High Speed Digital to Analog Converter
Authors: Zhenguo Vincent Chia, Sheung Yan Simon Ng, Minkyu Je
Abstract:
This paper presents CMOS Current Mode Logic (CML) circuits for a high speed Digital to Analog Converter (DAC) using standard CMOS 65nm process. The CML circuits have the propagation delay advantage over its conventional CMOS counterparts due to smaller output voltage swing and tunable bias current. The CML circuits proposed in this paper can achieve a maximum propagation delay of only 9.3ps, which can satisfy the stringent requirement for the 5 GHz high speed DAC application. Another advantage for CML circuits is its dynamic symmetry characteristic resulting in a reduction of an additional inverter. Simulation results show that the proposed CML circuits can operate from 1.08V to 1.3V with temperature ranging from -40 to +120°C.
Keywords: Conventional, Current Mode Logic, DAC, Decoder
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 582951 Modeling and Analysis of Twelve-phase (Multi- Phase) DSTATCOM for Multi-Phase Load Circuits
Authors: Zakir Husain
Abstract:
This paper presents modeling and analysis of 12-phase distribution static compensator (DSTATCOM), which is capable of balancing the source currents in spite of unbalanced loading and phase outages. In addition to balance the supply current, the power factor can be set to a desired value. The theory of instantaneous symmetrical components is used to generate the twelve-phase reference currents. These reference currents are then tracked using current controlled voltage source inverter, operated in a hysteresis band control scheme. An ideal compensator in place of physical realization of the compensator is used. The performance of the proposed DTATCOM is validated through MATLAB simulation and detailed simulation results are given.
Keywords: DSTATCOM, Modeling, Load balancing, Multiphase, Power factor correction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184250 Design Calculation and Performance Testing of Heating Coil in Induction Surface Hardening Machine
Authors: Soe Sandar Aung, Han Phyo Wai, Nyein Nyein Soe
Abstract:
The induction hardening machines are utilized in the industries which modify machine parts and tools needed to achieve high ware resistance. This paper describes the model of induction heating process design of inverter circuit and the results of induction surface hardening of heating coil. In the design of heating coil, the shape and the turn numbers of the coil are very important design factors because they decide the overall operating performance of induction heater including resonant frequency, Q factor, efficiency and power factor. The performance will be tested by experiments in some cases high frequency induction hardening machine.Keywords: Induction Heating, Resonant Circuit, InverterCircuit, Coil Design, Induction Hardening Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228449 Comparison of Different PWM Switching Modes of BLDC Motor as Drive Train of Electric Vehicles
Authors: A. Tashakori, M. Ektesabi
Abstract:
Electric vehicle (EV) is one of the effective solutions to control emission of greenhouses gases in the world. It is of interest for future transportation due to its sustainability and efficiency by automotive manufacturers. Various electrical motors have been used for propulsion system of electric vehicles in last decades. In this paper brushed DC motor, Induction motor (IM), switched reluctance motor (SRM) and brushless DC motor (BLDC) are simulated and compared. BLDC motor is recommended for high performance electric vehicles. PWM switching technique is implemented for speed control of BLDC motor. Behavior of different modes of PWM speed controller of BLDC motor are simulated in MATLAB/SIMULINK. BLDC motor characteristics are compared and discussed for various PWM switching modes under normal and inverter fault conditions. Comparisons and discussions are verified through simulation results.Keywords: BLDC motor, PWM switching technique, in-wheel technology, electric vehicle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 484748 Fuzzy Sliding Mode Speed Controller for a Vector Controlled Induction Motor
Authors: S. Massoum, A. Bentaallah, A. Massoum, F. Benaimeche, P. Wira, A. Meroufel
Abstract:
This paper presents a speed fuzzy sliding mode controller for a vector controlled induction machine (IM) fed by a voltage source inverter (PWM). The sliding mode based fuzzy control method is developed to achieve fast response, a best disturbance rejection and to maintain a good decoupling. The problem with sliding mode control is that there is high frequency switching around the sliding mode surface. The FSMC is the combination of the robustness of Sliding Mode Control (SMC) and the smoothness of Fuzzy Logic (FL). To reduce the torque fluctuations (chattering), the sign function used in the conventional SMC is substituted with a fuzzy logic algorithm. The proposed algorithm was simulated by Matlab/Simulink software and simulation results show that the performance of the control scheme is robust and the chattering problem is solved.Keywords: IM, FOC, FLC, SMC, and FSMC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 281947 Development of Motor and Controller for VVA Module of Gasoline Vehicle
Authors: Joon Sung Park, Jun-Hyuk Choi, Jin-Hong Kim, In-Soung Jung
Abstract:
Due to environmental concerns, the recent regulation on automobile fuel economy has been strengthened. The market demand for efficient vehicles is growing and automakers to improve engine fuel efficiency in the industry have been paying a lot of effort. To improve the fuel efficiency, it is necessary to reduce losses or to improve combustion efficiency of the engine. VVA (Variable Valve Actuation) technology enhances the engine's intake air flow, reduce pumping losses and mechanical friction losses. And also, VVA technology is the engine's low speed and high speed operation to implement each of appropriate valve lift. It improves the performance of engine in the entire operating range. This paper presents a design procedure of DC motor and drive for VVA system and shows the validity of the design result by experimental result with prototype.
