Search results for: Fuel cell dynamics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2134

Search results for: Fuel cell dynamics

424 Two New Low Power High Performance Full Adders with Minimum Gates

Authors: M.Hosseinghadiry, H. Mohammadi, M.Nadisenejani

Abstract:

with increasing circuits- complexity and demand to use portable devices, power consumption is one of the most important parameters these days. Full adders are the basic block of many circuits. Therefore reducing power consumption in full adders is very important in low power circuits. One of the most powerconsuming modules in full adders is XOR/XNOR circuit. This paper presents two new full adders based on two new logic approaches. The proposed logic approaches use one XOR or XNOR gate to implement a full adder cell. Therefore, delay and power will be decreased. Using two new approaches and two XOR and XNOR gates, two new full adders have been implemented in this paper. Simulations are carried out by HSPICE in 0.18μm bulk technology with 1.8V supply voltage. The results show that the ten-transistors proposed full adder has 12% less power consumption and is 5% faster in comparison to MB12T full adder. 9T is more efficient in area and is 24% better than similar 10T full adder in term of power consumption. The main drawback of the proposed circuits is output threshold loss problem.

Keywords: Full adder, XNOR, Low power, High performance, Very Large Scale Integrated Circuit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
423 Distributed Architecture of an Autonomous Four Rotor Mini-Rotorcraft based on Multi-Agent System

Authors: H. Ifassiouen, H. Medromi, N. E. Radhy

Abstract:

In this paper, we present the recently implemented approach allowing dynamics systems to plan its actions, taking into account the environment perception changes, and to control their execution when uncertainty and incomplete knowledge are the major characteristics of the situated environment [1],[2],[3],[4]. The control distributed architecture has three modules and the approach is related to hierarchical planning: the plan produced by the planner is further refined at the control layer that in turn supervises its execution by a functional level. We propose a new intelligent distributed architecture constituted by: Multi-Agent subsystem of the sensor, of the interpretation and representation of environment [9], of the dynamic localization and of the action. We tested this distributed architecture with dynamic system in the known environment. The autonomous for Rotor Mini Rotorcraft task is described by the primitive actions. The distributed controlbased on multi-agent system is in charge of achieving each task in the best possible way taking into account the context and sensory feedback.

Keywords: Autonomous four rotors helicopter, Control system, Hierarchical planning, Intelligent Distributed Architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632
422 Removal of Chlorinated Resin and Fatty Acids from Paper Mill wastewater through Constructed Wetland

Authors: Ashutosh Kumar Choudhary, Satish Kumar, Chhaya Sharma

Abstract:

This study evaluates the performance of horizontal subsurface flow constructed wetland (HSSF-CW) for the removal of chlorinated resin and fatty acids (RFAs) from pulp and paper mill wastewater. The dimensions of the treatment system were 3.5 m x 1.5 m x 0.28 m with surface area of 5.25 m2, filled with fine sand and gravel. The cell was planted with an ornamental plant species Canna indica. The removal efficiency of chlorinated RFAs was in the range of 92-96% at the hydraulic retention time (HRT) of 5.9 days. Plant biomass and soil (sand and gravel) were analyzed for chlorinated RFAs content. No chlorinated RFAs were detected in plant biomass but detected in soil samples. Mass balance studies of chlorinated RFAs in HSSF-CW were also carried out.

Keywords: Canna indica, Chlorinated resin & fatty acids, Constructed wetland, Pulp and paper mill wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2169
421 Study of Stress Wave Propagation with NHDMOC

Authors: G.Y. Zhang , M.L. Xu, R.Q. Zhang, W.H. Tang

Abstract:

MOC (method of cell) is a new method of investigating wave propagating in material with periodic microstructure, and can reflect the effect of microstructure. Wave propagation in periodically laminated medium consisting of linearly elastic layers can be treated as a special application of this method. In this paper, it was used to simulate the dynamic response of carbon-phenolic to impulsive loading under certain boundary conditions. From the comparison between the results obtained from this method and the exact results based on propagator matrix theory, excellent agreement is achieved. Conclusion can be made that the oscillation periodicity is decided by the thickness of sub-cells. In the end, the NHDMOC method, which permits studying stress wave propagation with one dimensional strain, was applied to study the one-dimensional stress wave propagation. In this paper, the ZWT nonlinear visco-elastic constitutive relationship with 7 parameters, NHDMOC, and corresponding equations were deduced. The equations were verified, comparing the elastic stress wave propagation in SHPB with, respectively, the elastic and the visco-elastic bar. Finally the dispersion and attenuation of stress wave in SHPB with visco-elastic bar was studied.

