Search results for: Corporate credit rating prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1489

Search results for: Corporate credit rating prediction

1339 Crude Oil Price Prediction Using LSTM Networks

Authors: Varun Gupta, Ankit Pandey

Abstract:

Crude oil market is an immensely complex and dynamic environment and thus the task of predicting changes in such an environment becomes challenging with regards to its accuracy. A number of approaches have been adopted to take on that challenge and machine learning has been at the core in many of them. There are plenty of examples of algorithms based on machine learning yielding satisfactory results for such type of prediction. In this paper, we have tried to predict crude oil prices using Long Short-Term Memory (LSTM) based recurrent neural networks. We have tried to experiment with different types of models using different epochs, lookbacks and other tuning methods. The results obtained are promising and presented a reasonably accurate prediction for the price of crude oil in near future.

Keywords: Crude oil price prediction, deep learning, LSTM, recurrent neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3712
1338 Animated Versus Static User Interfaces: A Study of Mathsigner™

Authors: Scott Dyer, Nicoletta Adamo-Villani

Abstract:

In this paper we report a study aimed at determining the effects of animation on usability and appeal of educational software user interfaces. Specifically, the study compares 3 interfaces developed for the Mathsigner™ program: a static interface, an interface with highlighting/sound feedback, and an interface that incorporates five Disney animation principles. The main objectives of the comparative study were to: (1) determine which interface is the most effective for the target users of Mathsigner™ (e.g., children ages 5-11), and (2) identify any Gender and Age differences in using the three interfaces. To accomplish these goals we have designed an experiment consisting of a cognitive walkthrough and a survey with rating questions. Sixteen children ages 7-11 participated in the study, ten males and six females. Results showed no significant interface effect on user task performance (e.g., task completion time and number of errors); however, interface differences were seen in rating of appeal, with the animated interface rated more 'likeable' than the other two. Task performance and rating of appeal were not affected significantly by Gender or Age of the subjects.

Keywords: Animation, Animated interfaces, EducationalSoftware, Human Computer Interaction, Multimedia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
1337 A New Hybrid Model with Passive Congregation for Stock Market Indices Prediction

Authors: Tarek Aboueldahab

Abstract:

In this paper, we propose a new hybrid learning model for stock market indices prediction by adding a passive congregation term to the standard hybrid model comprising Particle Swarm Optimization (PSO) with Genetic Algorithm (GA) operators in training Neural Networks (NN). This new passive congregation term is based on the cooperation between different particles in determining new positions rather than depending on the particles selfish thinking without considering other particles positions, thus it enables PSO to perform both the local and global search instead of only doing the local search. Experiment study carried out on the most famous European stock market indices in both long term and short term prediction shows significantly the influence of the passive congregation term in improving the prediction accuracy compared to standard hybrid model.

Keywords: Global Search, Hybrid Model, Passive Congregation, Stock Market Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
1336 Protein Secondary Structure Prediction Using Parallelized Rule Induction from Coverings

Authors: Leong Lee, Cyriac Kandoth, Jennifer L. Leopold, Ronald L. Frank

Abstract:

Protein 3D structure prediction has always been an important research area in bioinformatics. In particular, the prediction of secondary structure has been a well-studied research topic. Despite the recent breakthrough of combining multiple sequence alignment information and artificial intelligence algorithms to predict protein secondary structure, the Q3 accuracy of various computational prediction algorithms rarely has exceeded 75%. In a previous paper [1], this research team presented a rule-based method called RT-RICO (Relaxed Threshold Rule Induction from Coverings) to predict protein secondary structure. The average Q3 accuracy on the sample datasets using RT-RICO was 80.3%, an improvement over comparable computational methods. Although this demonstrated that RT-RICO might be a promising approach for predicting secondary structure, the algorithm-s computational complexity and program running time limited its use. Herein a parallelized implementation of a slightly modified RT-RICO approach is presented. This new version of the algorithm facilitated the testing of a much larger dataset of 396 protein domains [2]. Parallelized RTRICO achieved a Q3 score of 74.6%, which is higher than the consensus prediction accuracy of 72.9% that was achieved for the same test dataset by a combination of four secondary structure prediction methods [2].

