Search results for: Singular integral equation
1354 An Expansion Method for Schrödinger Equation of Quantum Billiards with Arbitrary Shapes
Authors: İnci M. Erhan
Abstract:
A numerical method for solving the time-independent Schrödinger equation of a particle moving freely in a three-dimensional axisymmetric region is developed. The boundary of the region is defined by an arbitrary analytic function. The method uses a coordinate transformation and an expansion in eigenfunctions. The effectiveness is checked and confirmed by applying the method to a particular example, which is a prolate spheroid.Keywords: Bessel functions, Eigenfunction expansion, Quantum billiard, Schrödinger equation, Spherical harmonics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52151353 Explicit Solutions and Stability of Linear Differential Equations with multiple Delays
Authors: Felix Che Shu
Abstract:
We give an explicit formula for the general solution of a one dimensional linear delay differential equation with multiple delays, which are integer multiples of the smallest delay. For an equation of this class with two delays, we derive two equations with single delays, whose stability is sufficient for the stability of the equation with two delays. This presents a new approach to the study of the stability of such systems. This approach avoids requirement of the knowledge of the location of the characteristic roots of the equation with multiple delays which are generally more difficult to determine, compared to the location of the characteristic roots of equations with a single delay.
Keywords: Delay Differential Equation, Explicit Solution, Exponential Stability, Lyapunov Exponents, Multiple Delays.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14911352 Reliability Analysis of P-I Diagram Formula for RC Column Subjected to Blast Load
Authors: Masoud Abedini, Azrul A. Mutalib, Shahrizan Baharom, Hong Hao
Abstract:
This study was conducted published to investigate there liability of the equation pressure-impulse (PI) reinforced concrete column inprevious studies. Equation involves three different levels of damage criteria known as D =0. 2, D =0. 5 and D =0. 8.The damage criteria known as a minor when 0-0.2, 0.2-0.5is known as moderate damage, high damage known as 0.5-0.8, and 0.8-1 of the structure is considered a failure. In this study, two types of reliability analyzes conducted. First, using pressure-impulse equation with different parameters. The parameters involved are the concrete strength, depth, width, and height column, the ratio of longitudinal reinforcement and transverse reinforcement ratio. In the first analysis of the reliability of this new equation is derived to improve the previous equations. The second reliability analysis involves three types of columns used to derive the PI curve diagram using the derived equation to compare with the equation derived from other researchers and graph minimum standoff versus weapon yield Federal Emergency Management Agency (FEMA). The results showed that the derived equation is more accurate with FEMA standards than previous researchers.
Keywords: Blast load, RC column, P-I curve, Analytical formulae, Standard FEMA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29121351 Stochastic Control of Decentralized Singularly Perturbed Systems
Authors: Walid S. Alfuhaid, Saud A. Alghamdi, John M. Watkins, M. Edwin Sawan
Abstract:
Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method.
Keywords: Decentralized, optimal control, output, singular perturb.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15681350 Numerical Analyze of Corona Discharge on HVDC Transmission Lines
Authors: H. Nouri, A. Tabbel, N. Douib, H. Aitsaid, Y. Zebboudj
Abstract:
This study and the field test comparisons were carried out on the Algerian Derguna – Setif transmission systems. The transmission line of normal voltage 225 kV is 65 km long, transported and uses twin bundle conductors protected with two shield wires of transposed galvanized steel. An iterative finite-element method is used to solve Poisons equation. Two algorithms are proposed for satisfying the current continuity condition and updating the space-charge density. A new approach to the problem of corona discharge in transmission system has been described in this paper. The effect of varying the configurations and wires number is also investigated. The analysis of this steady is important in the design of HVDC transmission lines. The potential and electric field have been calculating in locations singular points of the system.Keywords: Corona discharge, Electric field, Finite element method, HVDC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22631349 On Modified Numerical Schemes in Vortex Element Method for 2D Flow Simulation Around Airfoils
Authors: Ilia Marchevsky, Victoriya Moreva
Abstract:
The problem of incompressible steady flow simulation around an airfoil is discussed. For some simplest airfoils (circular, elliptical, Zhukovsky airfoils) the exact solution is known from complex analysis. It allows to compute the intensity of vortex layer which simulates the airfoil. Some modifications of the vortex element method are proposed and test computations are carried out. It-s shown that the these approaches are much more effective in comparison with the classical numerical scheme.