Keywords: MOC, NHDMOC, visco-elastic, wave propagation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
420 The Potential of 48V HEV in Real Driving

Authors: Mark Schudeleit, Christian Sieg, Ferit Küçükay

Abstract:

This paper describes how to dimension the electric components of a 48V hybrid system considering real customer use. Furthermore, it provides information about savings in energy and CO2 emissions by a customer-tailored 48V hybrid. Based on measured customer profiles, the electric units such as the electric motor and the energy storage are dimensioned. Furthermore, the CO2 reduction potential in real customer use is determined compared to conventional vehicles. Finally, investigations are carried out to specify the topology design and preliminary considerations in order to hybridize a conventional vehicle with a 48V hybrid system. The emission model results from an empiric approach also taking into account the effects of engine dynamics on emissions. We analyzed transient engine emissions during representative customer driving profiles and created emission meta models. The investigation showed a significant difference in emissions when simulating realistic customer driving profiles using the created verified meta models compared to static approaches which are commonly used for vehicle simulation.

Keywords: Customer use, dimensioning, hybrid electric vehicles, vehicle simulation, 48V hybrid system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3560
419 Rotor Dynamic Analysis for a Shaft Train by Using Finite Element Method

Authors: M. Najafi

Abstract:

In the present paper, a large turbo-generator shaft train including a heavy-duty gas turbine engine, a coupling, and a generator is established. The method of analysis is based on finite element simplified model for lateral and torsional vibration calculation. The basic elements of rotor are the shafts and the disks which are represented as circular cross section flexible beams and rigid body elements, respectively. For more accurate results, the gyroscopic effect and bearing dynamics coefficients and function of rotation are taken into account, and for the influence of shear effect, rotor has been modeled in the form of Timoshenko beam. Lateral critical speeds, critical speed map, damped mode shapes, Campbell diagram, zones of instability, amplitudes, phase angles response due to synchronous forces of excitation and amplification factor are calculated. Also, in the present paper, the effect of imbalanced rotor and effects of changing in internal force and temperature are studied.

Keywords: Rotor dynamic analysis, Finite element method, shaft train, Campbell diagram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1201
418 New Device for Enhancement of Liposomal Magnetofection Efficiency of Cancer Cells

Authors: M. Baryshev, D.Vainauska, S. Kozireva, A.Karpovs

Abstract:

Liposomal magnetofection is the most powerful nonviral method for the nucleic acid delivery into the cultured cancer cells and widely used for in vitro applications. Use of the static magnetic field condition may result in non-uniform distribution of aggregate complexes on the surface of cultured cells. To prevent this, we developed the new device which allows to concentrate aggregate complexes under dynamic magnetic field, assisting more contact of these complexes with cellular membrane and, possibly, stimulating endocytosis. Newly developed device for magnetofection under dynamic gradient magnetic field, “DynaFECTOR", was used to compare transfection efficiency of human liver hepatocellular carcinoma cell line HepG2 with that obtained by lipofection and magnetofection. The effect of two parameters on transfection efficiency, incubation time under dynamic magnetic field and rotation frequency of magnet, was estimated. Liposomal magnetofection under dynamic gradient magnetic field showed the highest transfection efficiency for HepG2 cells.

Keywords: Dynamic magnetic field, Lipofection, Magnetofection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
417 Compressible Lattice Boltzmann Method for Turbulent Jet Flow Simulations

Authors: K. Noah, F.-S. Lien

Abstract:

In Computational Fluid Dynamics (CFD), there are a variety of numerical methods, of which some depend on macroscopic model representatives. These models can be solved by finite-volume, finite-element or finite-difference methods on a microscopic description. However, the lattice Boltzmann method (LBM) is considered to be a mesoscopic particle method, with its scale lying between the macroscopic and microscopic scales. The LBM works well for solving incompressible flow problems, but certain limitations arise from solving compressible flows, particularly at high Mach numbers. An improved lattice Boltzmann model for compressible flow problems is presented in this research study. A higher-order Taylor series expansion of the Maxwell equilibrium distribution function is used to overcome limitations in LBM when solving high-Mach-number flows. Large eddy simulation (LES) is implemented in LBM to simulate turbulent jet flows. The results have been validated with available experimental data for turbulent compressible free jet flow at subsonic speeds.