Keywords: data mining, protein secondary structure prediction, parallelization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1596
1335 Urban Growth Prediction in Athens, Greece, Using Artificial Neural Networks

Authors: D. Triantakonstantis, D. Stathakis

Abstract:

Urban areas have been expanded throughout the globe. Monitoring and modelling urban growth have become a necessity for a sustainable urban planning and decision making. Urban prediction models are important tools for analyzing the causes and consequences of urban land use dynamics. The objective of this research paper is to analyze and model the urban change, which has been occurred from 1990 to 2000 using CORINE land cover maps. The model was developed using drivers of urban changes (such as road distance, slope, etc.) under an Artificial Neural Network modelling approach. Validation was achieved using a prediction map for 2006 which was compared with a real map of Urban Atlas of 2006. The accuracy produced a Kappa index of agreement of 0,639 and a value of Cramer's V of 0,648. These encouraging results indicate the importance of the developed urban growth prediction model which using a set of available common biophysical drivers could serve as a management tool for the assessment of urban change.

Keywords: Artificial Neural Networks, CORINE, Urban Atlas, Urban Growth Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3451
1334 The Weight of Corporate Social Responsibility Indicators in Measurement Procedure

Authors: Grigoris Giannarakis, Despina Galani, Charitoudi Georgia, Nikolaos Litinas

Abstract:

The Corporate Social Responsibility (CSR) performance has garnered significant interest during the last two decades as numerous methodologies are proposed by Social Responsible Investment (SRI) indexes. The weight of each indicator is a crucial component of the CSR measurement procedures. Based on a previous study, the appropriate weight of each proposed indicator for the Greek telecommunication sector is specified using the rank reciprocal weighting. The Kendall-s Coefficient of Concordance and Spearman Correlation Coefficient non-parametric tests are adopted to determine the level of consensus among the experts concerning the importance rank of indicators. The results show that there is no consensus regarding the rank of indicators in most of stakeholders- domains. The equal weight for all indicators could be proposed as a solution for the lack of consensus among the experts. The study recommends three different equations concerning the adopted weight approach.

Keywords: Corporate Social Responsibility, Indicator, Weight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379
1333 Opportunities and Options for Government to Promote Corporate Social Responsibility in the Czech Republic

Authors: Pavel Adámek

Abstract:

The concept of corporate social responsibility (CSR) in the Czech Republic has evolved notably during the last few years and an issue that started as an interest- and motive-based activity for businesses is becoming more commonplace. Governments have a role to play in ensuring that corporations behave according to the rules and norms of society and can legislate, foster, collaborate with businesses and endorse good practice in order to facilitate the development of CSR. The purpose of this paper is to examine the opportunities and options of CSR in government policy and research its relevance to a business sector. An increasing number of companies is engaging in responsible activities, the public awareness of CSR is rising, and customers are giving higher importance to CSR of companies in their choice. By drawing on existing CSR approach in Czech and understanding of CSR are demonstrated. The paper provides an overview, more detailed government approach of CSR.

Keywords: Approach, corporate social responsibility, government policy, instruments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2232
1332 Predictions Using Data Mining and Case-based Reasoning: A Case Study for Retinopathy

Authors: Vimala Balakrishnan, Mohammad R. Shakouri, Hooman Hoodeh, Loo, Huck-Soo

Abstract:

Diabetes is one of the high prevalence diseases worldwide with increased number of complications, with retinopathy as one of the most common one. This paper describes how data mining and case-based reasoning were integrated to predict retinopathy prevalence among diabetes patients in Malaysia. The knowledge base required was built after literature reviews and interviews with medical experts. A total of 140 diabetes patients- data were used to train the prediction system. A voting mechanism selects the best prediction results from the two techniques used. It has been successfully proven that both data mining and case-based reasoning can be used for retinopathy prediction with an improved accuracy of 85%.

Keywords: Case-Based Reasoning, Data Mining, Prediction, Retinopathy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3021
1331 The Effects of Misspecification of Stochastic Processes on Investment Appraisal

Authors: George Yungchih Wang

Abstract:

For decades financial economists have been attempted to determine the optimal investment policy by recognizing the option value embedded in irreversible investment whose project value evolves as a geometric Brownian motion (GBM). This paper aims to examine the effects of the optimal investment trigger and of the misspecification of stochastic processes on investment in real options applications. Specifically, the former explores the consequence of adopting optimal investment rules on the distributions of corporate value under the correct assumption of stochastic process while the latter analyzes the influence on the distributions of corporate value as a result of the misspecification of stochastic processes, i.e., mistaking an alternative process as a GBM. It is found that adopting the correct optimal investment policy may increase corporate value by shifting the value distribution rightward, and the misspecification effect may decrease corporate value by shifting the value distribution leftward. The adoption of the optimal investment trigger has a major impact on investment to such an extent that the downside risk of investment is truncated at the project value of zero, thereby moving the value distributions rightward. The analytical framework is also extended to situations where collection lags are in place, and the result indicates that collection lags reduce the effects of investment trigger and misspecification on investment in an opposite way.