Keywords: DC motor, Inverter, VVA, Electric Drive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159446 Simulation of a Double-Sided Axial Flux Brushless Dc Two-Phase Motor Dynamics
Authors: Abdolamir Nekoubin
Abstract:
The objective of this paper is to analyze the performance of a double-sided axial flux permanent magnet brushless DC (AFPM BLDC) motor with two-phase winding. To study the motor operation, a mathematical dynamic model has been proposed for motor, which became the basis for simulations that were performed using MATLAB/SIMULINK software package. The results of simulations were presented in form of the waveforms of selected quantities and the electromechanical characteristics performed by the motor. The calculation results show that the two-phase motor version develops smooth torque and reaches high efficiency. The twophase motor can be applied where more smooth torque is required. Finally a study on the influence of switching angle on motor performance shows that when advance switching technique is used, the motor operates with the highest efficiency.Keywords: brushless DC motor, inverter, switching angle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 296945 Suppressing Ambipolar Conduction Using Dual Material Gate in Tunnel-FETs Having Heavily Doped Drain
Authors: Dawit Burusie Abdi, Mamidala Jagadesh Kumar
Abstract:
In this paper, using 2D TCAD simulations, the application of a dual material gate (DMG) for suppressing ambipolar conduction in a tunnel field effect transistor (TFET) is demonstrated. Using the proposed DMG concept, the ambipolar conduction can be effectively suppressed even if the drain doping is as high as that of the source doping. Achieving this symmetrical doping, without the ambipolar conduction in TFETs, gives the advantage of realizing both n-type and p-type devices with the same doping sequences. Furthermore, the output characteristics of the DMG TFET exhibit a good saturation when compared to that of the gate-drain underlap approach. This improved behavior of the DMG TFET makes it a good candidate for inverter based logic circuits.
Keywords: Dual material gate, suppressing ambipolar current, symmetrically doped TFET, tunnel FETs, PNPN TFET.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220144 Speed Control of a Permanent Magnet Synchronous Machine (PMSM) Fed by an Inverter Voltage Fuzzy Control Approach
Authors: Jamel Khedri, Mohamed Chaabane, Mansour Souissi, Driss Mehdi
Abstract:
This paper deals with the synthesis of fuzzy controller applied to a permanent magnet synchronous machine (PMSM) with a guaranteed H∞ performance. To design this fuzzy controller, nonlinear model of the PMSM is approximated by Takagi-Sugeno fuzzy model (T-S fuzzy model), then the so-called parallel distributed compensation (PDC) is employed. Next, we derive the property of the H∞ norm. The latter is cast in terms of linear matrix inequalities (LMI-s) while minimizing the H∞ norm of the transfer function between the disturbance and the error ( ) ev T . The experimental and simulations results were conducted on a permanent magnet synchronous machine to illustrate the effects of the fuzzy modelling and the controller design via the PDC.Keywords: Feedback controller, Takagi-Sugeno fuzzy model, Linear Matrix Inequality (LMI), PMSM, H∞ performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 233743 Emulation of a Wind Turbine Using Induction Motor Driven by Field Oriented Control
Authors: L. Benaaouinate, M. Khafallah, A. Martinez, A. Mesbahi, T. Bouragba
Abstract:
This paper concerns with the modeling, simulation, and emulation of a wind turbine emulator for standalone wind energy conversion systems. By using emulation system, we aim to reproduce the dynamic behavior of the wind turbine torque on the generator shaft: it provides the testing facilities to optimize generator control strategies in a controlled environment, without reliance on natural resources. The aerodynamic, mechanical, electrical models have been detailed as well as the control of pitch angle using Fuzzy Logic for horizontal axis wind turbines. The wind turbine emulator consists mainly of an induction motor with AC power drive with torque control. The control of the induction motor and the mathematical models of the wind turbine are designed with MATLAB/Simulink environment. The simulation results confirm the effectiveness of the induction motor control system and the functionality of the wind turbine emulator for providing all necessary parameters of the wind turbine system such as wind speed, output torque, power coefficient and tip speed ratio. The findings are of direct practical relevance.