Keywords: Compressible lattice Boltzmann metho-, large eddy simulation, turbulent jet flows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 955
416 Acceleration Analysis of a Rotating Body

Authors: R. Usubamatov

Abstract:

The velocity of a moving point in a general path is the vector quantity, which has both magnitude and direction. The magnitude or the direction of the velocity vector can change over time as a result of acceleration that the time rate of velocity changes. Acceleration analysis is important because inertial forces and inertial torques are proportional to rectilinear and angular accelerations accordingly. The loads must be determined in advance to ensure that a machine is adequately designed to handle these dynamic loads. For planar motion, the vector direction of acceleration is commonly separated into two elements: tangential and centripetal or radial components of a point on a rotating body. All textbooks in physics, kinematics and dynamics of machinery consider the magnitude of a radial acceleration at condition when a point rotates with a constant angular velocity and it means without acceleration. The magnitude of the tangential acceleration considered on a basis of acceleration for a rotating point. Such condition of presentation of magnitudes for two components of acceleration logically and mathematically is not correct and may cause further confusion in calculation. This paper presents new analytical expressions of the radial and absolute accelerations of a rotating point with acceleration and covers the gap in theoretical study of acceleration analysis.

Keywords: acceleration analysis, kinematics of mechanisms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2695
415 Rotary Entrainment in Two Phase Stratified Gas-Liquid Layers: An Experimental Study

Authors: Yagya Sharma, Basanta K. Rana, Arup K. Das

Abstract:

Rotary entrainment is a phenomenon in which the interface of two immiscible fluids are subjected to external flux by means of rotation. Present work reports the experimental study on rotary motion of a horizontal cylinder between the interface of air and water to observe the penetration of gas inside the liquid. Experiments have been performed to establish entrainment of air mass in water alongside the cylindrical surface. The movement of tracer and seeded particles has been tracked to calculate the speed and path of the entrained air inside water. Simplified particle image velocimetry technique has been used to trace the movement of particles/tracers at the moment they are injected inside the entrainment zone and suspended beads have been used to replicate the particle movement with respect to time in order to determine the flow dynamics of the fluid along the cylinder. Present paper establishes a thorough experimental analysis of the rotary entrainment phenomenon between air and water keeping in interest the extent to which we can intermix the two and also to study its entrainment trajectories.

Keywords: Entrainment, gas-liquid flow, particle image velocimetry, stratified layer mixing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
414 Analysis of Energy Consumption Based on Household Appliances in Jodhpur, India

Authors: A. Kumar, V. Devadas

Abstract:

Energy is the basic element for any country’s economic development. India is one of the most populated countries, and is dependent on fossil fuel and nuclear-based energy generation. The energy sector faces huge challenges and is dependent on the import of energy from neighboring countries to fulfill the gap in demand and supply. India has huge setbacks for efficient energy generation, distribution, and consumption, therefore they consume more quantity of energy to produce the same amount of Gross Domestic Product (GDP) compared to the developed countries. Technology and technique use, availability, and affordability in the various sectors are varying according to their economic status. In this paper, an attempt is made to quantify the domestic electrical energy consumption in Jodhpur, India. Survey research methods have been employed and stratified sampling technique-based households were chosen for conducting the investigation. Pre-tested survey schedules are used to investigate the grassroots level study. The collected data are analyzed by employing statistical techniques. Thereafter, a multiple regression model is developed to understand the functions of total electricity consumption in the domestic sector corresponding to other independent variables including electrical appliances, age of the building, household size, education, etc. The study resulted in identifying the governing variable in energy consumption at the household level and their relationship with the efficiency of household-based electrical and energy appliances. The analysis is concluded with the recommendation for optimizing the gap in peak electrical demand and supply in the domestic sector.