Keywords: GBM, real options, investment trigger, misspecification, collection lags

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1513
1330 Directors- Islamic Code of Ethics

Authors: Ahmad Saiful Azlin Puteh Salin, Norlela Kamaludin, Siti Khadijah Ab Manan, Mohd Shatari Abdul Ghafar

Abstract:

This paper discusses a new model of Islamic code of ethics for directors. Several corporate scandals and local (example Transmile and Megan Media) and overseas corporate (example Parmalat and Enron) collapses show that the current corporate governance and regulatory reform are unable to prevent these events from recurring. Arguably, the code of ethics for directors is under research and the current code of ethics only concentrates on binding the work of the employee of the organization as a whole, without specifically putting direct attention to the directors, the group of people responsible for the performance of the company. This study used a semi-structured interview survey of well-known Islamic scholars such as the Mufti to develop the model. It is expected that the outcome of the research is a comprehensive model of code of ethics based on the Islamic principles that can be applied and used by the company to construct a code of ethics for their directors.

Keywords: Code of ethics, director, Islam, ethics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1939
1329 The Effect of Corporate Diversification on the Profitability of the Financial Services Sector in Nigeria

Authors: Ugwuanyi, Georgina Obinne, Ugwu, Joy Nonye

Abstract:

This paper examines the effect of corporate diversification on the profitability of the Financial services sector in Nigeria. The study relied on historic accounting data generated from financial (annual) reports and accounts of sampled banks between the period 1998 and 2007 (a ten-year period). A regression equation was formulated, in line with previous studies to shed light on the effect of corporate diversification on the profitability of the Financial services sector in Nigeria. The results of the regression analysis revealed that diversification impacts strongly on banks profitability. Conclusively the paper produces strong evidence to assert that diversification impacts positively and significantly on banks profitability because among other things such diversified banks can pool their internally generated funds and allocate them properly.

Keywords: Diversification, firm size, operational efficiency, profitability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2963
1328 Empirical Statistical Modeling of Rainfall Prediction over Myanmar

Authors: Wint Thida Zaw, Thinn Thu Naing

Abstract:

One of the essential sectors of Myanmar economy is agriculture which is sensitive to climate variation. The most important climatic element which impacts on agriculture sector is rainfall. Thus rainfall prediction becomes an important issue in agriculture country. Multi variables polynomial regression (MPR) provides an effective way to describe complex nonlinear input output relationships so that an outcome variable can be predicted from the other or others. In this paper, the modeling of monthly rainfall prediction over Myanmar is described in detail by applying the polynomial regression equation. The proposed model results are compared to the results produced by multiple linear regression model (MLR). Experiments indicate that the prediction model based on MPR has higher accuracy than using MLR.

Keywords: Polynomial Regression, Rainfall Forecasting, Statistical forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2634
1327 Building the Reliability Prediction Model of Component-Based Software Architectures

Authors: Pham Thanh Trung, Huynh Quyet Thang

Abstract:

Reliability is one of the most important quality attributes of software. Based on the approach of Reussner and the approach of Cheung, we proposed the reliability prediction model of component-based software architectures. Also, the value of the model is shown through the experimental evaluation on a web server system.

Keywords: component-based architecture, reliability prediction model, software reliability engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1422
1326 Cross Project Software Fault Prediction at Design Phase

Authors: Pradeep Singh, Shrish Verma

Abstract:

Software fault prediction models are created by using the source code, processed metrics from the same or previous version of code and related fault data. Some company do not store and keep track of all artifacts which are required for software fault prediction. To construct fault prediction model for such company, the training data from the other projects can be one potential solution. Earlier we predicted the fault the less cost it requires to correct. The training data consists of metrics data and related fault data at function/module level. This paper investigates fault predictions at early stage using the cross-project data focusing on the design metrics. In this study, empirical analysis is carried out to validate design metrics for cross project fault prediction. The machine learning techniques used for evaluation is Naïve Bayes. The design phase metrics of other projects can be used as initial guideline for the projects where no previous fault data is available. We analyze seven datasets from NASA Metrics Data Program which offer design as well as code metrics. Overall, the results of cross project is comparable to the within company data learning.