Keywords: Vortex element method, vortex layer, integral equation, ill-conditioned matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16721348 Certain Subordination Results For A Class Of Analytic Functions Defined By The Generalized Integral Operator
Authors: C. Selvaraj, K. R. Karthikeyan
Abstract:
We obtain several interesting subordination results for a class of analytic functions defined by using a generalized integral operator.Keywords: Analytic functions, Hadamard product, Subordinating factor sequence
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15601347 Adomian Decomposition Method Associated with Boole-s Integration Rule for Goursat Problem
Authors: Mohd Agos Salim Nasir, Ros Fadilah Deraman, Siti Salmah Yasiran
Abstract:
The Goursat partial differential equation arises in linear and non linear partial differential equations with mixed derivatives. This equation is a second order hyperbolic partial differential equation which occurs in various fields of study such as in engineering, physics, and applied mathematics. There are many approaches that have been suggested to approximate the solution of the Goursat partial differential equation. However, all of the suggested methods traditionally focused on numerical differentiation approaches including forward and central differences in deriving the scheme. An innovation has been done in deriving the Goursat partial differential equation scheme which involves numerical integration techniques. In this paper we have developed a new scheme to solve the Goursat partial differential equation based on the Adomian decomposition (ADM) and associated with Boole-s integration rule to approximate the integration terms. The new scheme can easily be applied to many linear and non linear Goursat partial differential equations and is capable to reduce the size of computational work. The accuracy of the results reveals the advantage of this new scheme over existing numerical method.Keywords: Goursat problem, partial differential equation, Adomian decomposition method, Boole's integration rule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18561346 Semilocal Convergence of a Three Step Fifth Order Iterative Method under Höolder Continuity Condition in Banach Spaces
Authors: Ramandeep Behl, Prashanth Maroju, S. S. Motsa
Abstract:
In this paper, we study the semilocal convergence of a fifth order iterative method using recurrence relation under the assumption that first order Fréchet derivative satisfies the Hölder condition. Also, we calculate the R-order of convergence and provide some a priori error bounds. Based on this, we give existence and uniqueness region of the solution for a nonlinear Hammerstein integral equation of the second kind.Keywords: Hölder continuity condition, Fréchet derivative, fifth order convergence, recurrence relations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19351345 Exp-Function Method for Finding Some Exact Solutions of Rosenau Kawahara and Rosenau Korteweg-de Vries Equations
Authors: Ehsan Mahdavi
Abstract:
In this paper, we apply the Exp-function method to Rosenau-Kawahara and Rosenau-KdV equations. Rosenau-Kawahara equation is the combination of the Rosenau and standard Kawahara equations and Rosenau-KdV equation is the combination of the Rosenau and standard KdV equations. These equations are nonlinear partial differential equations (NPDE) which play an important role in mathematical physics. Exp-function method is easy, succinct and powerful to implement to nonlinear partial differential equations arising in mathematical physics. We mainly try to present an application of Exp-function method and offer solutions for common errors wich occur during some of the recent works.
Keywords: Exp-function method, Rosenau Kawahara equation, Rosenau Korteweg-de Vries equation, nonlinear partial differential equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20581344 A Parametric Study on Lateral Torsional Buckling of European IPN and IPE Cantilevers
Authors: H. Ozbasaran
Abstract:
IPN and IPE sections, which are commonly used European I shapes, are widely used in steel structures as cantilever beams to support overhangs. A considerable number of studies exist on calculating lateral torsional buckling load of I sections. However, most of them provide series solutions or complex closed-form equations. In this paper, a simple equation is presented to calculate lateral torsional buckling load of IPN and IPE section cantilever beams. First, differential equation of lateral torsional buckling is solved numerically for various loading cases. Then a parametric study is conducted on results to present an equation for lateral torsional buckling load of European IPN and IPE beams. Finally, results obtained by presented equation are compared to differential equation solutions and finite element model results. ABAQUS software is utilized to generate finite element models of beams. It is seen that the results obtained from presented equation coincide with differential equation solutions and ABAQUS software results. It can be suggested that presented formula can be safely used to calculate critical lateral torsional buckling load of European IPN and IPE section cantilevers.