Keywords: Appliance, consumption, electricity, households.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 474
413 Different Formula of Mixed Bacteria as a Bio-Treatment for Sewage Wastewater

Authors: E. Marei, A. Hammad, S. Ismail, A. El-Gindy

Abstract:

This study aims to investigate the ability of different formula of mixed bacteria as a biological treatments of wastewater after primary treatment as a bio-treatment and bio-removal and bio-adsorbent of different heavy metals in natural circumstances. The wastewater was collected from Sarpium forest site-Ismailia Governorate, Egypt. These treatments were mixture of free cells and mixture of immobilized cells of different bacteria. These different formulas of mixed bacteria were prepared under Lab. condition. The obtained data indicated that, as a result of wastewater bio-treatment, the removal rate was found to be 76.92 and 76.70% for biological oxygen demand, 79.78 and 71.07% for chemical oxygen demand, 32.45 and 36.84 % for ammonia nitrogen as well as 91.67 and 50.0% for phosphate after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively. Moreover, the bio-removals of different heavy metals were found to reach 90.0 and 50. 0% for Cu ion, 98.0 and 98.5% for Fe ion, 97.0 and 99.3% for Mn ion, 90.0 and 90.0% Pb, 80.0% and 75.0% for Zn ion after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively. The results indicated that 13.86 and 17.43% of removal efficiency and reduction of total dissolved solids were achieved after 24 and 28 hrs with mixed free cells and mixed immobilized cells, respectively.

Keywords: Biological desalination, bio-sorption heavy metals, free cell bacteria, immobilized bacteria, wastewater bio-treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 863
412 The Effect of Blockage Factor on Savonius Hydrokinetic Turbine Performance

Authors: Thochi Seb Rengma, Mahendra Kumar Gupta, P. M. V. Subbarao

Abstract:

Hydrokinetic turbines can be used to produce power in inaccessible villages located near rivers. The hydrokinetic turbine uses the kinetic energy of the water and maybe put it directly into the natural flow of water without dams. For off-grid power production, the Savonius-type vertical axis turbine is the easiest to design and manufacture. This proposal uses three-dimensional Computational Fluid Dynamics (CFD) simulations to measure the considerable interaction and complexity of turbine blades. Savonius hydrokinetic turbine (SHKT) performance is affected by a blockage in the river, canals, and waterways. Putting a large object in a water channel causes water obstruction and raises local free stream velocity. The blockage correction factor or velocity increment measures the impact of velocity on the performance. SHKT performance is evaluated by comparing power coefficient (Cp) with tip-speed ratio (TSR) at various blockage ratios. The maximum Cp was obtained at a TSR of 1.1 with a blockage ratio of 45%, whereas TSR of 0.8 yielded the highest Cp without blockage. The greatest Cp of 0.29 was obtained with a 45% blockage ratio compared to a Cp max of 0.18 without a blockage.

Keywords: Savonius hydrokinetic turbine, blockage ratio, vertical axis turbine, power coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173
411 Antimicrobial Agents Produced by Yeasts

Authors: T. Buyuksirit, H. Kuleasan

Abstract:

Natural antimicrobials are used to preserve foods that can be found in plants, animals, and microorganisms. Antimicrobial substances are natural or artificial agents that produced by microorganisms or obtained semi/total chemical synthesis are used at low concentrations to inhibit the growth of other microorganisms. Food borne pathogens and spoilage microorganisms are inactivated by the use of antagonistic microorganisms and their metabolites. Yeasts can produce toxic proteins or glycoproteins (toxins) that cause inhibition of sensitive bacteria and yeast species. Antimicrobial substance producing phenotypes belonging different yeast genus were isolated from different sources. Toxins secreted by many yeast strains inhibiting the growth of other yeast strains. These strains show antimicrobial activity, inhibiting the growth of mold and bacteria. The effect of antimicrobial agents produced by yeasts can be extremely fast, and therefore may be used in various treatment procedures. Rapid inhibition of microorganisms is possibly caused by microbial cell membrane lipopolysaccharide binding and in activation (neutralization) effect. Antimicrobial agents inhibit the target cells via different mechanisms of action.

Keywords: Antimicrobial agents, Glycoprotein, Toxic protein, Yeast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4549
410 Conceptional Design of a Hyperloop Capsule with Linear Induction Propulsion System

Authors: Ahmed E. Hodaib, Samar F. Abdel Fattah

Abstract:

High-speed transportation is a growing concern. To develop high-speed rails and to increase high-speed efficiencies, the idea of Hyperloop was introduced. The challenge is to overcome the difficulties of managing friction and air-resistance which become substantial when vehicles approach high speeds. In this paper, we are presenting the methodologies of the capsule design which got a design concept innovation award at SpaceX competition in January, 2016. MATLAB scripts are written for the levitation and propulsion calculations and iterations. Computational Fluid Dynamics (CFD) is used to simulate the air flow around the capsule considering the effect of the axial-flow air compressor and the levitation cushion on the air flow. The design procedures of a single-sided linear induction motor are analyzed in detail and its geometric and magnetic parameters are determined. A structural design is introduced and Finite Element Method (FEM) is used to analyze the stresses in different parts. The configuration and the arrangement of the components are illustrated. Moreover, comments on manufacturing are made.