Keywords: Wind turbine, modeling, emulator, electrical generator, renewable energy, induction motor drive, field oriented control, real time control, wind turbine emulator, pitch angle control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 137842 Sensorless Control of a Six-Phase Induction Motors Drive Using FOC in Stator Flux Reference Frame
Authors: G. R. Arab Markadeh, J. Soltani, N. R. Abjadi, M. Hajian
Abstract:
In this paper, a direct torque control - space vector modulation (DTC-SVM) scheme is presented for a six-phase speed and voltage sensorless induction motor (IM) drive. The decoupled torque and stator flux control is achieved based on IM stator flux field orientation. The rotor speed is detected by on-line estimating of the rotor angular slip speed and stator vector flux speed. In addition, a simple method is introduced to estimate the stator resistance. Moreover in this control scheme the voltage sensors are eliminated and actual motor phase voltages are approximated by using PWM inverter switching times and the dc link voltage. Finally, some simulation and experimental results are presented to verify the effectiveness and capability of the proposed control scheme.Keywords: Stator FOC, Multiphase motors, sensorless.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 201141 T-DOF PI Controller Design for a Speed Control of Induction Motor
Authors: Tianchai Suksri, Satean Tunyasrirut
Abstract:
This paper presents design and implements the T-DOF PI controller design for a speed control of induction motor. The voltage source inverter type space vector pulse width modulation technique is used the drive system. This scheme leads to be able to adjust the speed of the motor by control the frequency and amplitude of the input voltage. The ratio of input stator voltage to frequency should be kept constant. The T-DOF PI controller design by root locus technique is also introduced to the system for regulates and tracking speed response. The experimental results in testing the 120 watt induction motor from no-load condition to rated condition show the effectiveness of the proposed control scheme.Keywords: PI controller, root locus technique, space vector pulse width modulation, induction motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 214540 Fuzzy Logic Control for a Speed Control of Induction Motor using Space Vector Pulse Width Modulation
Authors: Satean Tunyasrirut, Tianchai Suksri, Sompong Srilad
Abstract:
This paper presents design and implements a voltage source inverter type space vector pulse width modulation (SVPWM) for control a speed of induction motor. This scheme leads to be able to adjust the speed of the motor by control the frequency and amplitude of the stator voltage, the ratio of stator voltage to frequency should be kept constant. The fuzzy logic controller is also introduced to the system for keeping the motor speed to be constant when the load varies. The experimental results in testing the 0.22 kW induction motor from no-load condition to rated condition show the effectiveness of the proposed control scheme.Keywords: Fuzzy logic control, space vector pulse width modulation, induction motor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 301339 A Study on the Power Control of Wind Energy Conversion System
Authors: Mehdi Nafar, Mohammad Reza Mansouri
Abstract:
The present research presents a direct active and reactive power control (DPC) of a wind energy conversion system (WECS) for the maximum power point tracking (MPPT) based on a doubly fed induction generator (DFIG) connected to electric power grid. The control strategy of the Rotor Side Converter (RSC) is targeted in extracting a maximum of power under fluctuating wind speed. A fuzzy logic speed controller (FLC) has been used to ensure the MPPT. The Grid Side Converter is directed in a way to ensure sinusoidal current in the grid side and a smooth DC voltage. To reduce fluctuations, rotor torque and voltage use of multilevel inverters is a good way to remove the rotor harmony.Keywords: DFIG, power quality improvement, wind energy conversion system, WECS, fuzzy logic, RSC, GSC, inverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 686138 A Grid Synchronization Phase Locked Loop Method for Grid-Connected Inverters Systems
Authors: Naima Ikken, Abdelhadi Bouknadel, Nour-eddine Tariba Ahmed Haddou, Hafsa El Omari
Abstract:
The operation of grid-connected inverters necessity a single-phase phase locked loop (PLL) is proposed in this article to accurately and quickly estimate and detect the grid phase angle. This article presents the improvement of a method of phase-locked loop. The novelty is to generate a method (PLL) of synchronizing the grid with a Notch filter based on adaptive fuzzy logic for inverter systems connected to the grid. The performance of the proposed method was tested under normal and abnormal operating conditions (amplitude, frequency and phase shift variations). In addition, simulation results with ISPM software are developed to verify the effectiveness of the proposed method strategy. Finally, the experimental test will be used to extract the result and discuss the validity of the proposed algorithm.Keywords: Phase locked loop, PLL, notch filter, fuzzy logic control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 77337 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor
Authors: Hidir S. Nogay
Abstract:
In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.Keywords: Cascaded neural network, internal temperature, three-phase induction motor, inverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 87336 Tele-Operated Anthropomorphic Arm and Hand Design
Authors: Namal A. Senanayake, Khoo B. How, Quah W. Wai
Abstract:
In this project, a tele-operated anthropomorphic robotic arm and hand is designed and built as a versatile robotic arm system. The robot has the ability to manipulate objects such as pick and place operations. It is also able to function by itself, in standalone mode. Firstly, the robotic arm is built in order to interface with a personal computer via a serial servo controller circuit board. The circuit board enables user to completely control the robotic arm and moreover, enables feedbacks from user. The control circuit board uses a powerful integrated microcontroller, a PIC (Programmable Interface Controller). The PIC is firstly programmed using BASIC (Beginner-s All-purpose Symbolic Instruction Code) and it is used as the 'brain' of the robot. In addition a user friendly Graphical User Interface (GUI) is developed as the serial servo interface software using Microsoft-s Visual Basic 6. The second part of the project is to use speech recognition control on the robotic arm. A speech recognition circuit board is constructed with onboard components such as PIC and other integrated circuits. It replaces the computers- Graphical User Interface. The robotic arm is able to receive instructions as spoken commands through a microphone and perform operations with respect to the commands such as picking and placing operations.Keywords: Tele-operated Anthropomorphic Robotic Arm and Hand, Robot Motion System, Serial Servo Controller, Speech Recognition Controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176635 On The Comparison of Fuzzy Logic and State Space Averaging based Sliding Control Methods Applied onan Arc Welding Machine
Authors: İres İskender, Ahmet Karaarslan
Abstract:
In this study, the performance of a high-frequency arc welding machine including a two-switch inverter is analyzed. The control of the system is achieved using two different control techniques i- fuzzy logic control (FLC) ii- state space averaging based sliding control. Fuzzy logic control does not need accurate mathematical model of a plant and can be used in nonlinear applications. The second method needs the mathematical model of the system. In this method the state space equations of the system are derived for two different “on" and “off" states of the switches. The derived state equations are combined with the sliding control rule considering the duty-cycle of the converter. The performance of the system is analyzed by simulating the system using SIMULINK tool box of MATLAB. The simulation results show that fuzzy logic controller is more robust and less sensitive to parameter variations.Keywords: Fuzzy logic, arc welding, sliding state space control, PWM, current control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 205334 High Performance Direct Torque Control for Induction Motor Drive Fed from Photovoltaic System
Authors: E. E. El-Kholy, Ahamed Kalas, Mahmoud Fauzy, M. El-Shahat Dessouki, Abdou. M. El-Refay, Mohammed El-Zefery
Abstract:
Direct Torque Control (DTC) is an AC drive control method especially designed to provide fast and robust responses. In this paper a progressive algorithm for direct torque control of threephase induction drive system supplied by photovoltaic arrays using voltage source inverter to control motor torque and flux with maximum power point tracking at different level of insolation is presented. Experimental results of the new DTC method obtained by an experimental rapid prototype system for drives are presented. Simulation and experimental results confirm that the proposed system gives quick, robust torque and speed responses at constant switching frequencies.
