Search results for: computational design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5749

Search results for: computational design

4069 A Time-Reducible Approach to Compute Determinant |I-X|

Authors: Wang Xingbo

Abstract:

Computation of determinant in the form |I-X| is primary and fundamental because it can help to compute many other determinants. This article puts forward a time-reducible approach to compute determinant |I-X|. The approach is derived from the Newton’s identity and its time complexity is no more than that to compute the eigenvalues of the square matrix X. Mathematical deductions and numerical example are presented in detail for the approach. By comparison with classical approaches the new approach is proved to be superior to the classical ones and it can naturally reduce the computational time with the improvement of efficiency to compute eigenvalues of the square matrix.

Keywords: Algorithm, determinant, computation, eigenvalue, time complexity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1156
4068 Fabric Printing Design: An Inspiration from Thai Kites

Authors: Suwit Sadsunk

Abstract:

This research paper was aimed to study different motifs found on Thai kites in order to be create new fabric printing designs. The objectives of the study were (1) to examine different motifs of Thai kites; and (2) to create appropriate printing designs for fabric based on an examination of motifs of Thai kites from primary and secondary sources. The study found that designs, motifs and colors found on Thai kites were various based on individual artisans’ imagination in each period. From the historical review, there have been 4 kinds of Thai kites namely I-Loom Kite, Pak Pao Kite, Chula Kite and Dui Dui Kite. Nowadays, the kite designs have been developed to be more various by shape and color such as snake- shaped kite, owl- shaped kite and peacock- shaped kite.

Keywords: Thai Kites, Fabric Printing Design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2473
4067 Semi-Analytic Method in Fast Evaluation of Thermal Management Solution in Energy Storage System

Authors: Ya Lv

Abstract:

This article presents the application of the semi-analytic method (SAM) in the thermal management solution (TMS) of the energy storage system (ESS). The TMS studied in this work is fluid cooling. In fluid cooling, both effective heat conduction and heat convection are indispensable due to the heat transfer from solid to fluid. Correspondingly, an efficient TMS requires a design investigation of the following parameters: fluid inlet temperature, ESS initial temperature, fluid flow rate, working c rate, continuous working time, and materials properties. Their variation induces a change of thermal performance in the battery module, which is usually evaluated by numerical simulation. Compared to complicated computation resources and long computation time in simulation, the SAM is developed in this article to predict the thermal influence within a few seconds. In SAM, a fast prediction model is reckoned by combining numerical simulation with theoretical/empirical equations. The SAM can explore the thermal effect of boundary parameters in both steady-state and transient heat transfer scenarios within a short time. Therefore, the SAM developed in this work can simplify the design cycle of TMS and inspire more possibilities in TMS design.

Keywords: Semi-analytic method, fast prediction model, thermal influence of boundary parameters, energy storage system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 662
4066 The Adsorption of SDS on Ferro-Precipitates

Authors: R.Marsalek

Abstract:

This paper present a new way to find the aerodynamic characteristic equation of missile for the numerical trajectories prediction more accurate. The goal is to obtain the polynomial equation based on two missile characteristic parameters, angle of attack (α ) and flight speed (ν ). First, the understudied missile is modeled and used for flow computational model to compute aerodynamic force and moment. Assume that performance range of understudied missile where range -10< α <10 and 0< ν <200. After completely obtained results of all cases, the data are fit by polynomial interpolation to create equation of each case and then combine all equations to form aerodynamic characteristic equation, which will be used for trajectories simulation.

Keywords: ferro-precipitate, adsorption, SDS, zeta potential

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1910
4065 Calibration of the Radical Installation Limit Error of the Accelerometer in the Gravity Gradient Instrument

Authors: Danni Cong, Meiping Wu, Xiaofeng He, Junxiang Lian, Juliang Cao, Shaokuncai, Hao Qin

Abstract:

Gravity gradient instrument (GGI) is the core of the gravity gradiometer, so the structural error of the sensor has a great impact on the measurement results. In order not to affect the aimed measurement accuracy, limit error is required in the installation of the accelerometer. In this paper, based on the established measuring principle model, the radial installation limit error is calibrated, which is taken as an example to provide a method to calculate the other limit error of the installation under the premise of ensuring the accuracy of the measurement result. This method provides the idea for deriving the limit error of the geometry structure of the sensor, laying the foundation for the mechanical precision design and physical design.