Keywords: High-speed transportation, Hyperloop, railways transportation, single-sided linear induction motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3668
409 Planning of Road Infrastructure Financing: Computational Finance Viewpoint

Authors: Ornst J., Voracek J., Allouache A., Allouache D.

Abstract:

Lack of resources for road infrastructure financing is a problem that currently affects not only eastern European economies but also many other countries especially in relation to the impact of global financial crisis. In this context, we are talking about the socalled short-investment problem as a result of long-term lack of investment resources. Based on an analysis of road infrastructure financing in the Czech Republic this article points out at weaknesses of current system and proposes a long-term planning methodology supported by system approach. Within this methodology and using created system dynamic model the article predicts the development of short-investment problem in the Country and in reaction on the downward trend of certain sources the article presents various scenarios resulting from the change of the structure of financial sources. In the discussion the article focuses more closely on the possibility of introduction of tax on vehicles instead of taxes with declining revenue streams and estimates its approximate price in relation to reaching various solutions of short-investment in time.

Keywords: Road financing, road infrastructure development, system dynamics

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
408 The Pressure Losses in the Model of Human Lungs

Authors: Michaela Chovancova, Pavel Niedoba

Abstract:

For the treatment of acute and chronic lung diseases it is preferred to deliver medicaments by inhalation. The drug is delivered directly to tracheobronchial tree. This way allows the given medicament to get directly into the place of action and it makes rapid onset of action and maximum efficiency. The transport of aerosol particles in the particular part of the lung is influenced by their size, anatomy of the lungs, breathing pattern and airway resistance. This article deals with calculation of airway resistance in the lung model of Horsfield. It solves the problem of determination of the pressure losses in bifurcation and thus defines the pressure drop at a given location in the bronchial tree. The obtained data will be used as boundary conditions for transport of aerosol particles in a central part of bronchial tree realized by Computational Fluid Dynamics (CFD) approach. The results obtained from CFD simulation will allow us to provide information on the required particle size and optimal inhalation technique for particle transport into particular part of the lung.

Keywords: Human lungs, bronchial tree, pressure losses, airways resistance, flow, breathing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2559
407 Single Event Transient Tolerance Analysis in 8051 Microprocessor Using Scan Chain

Authors: Jun Sung Go, Jong Kang Park, Jong Tae Kim

Abstract:

As semi-conductor manufacturing technology evolves; the single event transient problem becomes more significant issue. Single event transient has a critical impact on both combinational and sequential logic circuits, so it is important to evaluate the soft error tolerance of the circuits at the design stage. In this paper, we present a soft error detecting simulation using scan chain. The simulation model generates a single event transient randomly in the circuit, and detects the soft error during the execution of the test patterns. We verified this model by inserting a scan chain in an 8051 microprocessor using 65 nm CMOS technology. While the test patterns generated by ATPG program are passing through the scan chain, we insert a single event transient and detect the number of soft errors per sub-module. The experiments show that the soft error rates per cell area of the SFR module is 277% larger than other modules.

Keywords: Scan chain, single event transient, soft error, 8051 processor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1490
406 Multi Antenna Systems for 5G Mobile Phones

Authors: Muhammad N. Khan, Syed O. Gillani, Mohsin Jamil, Tarbia Iftikhar

Abstract:

With the increasing demand of bandwidth and data rate, there is a dire need to implement antenna systems in mobile phones which are able to fulfill user requirements. A monopole antenna system with multi-antennas configurations is proposed considering the feasibility and user demand. The multi-antenna structure is referred to as multi-input multi-output (MIMO) antenna system. The multi-antenna system comprises of 4 antennas operating below 6 GHz frequency bands for 4G/LTE and 4 antenna for 5G applications at 28 GHz and the dimension of board is 120 × 70 × 0.8mm3. The suggested designs is feasible with a structure of low-profile planar-antenna and is adaptable to smart cell phones and handheld devices. To the best of our knowledge, this is the first design compared to the literature by having integrated antenna system for two standards, i.e., 4G and 5G. All MIMO antenna systems are simulated on commercially available software, which is high frequency structures simulator (HFSS).