Keywords: Photovoltaic (PV) array, direct torque control (DTC), constant switching frequency, induction motor, maximum power point tracking (MPPT).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 225833 Development of Wind Turbine Simulator for Generator Torque Control
Authors: Jae-Kyung Lee, Joon-Young Park, Ki-Yong Oh, Jun-Shin Park
Abstract:
Wind turbine should be controlled to capture maximum wind energy and to prevent the turbine from being stalled. To achieve those two goals, wind turbine controller controls torque on generator and limits input torque from wind by pitching blade. Usually, torque on generator is controlled using inverter torque set point. However, verifying a control algorithm in actual wind turbine needs a lot of efforts to test and the actual wind turbine could be broken while testing a control algorithm. So, several software have developed and commercialized by Garrad Hassan, GH Bladed, and NREL, FAST. Even though, those programs can simulate control system modeling with subroutines or DLLs. However, those simulation programs are not able to emulate detailed generator or PMSG. In this paper, a small size wind turbine simulator is developed with induction motor and small size drive train. The developed system can simulate wind turbine control algorithm in the region before rated power.Keywords: Wind turbine, simulator, wind turbine control, wind turbine torque control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 313132 Fuzzy Logic Speed Control of Three Phase Induction Motor Drive
Authors: P.Tripura, Y.Srinivasa Kishore Babu
Abstract:
This paper presents an intelligent speed control system based on fuzzy logic for a voltage source PWM inverter-fed indirect vector controlled induction motor drive. Traditional indirect vector control system of induction motor introduces conventional PI regulator in outer speed loop; it is proved that the low precision of the speed regulator debases the performance of the whole system. To overcome this problem, replacement of PI controller by an intelligent controller based on fuzzy set theory is proposed. The performance of the intelligent controller has been investigated through digital simulation using MATLAB-SIMULINK package for different operating conditions such as sudden change in reference speed and load torque. The simulation results demonstrate that the performance of the proposed controller is better than that of the conventional PI controller.Keywords: Fuzzy Logic, Intelligent controllers, Conventional PI controller, Induction motor drives, indirect vector control, Speed control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 650231 Investigation of Various PWM Techniques for Shunt Active Filter
Authors: J. Chelladurai, G. Saravana Ilango, C. Nagamani, S. Senthil Kumar
Abstract:
Pulse width modulation (PWM) techniques have been the subject of intensive research for different industrial and power sector applications. A large variety of methods, different in concept and performance, have been newly developed and described. This paper analyzes the comparative merits of Sinusoidal Pulse Width Modulation (SPWM) and Space Vector Pulse Width Modulation (SVPWM) techniques and the suitability of these techniques in a Shunt Active Filter (SAF). The objective is to select the scheme that offers effective utilization of DC bus voltage and also harmonic reduction at the input side. The effectiveness of the PWM techniques is tested in the SAF configuration with a non linear load. The performance of the SAF with the SPWM and (SVPWM) techniques are compared with respect to the THD in source current. The study reveals that in the context of closed loop SAF control with the SVPWM technique there is only a minor improvement in THD. The utilization of the DC bus with SVPWM is also not significant compared to that with SPWM because of the non sinusoidal modulating signal from the controller in SAF configuration.Keywords: Voltage source inverter, Shunt active filter, SPWM, SVPWM, Matlab/SIMULINK.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 280230 Power Electronic Solution for High Energetic Efficiency of a Thermo Plant
Authors: Aziza Benaboud, Alfred Rufer
Abstract:
In this paper the authors propose a flexible electronic solution, to improve the energetic efficiency of a thermo plant. This is achieved by replacing the mechanical gear box, placed traditionally between a gas turbine and a synchronous generator; by a power electronic converter. After reminding problematic of gear boxes and interest of a proposed electronic solution in high power plants, the authors describe a new control strategy for an indirect frequency converter, which is characterized by its high efficiency due to the use of SWM: Square Wave Modulation. The main advantage of this mode is the quasi absence of switching losses. A control method is also proposed to resolve some problems incurred by using square wave modulation, in particular to reduce the harmonics distortion of the output inverter voltage and current. Simulation examples as well as experimental results are included.