Keywords: Software Metrics, Fault prediction, Cross project, Within project.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2546
1325 The Effect of Board Composition and Ownership Concentration on Earnings Management: Evidence from IRAN

Authors: F. Rahnamay Roodposhti, S. A. Nabavi Chashmi

Abstract:

The role of corporate governance is to reduce the divergence of interests between shareholders and managers. The role of corporate governance is more useful when managers have an incentive to deviate from shareholders- interests. One example of management-s deviation from shareholders- interests is the management of earnings through the use of accounting accruals. This paper examines the association between corporate governance internal mechanisms ownership concentration, board independence, the existence of CEO-Chairman duality and earnings management. Firm size and leverage are control variables. The population used in this study comprises firms listed on the Tehran Stock Exchange (TSE) between 2004 and 2008, the sample comprises 196 firms. Panel Data method is employed as technique to estimate the model. We find that there is negative significant association between ownership concentration and board independence manage earnings with earnings management, there is negative significant association between the existence of CEO-Chairman duality and earnings management. This study also found a positive significant association between control variable (firm size and leverage) and earnings management.

Keywords: Earnings management, board independence, ownership concentration, corporate governance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3919
1324 Enhancing Customer Loyalty towards Corporate Social Responsibility of Thai Mobile Service Providers

Authors: Wichai Onlaor, Siriluck Rotchanakitumnuai

Abstract:

The aim of this research is to develop the understanding of corporate social responsibility (CSR) from consumers- perspective toward Thai mobile service providers. Based on the survey from 400 mobile customers, the result shows that four dimensions of CSR of Thai mobile service providers consist of economic, legal, ethical and philanthropic responsibility. These four CSR factors have positive impacts on enhancing customer satisfaction except one item of economic responsibility - profitability to shareholders. Ethical dimension has the strongest impact on customer satisfaction. Economic, legal, ethical, philanthropic responsibility and customer satisfaction have major impact on loyalty, whilst philanthropic component mostly affects loyalty.

Keywords: Corporate Social Responsibility, PriceFairness, Service Quality, Privacy Concern, CustomerSatisfaction, Customer Loyalty

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3409
1323 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method

Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas

Abstract:

To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.

Keywords: Building energy prediction, data mining, demand response, electricity market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
1322 Cost Benefit Analysis and Adjustments of Corporate Social Responsibility in the Airline Industry

Authors: Roman Asatryan

Abstract:

The decision-making processes in Corporate Social Responsibility (CSR) among firms in the airlines industry borders on the benefits that accrue to firms through those investments. The crux of the matter is how firms can quantify the benefits derived from such investments. This paper analyses the cost benefit adjustment strategies for firms in the airline industry in their CSR strategy adoption and implementation. The paper discusses the CBA model in order to understand the ways airlines can reduce costs and increase returns on CSR, or balance the cost and benefits. The analysis indicates that, economic concepts especially the CBA are useful, though they are not without challenges. This paper concludes that the CBA model gives a basic understanding of the motivations for investing in intangible assets like CSR. It sets the tone for formulating relevant hypothesis in empirical studies in investment in CSR and other intangible assets in business operations.

Keywords: Cost Benefit Analysis, Corporate Social Responsibility, airline industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5067
1321 The Importance of Class Attendance and Cumulative GPA for Academic Success in Industrial Engineering Classes

Authors: Suleiman Obeidat, Adnan Bashir, Wisam Abu Jadayil

Abstract:

The affect of the attendance percentage, the overall GPA and the number of credit hours the student is enrolled in at specific semester on the grade attained in specific course has been studied. This study has been performed on three courses offered in industrial engineering department at the Hashemite University in Jordan. Study has revealed that the grade attained by a student is strongly affected by the attendance percentage and his overall GPA with a value of R2 of 52.5%. Another model that has been investigated is the relation between the semester GPA and the attendance percentage, the number of credit hours enrolled in at specific semester, and the overall GPA. This model gave us a strong relationship between the semester GPA and attendance percentage and the overall GPA with a value of R2 of 76.2%.