Keywords: Gravity gradient sensor, radial installation limit error, accelerometer, uniaxial rotational modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 932
4064 Embedded Systems Energy Consumption Analysis Through Co-modelling and Simulation

Authors: José Antonio Esparza Isasa, Finn Overgaard Hansen, Peter Gorm Larsen

Abstract:

This paper presents a new methodology to study power and energy consumption in mechatronic systems early in the development process. This new approach makes use of two modeling languages to represent and simulate embedded control software and electromechanical subsystems in the discrete event and continuous time domain respectively within a single co-model. This co-model enables an accurate representation of power and energy consumption and facilitates the analysis and development of both software and electro-mechanical subsystems in parallel. This makes the engineers aware of energy-wise implications of different design alternatives and enables early trade-off analysis from the beginning of the analysis and design activities.

Keywords: Energy consumption, embedded systems, modeldriven engineering, power awareness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2074
4063 A Numerical Study on the Influence of CO2 Dilution on Combustion Characteristics of a Turbulent Diffusion Flame

Authors: Yasaman Tohidi, Rouzbeh Riazi, Shidvash Vakilipour, Masoud Mohammadi

Abstract:

The objective of the present study is to numerically investigate the effect of CO2 replacement of N2 in air stream on the flame characteristics of the CH4 turbulent diffusion flame. The Open source Field Operation and Manipulation (OpenFOAM) has been used as the computational tool. In this regard, laminar flamelet and modified k-ε models have been utilized as combustion and turbulence models, respectively. Results reveal that the presence of CO2 in air stream changes the flame shape and maximum flame temperature. Also, CO2 dilution causes an increment in CO mass fraction.

Keywords: CH4 diffusion flame, CO2 dilution, OpenFOAM, turbulent flame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 772
4062 Embodied Carbon Footprint of Existing Malaysian Green Homes

Authors: Fahanim Abdul Rashid, Muhammad Azzam Ismail

Abstract:

Part and parcel of building green homes (GHs) with favorable thermal comfort (TC) is to design and build with reduced carbon footprint (CF) from embodied energy in the building envelope and reduced operational CF overall. Together, the environmental impact of GHs can be reduced significantly. Nevertheless, there is still a need to identify the base CF value for Malaysian GHs and this can be done by assessing existing ones which can then be compared to conventional and vernacular houses which are built differently with different building materials. This paper underlines the research design and introduces the case studies. For now, the operational CF of the case studies is beyond the scope of this study. Findings from this research could identify the best building material and construction technique combination to build GHs depending on the available skills, financial constraints and the condition of the immediate environment.

Keywords: Embodied carbon footprint, Malaysian green homes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2198
4061 Analysis of the Physical Behavior of Library Users in Reading Rooms through GIS: A Case Study of the Central Library of Tehran University

Authors: R. Pournaghi

Abstract:

Taking into account the significance of measuring the daily use of the study space in the libraries in order to develop and reorganize the space for enhancing the efficiency of the study space, the current study aimed to apply GIS in analyzing the study halls of the Central Library and Document Center of Tehran University in order to determine how study desks and chairs were used by the students. The study used a combination of survey-descriptive and system design method. In order to gather the required data, surveydescriptive method was used. For implementing and entering data into ArcGIS and analyzing the data and displaying the results on the maps of the study halls of the library, system design method was utilized. The design of the spatial database of the use of the study halls was measured through the extent of occupancy of the space by the library users and the maps of the study halls of the central library of Tehran University as the case study. The results showed that Abooreyhan hall had the highest rate of occupancy of the desks and chairs compared to the other halls. The Hall of Science and Technology, with an average occupancy rate of 0.39 for the tables represented the lowest number of users and Rashid al-Dins hall, and Science and Technology hall with an average occupancy rate (0.40) had the lowest number of users for seats. In this study, the comparison of the space occupied at different periods in the morning, evenings, afternoons, and several months was performed through GIS. This system analyzed the space relationships effectively and efficiently. The output of this study would be used by administrators and librarians to determine the exact extent of use of the equipment of the study halls and librarians can use the output map to design the space more efficiently at the library.