Keywords: Angle shift, high efficiency, indirect converter, gas turbine, NPC three level converter, square wave modulation SWM, switching angle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 187029 Dynamic Performance Evaluation of Distributed Generation Units in the Micro Grid
Authors: Abdolreza Roozbeh, Reza Sedaghati, Ali Asghar Baziar, Mohammad Reza Tabatabaei
Abstract:
This paper presents dynamic models of distributed generators (DG) and investigates dynamic behavior of the DG units in the micro grid system. The DG units include photovoltaic and fuel cell sources. The voltage source inverter is adopted since the electronic interface which can be equipped with its controller to keep stability of the micro grid during small signal dynamics. This paper also introduces power management strategies and implements the DG load sharing concept to keep the micro grid operation in gridconnected and islanding modes of operation. The results demonstrate the operation and performance of the photovoltaic and fuel cell as distributed generators in a micro grid. The entire control system in the micro grid is developed by combining the benefits of the power control and the voltage control strategies. Simulation results are all reported, confirming the validity of the proposed control technique.
Keywords: Stability, Distributed Generation, Dynamic, Micro Grid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 206528 Electrical and Thermal Characteristics of a Photovoltaic Solar Wall with Passive and Active Ventilation through a Room
Authors: Himanshu Dehra
Abstract:
An experimental study was conducted for ascertaining electrical and thermal characteristics of a pair of photovoltaic (PV) modules integrated with solar wall of an outdoor room. A pre-fabricated outdoor room was setup for conducting outdoor experiments on a PV solar wall with passive and active ventilation through the outdoor room. The selective operating conditions for glass coated PV modules were utilized for establishing their electrical and thermal characteristics. The PV solar wall was made up of glass coated PV modules, a ventilated air column, and an insulating layer of polystyrene filled plywood board. The measurements collected were currents, voltages, electric power, air velocities, temperatures, solar intensities, and thermal time constant. The results have demonstrated that: i) a PV solar wall installed on a wooden frame was of more heat generating capacity in comparison to a window glass or a standalone PV module; ii) generation of electric power was affected with operation of vertical PV solar wall; iii) electrical and thermal characteristics were not significantly affected by heat and thermal storage losses; and iv) combined heat and electricity generation were function of volume of thermal and electrical resistances developed across PV solar wall. Finally, a comparison of temperature plots of passive and active ventilation envisaged that fan pressure was necessary to avoid overheating of the PV solar wall. The active ventilation was necessary to avoid over-heating of the PV solar wall and to maintain adequate ventilation of room under mild climate conditions.
Keywords: Photovoltaic solar wall, solar energy, passive ventilation, active ventilation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 126727 Fuzzy Logic Controller Based Shunt Active Filter with Different MFs for Current Harmonics Elimination
Authors: Shreyash Sinai Kunde, Siddhang Tendulkar, Shiv Prakash Gupta, Gaurav Kumar, Suresh Mikkili
Abstract:
One of the major power quality concerns in modern times is the problem of current harmonics. The current harmonics is caused due to the increase in non-linear loads which is largely dominated by power electronics devices. The Shunt active filtering is one of the best solutions for mitigating current harmonics. This paper describes a fuzzy logic controller based (FLC) based three Phase Shunt active Filter to achieve low current harmonic distortion (THD) and Reactive power compensation. The performance of fuzzy logic controller is analysed under both balanced sinusoidal and unbalanced sinusoidal source condition. The above controller serves the purpose of maintaining DC Capacitor Voltage constant. The proposed shunt active filter uses hysteresis current controller for current control of IGBT based PWM inverter. The simulation results of model in Simulink MATLAB reveals satisfying results.