Keywords: Attendance in classes, GPA, Industrial Engineering, Grade

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3590
1320 Calibration Model of %Titratable Acidity (Citric Acid) for Intact Tomato by Transmittance SW-NIR Spectroscopy

Authors: K. Petcharaporn, S. Kumchoo

Abstract:

The acidity (citric acid) is the one of chemical content that can be refer to the internal quality and it’s a maturity index of tomato, The titratable acidity (%TA) can be predicted by a non-destructive method prediction by using the transmittance short wavelength (SW-NIR) spectroscopy in the wavelength range between 665-955 nm. The set of 167 tomato samples divided into groups of 117 tomatoes sample for training set and 50 tomatoes sample for test set were used to establish the calibration model to predict and measure %TA by partial least squares regression (PLSR) technique. The spectra were pretreated with MSC pretreatment and it gave the optimal result for calibration model as (R = 0.92, RMSEC = 0.03%) and this model obtained high accuracy result to use for %TA prediction in test set as (R = 0.81, RMSEP = 0.05%). From the result of prediction in test set shown that the transmittance SW-NIR spectroscopy technique can be used for a non-destructive method for %TA prediction of tomato.

Keywords: Tomato, quality, prediction, transmittance, titratable acidity, citric acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2700
1319 Grey Prediction Based Handoff Algorithm

Authors: Seyed Saeed Changiz Rezaei, Babak Hossein Khalaj

Abstract:

As the demand for higher capacity in a cellular environment increases, the cell size decreases. This fact makes the role of suitable handoff algorithms to reduce both number of handoffs and handoff delay more important. In this paper we show that applying the grey prediction technique for handoff leads to considerable decrease in handoff delay with using a small number of handoffs, compared with traditional hystersis based handoff algorithms.

Keywords: Cellular network, Grey prediction, Handoff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
1318 Recurrent Radial Basis Function Network for Failure Time Series Prediction

Authors: Ryad Zemouri, Paul Ciprian Patic

Abstract:

An adaptive software reliability prediction model using evolutionary connectionist approach based on Recurrent Radial Basis Function architecture is proposed. Based on the currently available software failure time data, Fuzzy Min-Max algorithm is used to globally optimize the number of the k Gaussian nodes. The corresponding optimized neural network architecture is iteratively and dynamically reconfigured in real-time as new actual failure time data arrives. The performance of our proposed approach has been tested using sixteen real-time software failure data. Numerical results show that our proposed approach is robust across different software projects, and has a better performance with respect to next-steppredictability compared to existing neural network model for failure time prediction.

Keywords: Neural network, Prediction error, Recurrent RadialBasis Function Network, Reliability prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
1317 An Enhanced Artificial Neural Network for Air Temperature Prediction

Authors: Brian A. Smith, Ronald W. McClendon, Gerrit Hoogenboom

Abstract:

The mitigation of crop loss due to damaging freezes requires accurate air temperature prediction models. An improved model for temperature prediction in Georgia was developed by including information on seasonality and modifying parameters of an existing artificial neural network model. Alternative models were compared by instantiating and training multiple networks for each model. The inclusion of up to 24 hours of prior weather information and inputs reflecting the day of year were among improvements that reduced average four-hour prediction error by 0.18°C compared to the prior model. Results strongly suggest model developers should instantiate and train multiple networks with different initial weights to establish appropriate model parameters.

Keywords: Time-series forecasting, weather modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
1316 A Study of Management Principles Incorporating Corporate Governance and Advocating Ethics to Reduce Fraud at a South African Bank

Authors: Roshan Jelal, Charles Mbohwa

Abstract:

In today’s world, internal fraud remains one of the most challenging problems within companies worldwide and despite investment in controls and attention given to the problem, the instances of internal fraud has not abated. To the contrary it appears that internal fraud is on the rise especially in the wake of the economic downturn.

Leadership within companies believes that the more sophisticated the controls employed the less likely it would be for employees to pilfer. This is a very antiquated view as investment in controls may not be enough to curtail internal fraud; however, ensuring that a company drives the correct culture and behavior within the organization is likely to yield desired results.

This research aims to understand how creating a strong ethical culture and embedding the principle of good corporate governance impacts on levels of internal fraud with an organization (a South African Bank).

Keywords: Internal Fraud, Corporate Governance, Ethics, South African Reserve Bank, The King Code.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070
1315 Convergence Analysis of a Prediction based Adaptive Equalizer for IIR Channels

Authors: Miloje S. Radenkovic, Tamal Bose

Abstract:

This paper presents the convergence analysis of a prediction based blind equalizer for IIR channels. Predictor parameters are estimated by using the recursive least squares algorithm. It is shown that the prediction error converges almost surely (a.s.) toward a scalar multiple of the unknown input symbol sequence. It is also proved that the convergence rate of the parameter estimation error is of the same order as that in the iterated logarithm law.