Keywords: High frequency structures simulator (HFSS), mutli-input multi-output (MIMO), monopole antenna, slot antenna.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
405 A Numerical Model to Study the Rapid Buffering Approximation near an Open Ca2+ Channel for an Unsteady State Case

Authors: Leena Sharma

Abstract:

Chemical reaction and diffusion are important phenomena in quantitative neurobiology and biophysics. The knowledge of the dynamics of calcium Ca2+ is very important in cellular physiology because Ca2+ binds to many proteins and regulates their activity and interactions Calcium waves propagate inside cells due to a regenerative mechanism known as calcium-induced calcium release. Buffer-mediated calcium diffusion in the cytosol plays a crucial role in the process. A mathematical model has been developed for calcium waves by assuming the buffers are in equilibrium with calcium i.e., the rapid buffering approximation for a one dimensional unsteady state case. This model incorporates important physical and physiological parameters like dissociation rate, diffusion rate, total buffer concentration and influx. The finite difference method has been employed to predict [Ca2+] and buffer concentration time course regardless of the calcium influx. The comparative studies of the effect of the rapid buffered diffusion and kinetic parameters of the model on the concentration time course have been performed.

Keywords: Calcium Profile, Rapid Buffering Approximation, Influx, Dissociation rate constant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
404 The Application of FSI Techniques in Modeling of Realist Pulmonary Systems

Authors: Abdurrahim Bolukbasi, Hassan Athari, Dogan Ciloglu

Abstract:

The modeling lung respiratory system that has complex anatomy and biophysics presents several challenges including tissue-driven flow patterns and wall motion. Also, the pulmonary lung system because of that they stretch and recoil with each breath, has not static walls and structures. The direct relationship between air flow and tissue motion in the lung structures naturally prefers an FSI simulation technique. Therefore, in order to toward the realistic simulation of pulmonary breathing mechanics the development of a coupled FSI computational model is an important step. A simple but physiologically relevant three-dimensional deep long geometry is designed and fluid-structure interaction (FSI) coupling technique is utilized for simulating the deformation of the lung parenchyma tissue that produces airflow fields. The real understanding of respiratory tissue system as a complex phenomenon have been investigated with respect to respiratory patterns, fluid dynamics and tissue viscoelasticity and tidal breathing period. 

Keywords: Lung deformation and mechanics, tissue mechanics, viscoelasticity, fluid-structure interactions, ANSYS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2328
403 Induction of Apoptosis by Newcastle Disease Virus Strains AF220 and V4-UPM in Human Promyelocytic Leukemia (HL60) and Human T-Lymphoblastic Leukemia (CEM-SS) Cells

Authors: Siti Aishah Abu Bakar, Madihah Zawawi, Abdul Manaf Ali, Aini Ideris

Abstract:

Newcastle Disease Virus (NDV), an avian paramyxovirus, is a highly contagious, generalised virus disease of domestic poultry and wild birds characterized by gastro-intestinal, respiratory and nervous signs. In this study, it was shown that NDV strain AF2240 and V4-UPM are cytolytic to Human Promyelocytic Leukemia, HL60 and Human T-lymphoblastic Leukemia, CEM-SS cells. Results from MTT cytolytic assay showed that CD50 for NDV AF2240 against HL60 was 130 HAU and NDV V4-UPM against HL60 and CEM-SS were 110.6 and 150.9 HAU respectively. Besides, both strains were found to inhibit the proliferation of cells in a dose dependent manner. The mode of cell death either by apoptosis or necrosis was further analyzed using acridine orange and propidium iodide (AO/PI) staining. Our results showed that both NDV strains induced primarily apoptosis in treated cells at CD50 concentration. In conclusion, both NDV strains caused cytolytic effects primarily via apoptosis in leukemia cells.

Keywords: Apoptosis, Cytolytic, Leukaemia, Newcastle DiseaseVirus

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975
402 Dynamics of Mini Hydraulic Backhoe Excavator: A Lagrange-Euler (L-E) Approach

Authors: Bhaveshkumar P. Patel, J. M. Prajapati

Abstract:

Excavators are high power machines used in the mining, agricultural and construction industry whose principal functions are digging (material removing), ground leveling and material transport operations. During the digging task there are certain unknown forces exerted by the bucket on the soil and the digging operation is repetitive in nature. Automation of the digging task can be performed by an automatically controlled excavator system, which is not only control the forces but also follow the planned digging trajectories. To develop such a controller for automated excavation, it is required to develop a dynamic model to describe the behavior of the control system during digging operation and motion of excavator with time. The presented work described a dynamic model needed for controller design and which is derived by applying Lagrange-Euler approach. The developed dynamic model is intended for further development of an automated excavation control system for light duty construction work and can be applied for heavy duty or all types of backhoe excavators.