Keywords: Geospatial Information System, Spatial analysis, Reading Room, Academic libraries, Library’s User, Central Library of Tehran University.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
4060 Material and Parameter Analysis of the PolyJet Process for Mold Making Using Design of Experiments

Authors: A. Kampker, K. Kreisköther, C. Reinders

Abstract:

Since additive manufacturing technologies constantly advance, the use of this technology in mold making seems reasonable. Many manufacturers of additive manufacturing machines, however, do not offer any suggestions on how to parameterize the machine to achieve optimal results for mold making. The purpose of this research is to determine the interdependencies of different materials and parameters within the PolyJet process by using design of experiments (DoE), to additively manufacture molds, e.g. for thermoforming and injection molding applications. Therefore, the general requirements of thermoforming molds, such as heat resistance, surface quality and hardness, have been identified. Then, different materials and parameters of the PolyJet process, such as the orientation of the printed part, the layer thickness, the printing mode (matte or glossy), the distance between printed parts and the scaling of parts, have been examined. The multifactorial analysis covers the following properties of the printed samples: Tensile strength, tensile modulus, bending strength, elongation at break, surface quality, heat deflection temperature and surface hardness. The key objective of this research is that by joining the results from the DoE with the requirements of the mold making, optimal and tailored molds can be additively manufactured with the PolyJet process. These additively manufactured molds can then be used in prototyping processes, in process testing and in small to medium batch production.

Keywords: Additive manufacturing, design of experiments, mold making, PolyJet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730
4059 A Knee Modular Orthosis Design Based on Kinematic Considerations

Authors: C. Copilusi, C. Ploscaru

Abstract:

This paper addresses attention to a research regarding the design of a knee orthosis in a modular form used on children walking rehabilitation. This research is focused on the human lower limb kinematic analysis which will be used as input data on virtual simulations and prototype validation. From this analysis, important data will be obtained and used as input for virtual simulations of the knee modular orthosis. Thus, a knee orthosis concept was obtained and validated through virtual simulations by using MSC Adams software. Based on the obtained results, the modular orthosis prototype will be manufactured and presented in this article.

Keywords: Human lower limb, children orthoses, kinematic analysis, knee orthosis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604
4058 Real-Time Control of a Two-Wheeled Inverted Pendulum Mobile Robot

Authors: S. W. Nawawi, M. N. Ahmad, J. H. S. Osman

Abstract:

The research on two-wheeled inverted pendulum (TWIP) mobile robots or commonly known as balancing robots have gained momentum over the last decade in a number of robotic laboratories around the world. This paper describes the hardware design of such a robot. The objective of the design is to develop a TWIP mobile robot as well as MATLAB interfacing configuration to be used as flexible platform comprises of embedded unstable linear plant intended for research and teaching purposes. Issues such as selection of actuators and sensors, signal processing units, MATLAB Real Time Workshop coding, modeling and control scheme will be addressed and discussed. The system is then tested using a wellknown state feedback controller to verify its functionality.

Keywords: Embedded System, Two-wheeled Inverted Pendulum Mobile Robot.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4772
4057 Measurement and Prediction of Speed of Sound in Petroleum Fluids

Authors: S. Ghafoori, A. Al-Harbi, B. Al-Ajmi, A. Al-Shaalan, A. Al-Ajmi, M. Ali Juma

Abstract:

Seismic methods play an important role in the exploration for hydrocarbon reservoirs. However, the success of the method depends strongly on the reliability of the measured or predicted information regarding the velocity of sound in the media. Speed of sound has been used to study the thermodynamic properties of fluids. In this study, experimental data are reported and analyzed on the speed of sound in toluene and octane binary mixture. Three-factor three-level Box-Benhkam design is used to determine the significance of each factor, the synergetic effects of the factors, and the most significant factors on speed of sound. The developed mathematical model and statistical analysis provided a critical analysis of the simultaneous interactive effects of the independent variables indicating that the developed quadratic models were highly accurate and predictive.

Keywords: Experimental design, octane, speed of sound, toluene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
4056 Evolutionary Algorithms for the Multiobjective Shortest Path Problem

Authors: José Maria A. Pangilinan, Gerrit K. Janssens

Abstract:

This paper presents an overview of the multiobjective shortest path problem (MSPP) and a review of essential and recent issues regarding the methods to its solution. The paper further explores a multiobjective evolutionary algorithm as applied to the MSPP and describes its behavior in terms of diversity of solutions, computational complexity, and optimality of solutions. Results show that the evolutionary algorithm can find diverse solutions to the MSPP in polynomial time (based on several network instances) and can be an alternative when other methods are trapped by the tractability problem.