Keywords: Adaptive blind equalizer, Recursive leastsquares, Adaptive Filtering, Convergence analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1454
1314 Impact of Faults in Different Software Systems: A Survey

Authors: Neeraj Mohan, Parvinder S. Sandhu, Hardeep Singh

Abstract:

Software maintenance is extremely important activity in software development life cycle. It involves a lot of human efforts, cost and time. Software maintenance may be further subdivided into different activities such as fault prediction, fault detection, fault prevention, fault correction etc. This topic has gained substantial attention due to sophisticated and complex applications, commercial hardware, clustered architecture and artificial intelligence. In this paper we surveyed the work done in the field of software maintenance. Software fault prediction has been studied in context of fault prone modules, self healing systems, developer information, maintenance models etc. Still a lot of things like modeling and weightage of impact of different kind of faults in the various types of software systems need to be explored in the field of fault severity.

Keywords: Fault prediction, Software Maintenance, Automated Fault Prediction, and Failure Mode Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2079
1313 Using High Performance Computing for Online Flood Monitoring and Prediction

Authors: Stepan Kuchar, Martin Golasowski, Radim Vavrik, Michal Podhoranyi, Boris Sir, Jan Martinovic

Abstract:

The main goal of this article is to describe the online flood monitoring and prediction system Floreon+ primarily developed for the Moravian-Silesian region in the Czech Republic and the basic process it uses for running automatic rainfall-runoff and hydrodynamic simulations along with their calibration and uncertainty modeling. It takes a long time to execute such process sequentially, which is not acceptable in the online scenario, so the use of a high performance computing environment is proposed for all parts of the process to shorten their duration. Finally, a case study on the Ostravice River catchment is presented that shows actual durations and their gain from the parallel implementation.

Keywords: Flood prediction process, High performance computing, Online flood prediction system, Parallelization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
1312 Criminal Law Instruments to Counter Corporate Crimes in Poland

Authors: Dorota Habrat

Abstract:

The aim of study was to analyze the functioning the new model of criminal corporate responsibility in Poland. The need to introduce into the Polish legal system liability of corporate (collective entities) has resulted, among others, from the Polish Republic's international commitments, in particular related to membership in the European Union. The study showed that responsibility of collective entities under the Act has a criminal nature. The main question concerns the ability of the collective entity to be brought to guilt under criminal law sense. Polish criminal law knows only the responsibility of individual persons. So far, guilt as a personal feature of action, based on the ability of the offender to feel in his psyche, could be considered only in relation to the individual person, while the said Act destroyed this conviction. Guilt of collective entity must be proven under at least one of the three possible forms: the guilt in the selection or supervision and so called organizational guilt. In addition, research in article has resolved the issue how the principle of proportionality in relation to criminal measures in response of collective entities should be considered. It should be remembered that the legal subjectivity of collective entities, including their rights and freedoms, is an emanation of the rights and freedoms of individual persons which create collective entities and through these entities implement their rights and freedoms. The whole study was proved that the adopted Act largely reflects the international legal regulations but also contains the unknown and original legislative solutions.

Keywords: Criminal corporate responsibility, Polish criminal law.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559
1311 An Empirical Study of Taiwan-s Hospital Foundation Investment in Corporate Social Responsibility and Financial Performance

Authors: Hsiu-Pi Lin, Wen-Chen Huang, Hui-Fang Chen, Yan-Pin Ke

Abstract:

Corporate Social Responsibility (CSR) has become a new trend of business governance. Few research studies on CSR published in Taiwanese academia, especially for medical settings, we were interested in probing the relationship of CSR and financial performance in medical settings in Taiwan. The results illustrate that: (1) a time delay effect exists with a lag between CSR effort and its performance in the hospital foundation, (2) input into the internal domains of CSR will be helpful to improve employee productivity in the hospital foundation, and (3) input into the external domains of CSR will be helpful in improving financial performance in the hospital foundation. This study overviews CSR in the medical industry in Taiwan and the relationship of CSR and financial performance. Discussions of possible implications from the study results are applied to consult the CSR concept that will be transferred into a business strategy for the organization manager.

Keywords: Corporate Social Responsibility (CSR), financialperformance, hospital foundation,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
1310 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing ECG Based on ResNet and Bi-LSTM

Authors: Yang Zhang, Jian He

Abstract:

Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper presents sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for CHD prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.

Keywords: Bi-LSTM, CHD, coronary heart disease, ECG, electrocardiogram, ResNet, sliding window.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 334