Keywords: Cantilever, IPN, IPE, lateral torsional buckling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43101343 An Expectation of the Rate of Inflation According to Inflation-Unemployment Interaction in Croatia
Authors: Zdravka Aljinović, Snježana Pivac, Boško Šego
Abstract:
According to the interaction of inflation and unemployment, expectation of the rate of inflation in Croatia is estimated. The interaction between inflation and unemployment is shown by model based on three first-order differential i.e. difference equations: Phillips relation, adaptive expectations equation and monetary-policy equation. The resulting equation is second order differential i.e. difference equation which describes the time path of inflation. The data of the rate of inflation and the rate of unemployment are used for parameters estimation. On the basis of the estimated time paths, the stability and convergence analysis is done for the rate of inflation.Keywords: Differencing, inflation, time path, unemployment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16141342 Monotonic and Cyclic J-integral Estimation for Through-Wall Cracked Straight Pipes
Authors: Rohit, S. Vishnuvardhan, P. Gandhi, Nagesh R. Iyer
Abstract:
The evaluation of energy release rate and centre Crack Opening Displacement (COD) for circumferential Through-Wall Cracked (TWC) pipes is an important issue in the assessment of critical crack length for unstable fracture. The ability to predict crack growth continues to be an important component of research for several structural materials. Crack growth predictions can aid the understanding of the useful life of a structural component and the determination of inspection intervals and criteria. In this context, studies were carried out at CSIR-SERC on Nuclear Power Plant (NPP) piping components subjected to monotonic as well as cyclic loading to assess the damage for crack growth due to low-cycle fatigue in circumferentially TWC pipes.Keywords: 304LN stainless steel, cyclic J-integral, Elastic- Plastic Fracture Mechanics, J-integral, Through-wall crack
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25851341 Simulink Approach to Solve Fuzzy Differential Equation under Generalized Differentiability
Authors: N. Kumaresan , J. Kavikumar, Kuru Ratnavelu
Abstract:
In this paper, solution of fuzzy differential equation under general differentiability is obtained by simulink. The simulink solution is equivalent or very close to the exact solution of the problem. Accuracy of the simulink solution to this problem is qualitatively better. An illustrative numerical example is presented for the proposed method.Keywords: Fuzzy differential equation, Generalized differentiability, H-difference and Simulink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24341340 Vortex-Induced Vibration Characteristics of an Elastic Circular Cylinder
Authors: T. Li, J.Y. Zhang, W.H. Zhang, M.H. Zhu
Abstract:
A numerical simulation of vortex-induced vibration of a 2-dimensional elastic circular cylinder with two degree of freedom under the uniform flow is calculated when Reynolds is 200. 2-dimensional incompressible Navier-Stokes equations are solved with the space-time finite element method, the equation of the cylinder motion is solved with the new explicit integral method and the mesh renew is achieved by the spring moving mesh technology. Considering vortex-induced vibration with the low reduced damping parameter, the variety trends of the lift coefficient, the drag coefficient, the displacement of cylinder are analyzed under different oscillating frequencies of cylinder. The phenomena of locked-in, beat and phases-witch were captured successfully. The evolution of vortex shedding from the cylinder with time is discussed. There are very similar trends in characteristics between the results of the one degree of freedom cylinder model and that of the two degree of freedom cylinder model. The streamwise vibrations have a certain effect on the lateral vibrations and their characteristics.Keywords: Fluid-structure interaction, Navier-Stokes equation, Space-time finite element method, vortex-induced vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29231339 Maxwell-Cattaneo Regularization of Heat Equation
Authors: F. Ekoue, A. Fouache d'Halloy, D. Gigon, G Plantamp, E. Zajdman
Abstract:
This work focuses on analysis of classical heat transfer equation regularized with Maxwell-Cattaneo transfer law. Computer simulations are performed in MATLAB environment. Numerical experiments are first developed on classical Fourier equation, then Maxwell-Cattaneo law is considered. Corresponding equation is regularized with a balancing diffusion term to stabilize discretizing scheme with adjusted time and space numerical steps. Several cases including a convective term in model equations are discussed, and results are given. It is shown that limiting conditions on regularizing parameters have to be satisfied in convective case for Maxwell-Cattaneo regularization to give physically acceptable solutions. In all valid cases, uniform convergence to solution of initial heat equation with Fourier law is observed, even in nonlinear case.