Keywords: Multiobjective evolutionary optimization, geneticalgorithms, shortest paths.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2734
4055 Coordinated Q–V Controller for Multi-machine Steam Power Plant: Design and Validation

Authors: Jasna Dragosavac, Žarko Janda, J.V. Milanović, Dušan Arnautović

Abstract:

This paper discusses coordinated reactive power - voltage (Q-V) control in a multi machine steam power plant. The drawbacks of manual Q-V control are briefly listed, and the design requirements for coordinated Q-V controller are specified. Theoretical background and mathematical model of the new controller are presented next followed by validation of developed Matlab/Simulink model through comparison with recorded responses in real steam power plant and description of practical realisation of the controller. Finally, the performance of commissioned controller is illustrated on several examples of coordinated Q-V control in real steam power plant and compared with manual control.

Keywords: Coordinated Voltage Control, Power Plant Control, Reactive Power Control, Sensitivity Matrix

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2187
4054 A Biomimetic Approach for the Multi-Objective Optimization of Kinetic Façade Design

Authors: Do-Jin Jang, Sung-Ah Kim

Abstract:

A kinetic façade responds to user requirements and environmental conditions.  In designing a kinetic façade, kinetic patterns play a key role in determining its performance. This paper proposes a biomimetic method for the multi-objective optimization for kinetic façade design. The autonomous decentralized control system is combined with flocking algorithm. The flocking agents are autonomously reacting to sensor values and bring about kinetic patterns changing over time. A series of experiments were conducted to verify the potential and limitations of the flocking based decentralized control. As a result, it could show the highest performance balancing multiple objectives such as solar radiation and openness among the comparison group.

Keywords: Biomimicry, flocking algorithm, autonomous decentralized control, multi-objective optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
4053 Speaker Identification by Atomic Decomposition of Learned Features Using Computational Auditory Scene Analysis Principals in Noisy Environments

Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic

Abstract:

Speaker recognition is performed in high Additive White Gaussian Noise (AWGN) environments using principals of Computational Auditory Scene Analysis (CASA). CASA methods often classify sounds from images in the time-frequency (T-F) plane using spectrograms or cochleargrams as the image. In this paper atomic decomposition implemented by matching pursuit performs a transform from time series speech signals to the T-F plane. The atomic decomposition creates a sparsely populated T-F vector in “weight space” where each populated T-F position contains an amplitude weight. The weight space vector along with the atomic dictionary represents a denoised, compressed version of the original signal. The arraignment or of the atomic indices in the T-F vector are used for classification. Unsupervised feature learning implemented by a sparse autoencoder learns a single dictionary of basis features from a collection of envelope samples from all speakers. The approach is demonstrated using pairs of speakers from the TIMIT data set. Pairs of speakers are selected randomly from a single district. Each speak has 10 sentences. Two are used for training and 8 for testing. Atomic index probabilities are created for each training sentence and also for each test sentence. Classification is performed by finding the lowest Euclidean distance between then probabilities from the training sentences and the test sentences. Training is done at a 30dB Signal-to-Noise Ratio (SNR). Testing is performed at SNR’s of 0 dB, 5 dB, 10 dB and 30dB. The algorithm has a baseline classification accuracy of ~93% averaged over 10 pairs of speakers from the TIMIT data set. The baseline accuracy is attributable to short sequences of training and test data as well as the overall simplicity of the classification algorithm. The accuracy is not affected by AWGN and produces ~93% accuracy at 0dB SNR.

Keywords: Time-frequency plane, atomic decomposition, envelope sampling, Gabor atoms, matching pursuit, sparse dictionary learning, sparse autoencoder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
4052 Towards Design of Context-Aware Sensor Grid Framework for Agriculture

Authors: Aqeel-ur-Rehman, Zubair A. Shaikh

Abstract:

This paper is to present context-aware sensor grid framework for agriculture and its design challenges. Use of sensor networks in the domain of agriculture is not new. However, due to the unavailability of any common framework, solutions that are developed in this domain are location, environment and problem dependent. Keeping the need of common framework for agriculture, Context-Aware Sensor Grid Framework is proposed. It will be helpful in developing solutions for majority of the problems related to irrigation, pesticides spray, use of fertilizers, regular monitoring of plot and yield etc. due to the capability of adjusting according to location and environment. The proposed framework is composed of three layer architecture including context-aware application layer, grid middleware layer and sensor network layer.