Keywords: Backhoe excavator, controller, digging, excavation, trajectory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4455
401 CFD Simulation for Flow Behavior in Boiling Water Reactor Vessel and Upper Pool under Decommissioning Condition

Authors: Y. T. Ku, S. W. Chen, J. R. Wang, C. Shih, Y. F. Chang

Abstract:

In order to respond the policy decision of non-nuclear homes, Tai Power Company (TPC) will provide the decommissioning project of Kuosheng Nuclear power plant (KSNPP) to meet the regulatory requirement in near future. In this study, the computational fluid dynamics (CFD) methodology has been employed to develop a flow prediction model for boiling water reactor (BWR) with upper pool under decommissioning stage. The model can be utilized to investigate the flow behavior as the vessel combined with upper pool and continuity cooling system. At normal operating condition, different parameters are obtained for the full fluid area, including velocity, mass flow, and mixing phenomenon in the reactor pressure vessel (RPV) and upper pool. Through the efforts of the study, an integrated simulation model will be developed for flow field analysis of decommissioning KSNPP under normal operating condition. It can be expected that a basis result for future analysis application of TPC can be provide from this study.

Keywords: CFD, BWR, decommissioning, upper pool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 755
400 A Heat-Inducible Transgene Expression System for Gene Therapy

Authors: Masaki Yamaguchi, Akira Ito, Noriaki Okamoto, Yoshinori Kawabe, Masamichi Kamihira

Abstract:

Heat-inducible gene expression vectors are useful for hyperthermia-induced cancer gene therapy, because the combination of hyperthermia and gene therapy can considerably improve the therapeutic effects. In the present study, we developed an enhanced heat-inducible transgene expression system in which a heat-shock protein (HSP) promoter and tetracycline-responsive transactivator were combined. When the transactivator plasmid containing the tetracycline-responsive transactivator gene was co-transfected with the reporter gene expression plasmid, a high level of heat-induced gene expression was observed compared with that using the HSP promoter without the transactivator. In vitro evaluation of the therapeutic effect using HeLa cells showed that heat-induced therapeutic gene expression caused cell death in a high percentage of these cells, indicating that this strategy is promising for cancer gene therapy.

Keywords: Inducible gene expression, Gene therapy, Hyperthermia, Heat shock protein, Tetracycline transactivator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2135
399 High-Fidelity 1D Dynamic Model of a Hydraulic Servo Valve Using 3D Computational Fluid Dynamics and Electromagnetic Finite Element Analysis

Authors: D. Henninger, A. Zopey, T. Ihde, C. Mehring

Abstract:

The dynamic performance of a 4-way solenoid operated hydraulic spool valve has been analyzed by means of a one-dimensional modeling approach capturing flow, magnetic and fluid forces, valve inertia forces, fluid compressibility, and damping. Increased model accuracy was achieved by analyzing the detailed three-dimensional electromagnetic behavior of the solenoids and flow behavior through the spool valve body for a set of relevant operating conditions, thereby allowing the accurate mapping of flow and magnetic forces on the moving valve body, in lieu of representing the respective forces by lower-order models or by means of simplistic textbook correlations. The resulting high-fidelity one-dimensional model provided the basis for specific and timely design modification eliminating experimentally observed valve oscillations.

Keywords: Dynamic performance model, high-fidelity model, 1D-3D decoupled analysis, solenoid-operated hydraulic servo valve, CFD and electromagnetic FEA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1153
398 Integration of Fixed and Variable Speed Wind Generator Dynamics with Multimachine AC Systems

Authors: A.H.M.A.Rahim

Abstract:

The impact of fixed speed squirrel cage type as well as variable speed doubly fed induction generators (DFIG) on dynamic performance of a multimachine power system has been investigated. Detailed models of the various components have been presented and the integration of asynchronous and synchronous generators has been carried out through a rotor angle based transform. Simulation studies carried out considering the conventional dynamic model of squirrel cage asynchronous generators show that integration, as such, could degrade to the AC system performance transiently. This article proposes a frequency or power controller which can effectively control the transients and restore normal operation of fixed speed induction generator quickly. Comparison of simulation results between classical cage and doubly-fed induction generators indicate that the doubly fed induction machine is more adaptable to multimachine AC system. Frequency controller installed in the DFIG system can also improve its transient profile.