Keywords: Maxwell-Cattaneo heat transfers equations, fourierlaw, heat conduction, numerical solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50591338 Modelling of Soil Structure Interaction of Integral Abutment Bridges
Authors: Thevaneyan K. David, John P. Forth
Abstract:
Integral Abutment Bridges (IAB) are defined as simple or multiple span bridges in which the bridge deck is cast monolithically with the abutment walls. This kind of bridges are becoming very popular due to different aspects such as good response under seismic loading, low initial costs, elimination of bearings, and less maintenance. However the main issue related to the analysis of this type of structures is dealing with soil-structure interaction of the abutment walls and the supporting piles. Various soil constitutive models have been used in studies of soil-structure interaction in this kind of structures by researchers. This paper is an effort to review the implementation of various finite elements model which explicitly incorporates the nonlinear soil and linear structural response considering various soil constitutive models and finite element mesh.Keywords: Constitutive Models, FEM, Integral AbutmentBridges, Soil-structure Interactions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47201337 Algebraic Riccati Matrix Equation for Eigen- Decomposition of Special Structured Matrices; Applications in Structural Mechanics
Authors: Mahdi Nouri
Abstract:
In this paper Algebraic Riccati matrix equation is used for Eigen-decomposition of special structured matrices. This is achieved by similarity transformation and then using algebraic riccati matrix equation to triangulation of matrices. The process is decomposition of matrices into small and specially structured submatrices with low dimensions for fast and easy finding of Eigenpairs. Numerical and structural examples included showing the efficiency of present method.
Keywords: Riccati, matrix equation, eigenvalue problem, symmetric, bisymmetric, persymmetric, decomposition, canonical forms, Graphs theory, adjacency and Laplacian matrices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18061336 Deformation of Water Waves by Geometric Transitions with Power Law Function Distribution
Authors: E. G. Bautista, J. M. Reyes, O. Bautista, J. C. Arcos
Abstract:
In this work, we analyze the deformation of surface waves in shallow flows conditions, propagating in a channel of slowly varying cross-section. Based on a singular perturbation technique, the main purpose is to predict the motion of waves by using a dimensionless formulation of the governing equations, considering that the longitudinal variation of the transversal section obey a power-law distribution. We show that the spatial distribution of the waves in the varying cross-section is a function of a kinematic parameter,κ , and two geometrical parameters εh and w ε . The above spatial behavior of the surface elevation is modeled by an ordinary differential equation. The use of single formulas to model the varying cross sections or transitions considered in this work can be a useful approximation to natural or artificial geometrical configurations.
Keywords: Surface waves, Asymptotic solution, Power law function, Non-dispersive waves.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18581335 Tracking Objects in Color Image Sequences: Application to Football Images
Authors: Mourad Moussa, Ali Douik, Hassani Messaoud
Abstract:
In this paper, we present a comparative study between two computer vision systems for objects recognition and tracking, these algorithms describe two different approach based on regions constituted by a set of pixels which parameterized objects in shot sequences. For the image segmentation and objects detection, the FCM technique is used, the overlapping between cluster's distribution is minimized by the use of suitable color space (other that the RGB one). The first technique takes into account a priori probabilities governing the computation of various clusters to track objects. A Parzen kernel method is described and allows identifying the players in each frame, we also show the importance of standard deviation value research of the Gaussian probability density function. Region matching is carried out by an algorithm that operates on the Mahalanobis distance between region descriptors in two subsequent frames and uses singular value decomposition to compute a set of correspondences satisfying both the principle of proximity and the principle of exclusion.
Keywords: Image segmentation, objects tracking, Parzen window, singular value decomposition, target recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19851334 On the Positive Definite Solutions of Nonlinear Matrix Equation
Authors: Tian Baoguang, Liang Chunyan, Chen Nan
Abstract:
In this paper, the nonlinear matrix equation is investigated. Based on the fixed-point theory, the boundary and the existence of the solution with the case r>-δi are discussed. An algorithm that avoids matrix inversion with the case -1<-δi<0 is proposed.