Keywords: Agriculture, Context-Awareness, Grid Computing, and Sensor Grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2575
4051 A Detailed Experimental Study and Evaluation of Springback under Stretch Bending Process

Authors: A. Soualem

Abstract:

The design of multi stage deep drawing processes requires the evaluation of many process parameters such as the intermediate die geometry, the blank shape, the sheet thickness, the blank holder force, friction, lubrication etc..These process parameters have to be determined for the optimum forming conditions before the process design. In general sheet metal forming may involve stretching drawing or various combinations of these basic modes of deformation. It is important to determine the influence of the process variables in the design of sheet metal working process. Especially, the punch and die corner for deep drawing will affect the formability. At the same time the prediction of sheet metals springback after deep drawing is an important issue to solve for the control of manufacturing processes. Nowadays, the importance of this problem increases because of the use of steel sheeting with high stress and also aluminum alloys.

The aim of this paper is to give a better understanding of the springback and its effect in various sheet metals forming process such as expansion and restreint deep drawing in the cup drawing process, by varying radius die, lubricant for two commercially available materials e.g. galvanized steel and Aluminum sheet. To achieve these goals experiments were carried out and compared with other results. The original of our purpose consist on tests which are ensured by adapting a U-type stretching-bending device on a tensile testing machine, where we studied and quantified the variation of the springback.

Keywords: Deep drawing, Expansion, Restreint deep drawing, Springback.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2528
4050 Design and Analysis of Two-Phase Boost DC-DC Converter

Authors: Taufik Taufik, Tadeus Gunawan, Dale Dolan, Makbul Anwari

Abstract:

Multiphasing of dc-dc converters has been known to give technical and economical benefits to low voltage high power buck regulator modules. A major advantage of multiphasing dc-dc converters is the improvement of input and output performances in the buck converter. From this aspect, a potential use would be in renewable energy where power quality plays an important factor. This paper presents the design of a 2-phase 200W boost converter for battery charging application. Analysis of results from hardware measurement of the boost converter demonstrates the benefits of using multiphase. Results from the hardware prototype of the 2-phase boost converter further show the potential extension of multiphase beyond its commonly used low voltage high current domains.

Keywords: Multiphase, boost converter, power electronics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4705
4049 Numerical Analysis of End Plate Bolted Connection with Corrugated Beam

Authors: M. A. Sadeghian, J. Yang, Q. F. Liu

Abstract:

Steel extended end plate bolted connections are recommended to be widely utilized in special moment-resisting frame subjected to monotonic loading. Improper design of steel beam to column connection can lead to the collapse and fatality of structures. Therefore comprehensive research studies of beam to column connection design should be carried out. Also the performance and effect of corrugated on the strength of beam column end plate connection up to failure under monotonic loading in horizontal direction is presented in this paper. The non-linear elastic–plastic behavior has been considered through a finite element analysis using the multi-purpose software package LUSAS. The effect of vertically and horizontally types of corrugated web was also investigated.

Keywords: Corrugated beam, monotonic loading, finite element analysis, end plate connection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2485
4048 An Improved Optimal Sliding Mode Control for Structural Stability

Authors: Leila Fatemi, Morteza Moradi, Azadeh Mansouri

Abstract:

In this paper, the modified optimal sliding mode control with a proposed method to design a sliding surface is presented. Because of the inability of the previous approach of the sliding mode method to design a bounded and suitable input, the new variation is proposed in the sliding manifold to obviate problems in a structural system. Although the sliding mode control is a powerful method to reject disturbances and noises, the chattering problem is not good for actuators. To decrease the chattering phenomena, the optimal control is added to the sliding mode control. Not only the proposed method can decline the intense variations in the inputs of the system but also it can produce the efficient responses respect to the sliding mode control and optimal control that are shown by performing some numerical simulations.