Keywords: Shunt active filter, Current harmonics, Fuzzy logic controller, Hysteresis current controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 272726 Mathematical Model and Control Strategy on DQ Frame for Shunt Active Power Filters
Authors: P. Santiprapan, K-L. Areerak, K-N. Areerak
Abstract:
This paper presents the mathematical model and control strategy on DQ frame of shunt active power filter. The structure of the shunt active power filter is the voltage source inverter (VSI). The pulse width modulation (PWM) with PI controller is used in the paper. The concept of DQ frame to apply with the shunt active power filter is described. Moreover, the detail of the PI controller design for two current loops and one voltage loop are fully explained. The DQ axis with Fourier (DQF) method is applied to calculate the reference currents on DQ frame. The simulation results show that the control strategy and the design method presented in the paper can provide the good performance of the shunt active power filter. Moreover, the %THD of the source currents after compensation can follow the IEEE Std.519-1992.Keywords: shunt active power filter, mathematical model, DQ control strategy, DQ axis with Fourier, pulse width modulation control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 536625 Harmonic Elimination of Hybrid Multilevel Inverters Using Particle Swarm Optimization
Authors: N. Janjamraj, A. Oonsivilai
Abstract:
This paper present the harmonic elimination of hybrid multilevel inverters (HMI) which could be increase the number of output voltage level. Total Harmonic Distortion (THD) is one of the most important requirements concerning performance indices. Because of many numbers output levels of HMI, it had numerous unknown variables of eliminate undesired individual harmonic and THD nonlinear equations set. Optimized harmonic stepped waveform (OHSW) is solving switching angles conventional method, but most complicated for solving as added level. The artificial intelligent techniques are deliberation to solve this problem. This paper presents the Particle Swarm Optimization (PSO) technique for solving switching angles to get minimum THD and eliminate undesired individual harmonics of 15-levels hybrid multilevel inverters. Consequently it had many variables and could eliminate numerous harmonics. Both advantages including high level of inverter and Particle Swarm Optimization (PSO) are used as powerful tools for harmonics elimination.Keywords: Multilevel Inverters, Particle Swarms Optimization, Harmonic Elimination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 252224 Harmonic Pollution Control of the Electrical Network by Three-Phase Shunt Active Filter: Comparative Study of Controls, by Hysteresis and by Duty Cycle Modulation
Authors: T. Patrice Nna Nna, S. Ndjakomo Essiane, S. Pérabi Ngoffé, F. Amigue Fissou
Abstract:
This paper deals with the harmonic decontamination of current in an electrical grid by an active shunt filter in order to improve power quality. The contribution of this paper is mainly based on the proposal of a control strategy for an active filter based on Duty Cycle Modulation (DCM). First, three-monophase method is applied for the identification of disturbing currents. A Simulink model of this method is given for one phase of the grid. Secondly, two orders were designed: the first one is the Hysteresis Control and the second one is the DCM Control. Finally, a comparative study of the two controls was performed. The results obtained show a significant improvement in the rate of harmonic distortion for both controls. The harmonic distortion for the Hysteresis control is limited by the non-controllability of the switching frequencies of the inverter's switches and reduces the harmonic distortion rate (THD) to 3.12% as opposed to the DCM control which limits the THD to 2.82% which makes it better.Keywords: Harmonic pollution, shunt active filter, hysteresis, Duty Cycle Modulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63423 Energy Management System in Fuel Cell, Ultracapacitor, Battery Hybrid Energy Storage
Authors: Vinod Tejwani, Bhavik Suthar
Abstract:
The paper presents and energy management strategy for a Fuel Cell, Ultracapacitor, Battery hybrid energy storage. The fuel cell hybrid power system is devised basically for emergency power requirements and transient load applications. The power density of an Ultracapacitor is extremely high and for a battery, it is subtle. For a fuel cell, the value of power density is medium. The energy density of these three stockpiling gadgets is contrarily about the power density, i.e. for the batteries it is most noteworthy and for the Ultracapacitor, it is least. Again the fuel cell has medium energy density. The proposed Energy Management System (EMS) is trying to rationalize these parameters viz. the energy density and power density. The working of the fuel cell, Ultracapacitor and batteries are controlled in a coordinated environment in a way to optimize the energy usage and at the same time to get benefits of power and energy density from their inherent characteristics. MATLAB/ Simulink® based test bench is created by using different DC-DC converters for all energy storage devices and an inverter is modeled to supply the time varying load. The results provided by the EMS are highly satisfactory that proves its adaptability.
Keywords: Energy Management System (EMS) Fuel Cell, Ultracapacitor, Battery, Hybrid Energy Storage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733