Keywords: Nonlinear matrix equation, Positive definite solution, The maximal-minimal solution, Iterative method, Free-inversion
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20011333 On Symmetry Analysis and Exact Wave Solutions of New Modified Novikov Equation
Authors: Anupma Bansal, R. K. Gupta
Abstract:
In this paper, we study a new modified Novikov equation for its classical and nonclassical symmetries and use the symmetries to reduce it to a nonlinear ordinary differential equation (ODE). With the aid of solutions of the nonlinear ODE by using the modified (G/G)-expansion method proposed recently, multiple exact traveling wave solutions are obtained and the traveling wave solutions are expressed by the hyperbolic functions, trigonometric functions and rational functions.
Keywords: New Modified Novikov Equation, Lie Classical Method, Nonclassical Method, Modified (G'/G)-Expansion Method, Traveling Wave Solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16251332 Rock Thickness Measurement by Using Self-Excited Acoustical System
Authors: JanuszKwaśniewski, IreneuszDominik, KrzysztofLalik
Abstract:
The knowledge about rock layers thickness,especially above drilled mining pavements is crucial for workers safety. The measuring systems used nowadays are generally imperfect and there is a strong demand for improvement. The application of a new type of a measurement system called Self-excited Acoustical System is presentedin the paper. The system was applied until now to monitor stress changes in metal and concrete constructions. The change in measurement methodology resulted in possibility of measuring the thickness of the rocks above the tunnels as well as thickness of a singular rocklayer. The idea is to find two resonance frequencies of the self-exited system,which consists of a vibration exciter and vibration receiver placed at a distance, which are coupled with a proper power amplifier, and which operate in a closed loop with a positive feedback. The resonance with the higher amplitude determines thickness of the whole rock, whereas the lower amplitude resonance indicates thickness of a singular layer. The results of the laboratory tests conducted on a group of different rock materials are also presented.
Keywords: Autooscillator, non-destructive testing, rock thickness measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20701331 Position Vector of a Partially Null Curve Derived from a Vector Differential Equation
Authors: Süha Yılmaz, Emin Özyılmaz, Melih Turgut, Şuur Nizamoğlu
Abstract:
In this paper, position vector of a partially null unit speed curve with respect to standard frame of Minkowski space-time is studied. First, it is proven that position vector of every partially null unit speed curve satisfies a vector differential equation of fourth order. In terms of solution of the differential equation, position vector of a partially null unit speed curve is expressed.
Keywords: Frenet Equations, Partially Null Curves, Minkowski Space-time, Vector Differential Equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11611330 Robust Stability in Multivariable Neural Network Control using Harmonic Analysis
Authors: J. Fernandez de Canete, S. Gonzalez-Perez, P. del Saz-Orozco, I. Garcia-Moral
Abstract:
Robust stability and performance are the two most basic features of feedback control systems. The harmonic balance analysis technique enables to analyze the stability of limit cycles arising from a neural network control based system operating over nonlinear plants. In this work a robust stability analysis based on the harmonic balance is presented and applied to a neural based control of a non-linear binary distillation column with unstructured uncertainty. We develop ways to describe uncertainty in the form of neglected nonlinear dynamics and high harmonics for the plant and controller respectively. Finally, conclusions about the performance of the neural control system are discussed using the Nyquist stability margin together with the structured singular values of the uncertainty as a robustness measure.Keywords: Robust stability, neural network control, unstructured uncertainty, singular values, distillation column.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16281329 Change Detector Combination in Remotely Sensed Images Using Fuzzy Integral
Authors: H. Nemmour, Y. Chibani
Abstract:
Decision fusion is one of hot research topics in classification area, which aims to achieve the best possible performance for the task at hand. In this paper, we investigate the usefulness of this concept to improve change detection accuracy in remote sensing. Thereby, outputs of two fuzzy change detectors based respectively on simultaneous and comparative analysis of multitemporal data are fused by using fuzzy integral operators. This method fuses the objective evidences produced by the change detectors with respect to fuzzy measures that express the difference of performance between them. The proposed fusion framework is evaluated in comparison with some ordinary fuzzy aggregation operators. Experiments carried out on two SPOT images showed that the fuzzy integral was the best performing. It improves the change detection accuracy while attempting to equalize the accuracy rate in both change and no change classes.Keywords: change detection, decision fusion, fuzzy logic, remote sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16161328 A Boundary Backstepping Control Design for 2-D, 3-D and N-D Heat Equation