Keywords: Doubly-fed generator, Induction generator, Multimachine system modeling, Wind energy systems

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355
397 Increase of Peroxidase Activity of Haptoglobin (2-2)-Hemoglobin at Pathologic Temperature and Presence of Antibiotics

Authors: M Tayari, SZ Moosavi-nejad, A Shabani, M Rezaei Tavirani

Abstract:

Free Hemoglobin promotes the accumulation of hydroxyl radicals by the heme iron, which can react with endogenous hydrogen peroxide to produce free radicals which may cause severe oxidative cell damage. Haptoglobin binds to Hemoglobin strongly and Haptoglobin-Hemoglobin binding is irreversible. Peroxidase activity of Haptoglobin(2-2)-Hemoglobin complex was assayed by following increase of absorption of produced tetraguaiacol as the second substrate of Haptoglobin-Hemoglobin complex at 470 nm and 42°C by UV-Vis spectrophotometer. The results have shown that peroxidase activity of Haptoglobin(2-2)-Hemoglobin complex is modulated via homotropic effect of hydrogen peroxide as allostric substrate. On the other hand antioxidant property of Haptoglobin(2- 2)-Hemoglobin was increased via heterotropic effect of the two drugs (especially ampicillin) on peroxidase activity of the complex. Both drugs also have mild effect on quality of homotropic property of peroxidase activity of Haptoglobin(2-2)-Hemoglobin complex. Therefore, in vitro studies show that the two drugs may help Hp-Hb complex to remove hydrogen peroxide from serum at pathologic temperature ature (42 C).

Keywords: Haptoglobin, Hemoglobin, Antioxidant, Antibiotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273
396 Assessment of the Efficacy of Oral Vaccination of Wild Canids and Stray Dogs against Rabies in Azerbaijan

Authors: E. N. Hasanov, K. Y. Yusifova, M. A. Ali

Abstract:

Rabies is a zoonotic disease that causes acute encephalitis in domestic and wild carnivores. The goal of this investigation was to analyze the data on oral vaccination of wild canids and stray dogs in Azerbaijan. Before the start of vaccination campaign conducted by the IDEA (International Dialogue for Environmental Action) Animal Care Center (IACC), all rabies cases in Azerbaijan for the period of 2017-2020 were analyzed. So, 30 regions for oral immunization with the Rabadrop vaccine were selected. In total, 95.9 thousand doses of baits were scattered in 30 regions, 970 (0.97%) remained intact. In addition, a campaign to sterilize and vaccinate stray dogs and cats undoubtedly had a positive impact on reducing the dynamics of rabies incidence. During the period 2017-2020, 2,339 dogs and 2,962 cats were sterilized and vaccinated under this program. It can be noted that the risk of rabies infection can be reduced through special preventive measures against disease reservoirs, which include oral immunization of wild and stray animals.

Keywords: Rabies, vaccination, oral immunization, wild canids, stray dogs, vaccine, disease reservoirs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 487
395 Neural Network Control of a Biped Robot Model with Composite Adaptation Low

Authors: Ahmad Forouzantabar

Abstract:

this paper presents a novel neural network controller with composite adaptation low to improve the trajectory tracking problems of biped robots comparing with classical controller. The biped model has 5_link and 6 degrees of freedom and actuated by Plated Pneumatic Artificial Muscle, which have a very high power to weight ratio and it has large stoke compared to similar actuators. The proposed controller employ a stable neural network in to approximate unknown nonlinear functions in the robot dynamics, thereby overcoming some limitation of conventional controllers such as PD or adaptive controllers and guarantee good performance. This NN controller significantly improve the accuracy requirements by retraining the basic PD/PID loop, but adding an inner adaptive loop that allows the controller to learn unknown parameters such as friction coefficient, therefore improving tracking accuracy. Simulation results plus graphical simulation in virtual reality show that NN controller tracking performance is considerably better than PD controller tracking performance.

Keywords: Biped robot, Neural network, Plated Pneumatic Artificial Muscle, Composite adaptation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1846