Authors: Aziz Sezgin
Abstract:
We consider the problem of stabilization of an unstable heat equation in a 2-D, 3-D and generally n-D domain by deriving a generalized backstepping boundary control design methodology. To stabilize the systems, we design boundary backstepping controllers inspired by the 1-D unstable heat equation stabilization procedure. We assume that one side of the boundary is hinged and the other side is controlled for each direction of the domain. Thus, controllers act on two boundaries for 2-D domain, three boundaries for 3-D domain and ”n” boundaries for n-D domain. The main idea of the design is to derive ”n” controllers for each of the dimensions by using ”n” kernel functions. Thus, we obtain ”n” controllers for the ”n” dimensional case. We use a transformation to change the system into an exponentially stable ”n” dimensional heat equation. The transformation used in this paper is a generalized Volterra/Fredholm type with ”n” kernel functions for n-D domain instead of the one kernel function of 1-D design.Keywords: Backstepping, boundary control, 2-D, 3-D, n-D heat equation, distributed parameter systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16751327 Video Shot Detection and Key Frame Extraction Using Faber Shauder DWT and SVD
Authors: Assma Azeroual, Karim Afdel, Mohamed El Hajji, Hassan Douzi
Abstract:
Key frame extraction methods select the most representative frames of a video, which can be used in different areas of video processing such as video retrieval, video summary, and video indexing. In this paper we present a novel approach for extracting key frames from video sequences. The frame is characterized uniquely by his contours which are represented by the dominant blocks. These dominant blocks are located on the contours and its near textures. When the video frames have a noticeable changement, its dominant blocks changed, then we can extracte a key frame. The dominant blocks of every frame is computed, and then feature vectors are extracted from the dominant blocks image of each frame and arranged in a feature matrix. Singular Value Decomposition is used to calculate sliding windows ranks of those matrices. Finally the computed ranks are traced and then we are able to extract key frames of a video. Experimental results show that the proposed approach is robust against a large range of digital effects used during shot transition.
Keywords: Key Frame Extraction, Shot detection, FSDWT, Singular Value Decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25201326 Conformal Invariance in F (R, T) Gravity
Authors: Pyotr Tsyba, Olga Razina, Ertan Güdekli, Ratbay Myrzakulov
Abstract:
In this paper we consider the equation of motion for the F (R, T) gravity on their property of conformal invariance. It is shown that in the general case, such a theory is not conformal invariant. Studied special cases for the functions v and u in which can appear properties of the theory. Also we consider cosmological aspects F (R, T) theory of gravity, having considered particular case F (R, T) = μR+νT^2. Showed that in this case there is a nonlinear dependence of the parameter equation of state from time to time, which affects its evolution.
Keywords: Conformally invariance, F (R, T) gravity, metric FRW, equation of motion, dark energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26311325 State Dependent Riccati Equation Based Roll Autopilot for 122mm Artillery Rocket
Authors: Muhammad Kashif Siddiq, Fang Jian Cheng, Yu Wen Bo
Abstract:
State-dependent Riccati equation based controllers are becoming increasingly popular because of having attractive properties like optimality, stability and robustness. This paper focuses on the design of a roll autopilot for a fin stabilized and canard controlled 122mm artillery rocket using state-dependent Riccati equation technique. Initial spin is imparted to rocket during launch and it quickly decays due to straight tail fins. After the spin phase, the roll orientation of rocket is brought to zero with the canard deflection commands generated by the roll autopilot. Roll autopilot has been developed by considering uncoupled roll, pitch and yaw channels. The canard actuator is modeled as a second-order nonlinear system. Elements of the state weighing matrix for Riccati equation have been chosen to be state dependent to exploit the design flexibility offered by the Riccati equation technique. Simulation results under varying conditions of flight demonstrate the wide operating range of the proposed autopilot.Keywords: Fin stabilized 122mm artillery rocket, Roll Autopilot, Six degree of freedom trajectory model, State-dependent Riccati equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3108