Keywords: Structural Control, optimal control, optimal sliding mode controller, modified sliding surface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
4047 Spacecraft Neural Network Control System Design using FPGA

Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah

Abstract:

Designing and implementing intelligent systems has become a crucial factor for the innovation and development of better products of space technologies. A neural network is a parallel system, capable of resolving paradigms that linear computing cannot. Field programmable gate array (FPGA) is a digital device that owns reprogrammable properties and robust flexibility. For the neural network based instrument prototype in real time application, conventional specific VLSI neural chip design suffers the limitation in time and cost. With low precision artificial neural network design, FPGAs have higher speed and smaller size for real time application than the VLSI and DSP chips. So, many researchers have made great efforts on the realization of neural network (NN) using FPGA technique. In this paper, an introduction of ANN and FPGA technique are briefly shown. Also, Hardware Description Language (VHDL) code has been proposed to implement ANNs as well as to present simulation results with floating point arithmetic. Synthesis results for ANN controller are developed using Precision RTL. Proposed VHDL implementation creates a flexible, fast method and high degree of parallelism for implementing ANN. The implementation of multi-layer NN using lookup table LUT reduces the resource utilization for implementation and time for execution.

Keywords: Spacecraft, neural network, FPGA, VHDL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3010
4046 Understanding Walkability in the Libyan Urban Space: Policies, Perceptions and Smart Design for Sustainable Tripoli

Authors: A. Abdulla Khairi Mohamed, Mohamed Gamal Abdelmonem, Gehan Selim

Abstract:

Walkability in civic and public spaces in Libyan cities is challenging due to the lack of accessibility design, informal merging into car traffic, and the general absence of adequate urban and space planning. The lack of accessible and pedestrian-friendly public spaces in Libyan cities has emerged as a major concern for the government if it is to develop smart and sustainable spaces for the 21st century. A walkable urban space has become a driver for urban development and redistribution of land use to ensure pedestrian and walkable routes between sites of living and workplaces. The characteristics of urban open space in the city centre play a main role in attracting people to walk when attending their daily needs, recreation and daily sports. There is significant gap in the understanding of perceptions, feasibility and capabilities of Libyan urban space to accommodate enhance or support the smart design of a walkable pedestrian-friendly environment that is safe and accessible to everyone. The paper aims to undertake observations of walkability and walkable space in the city of Tripoli as a benchmark for Libyan cities; assess the validity and consistency of the seven principal aspects of smart design, safety, accessibility and 51 factors that affect the walkability in open urban space in Tripoli, through the analysis of 10 local urban spaces experts (town planner, architect, transport engineer and urban designer); and explore user groups’ perceptions of accessibility in walkable spaces in Libyan cities through questionnaires. The study sampled 200 respondents in 2015-16. The results of this study are useful for urban planning, to classify the walkable urban space elements which affect to improve the level of walkability in the Libyan cities and create sustainable and liveable urban spaces.

Keywords: Walkability, sustainability, liveability, accessibility, safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
4045 Six Sigma-Based Optimization of Shrinkage Accuracy in Injection Molding Processes

Authors: Sky Chou, Joseph C. Chen

Abstract:

This paper focuses on using six sigma methodologies to reach the desired shrinkage of a manufactured high-density polyurethane (HDPE) part produced by the injection molding machine. It presents a case study where the correct shrinkage is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for an injection molding process. To improve this process and keep the product within specifications, the six sigma methodology, design, measure, analyze, improve, and control (DMAIC) approach, was implemented in this study. The six sigma approach was paired with the Taguchi methodology to identify the optimized processing parameters that keep the shrinkage rate within the specifications by our customer. An L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of the cooling time, melt temperature, holding time, and metering stroke. The noise factor is the difference between material brand 1 and material brand 2. After the confirmation run was completed, measurements verify that the new parameter settings are optimal. With the new settings, the process capability index has improved dramatically. The purpose of this study is to show that the six sigma and Taguchi methodology can be efficiently used to determine important factors that will improve the process capability index of the injection molding process.

Keywords: Injection molding, shrinkage, six sigma, Taguchi parameter design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1385
4044 Modeling the Effect of Spacer Orientation on Heat Transfer in Membrane Distillation

Authors: M. Shakaib, M. Ehtesham-ul Haq, I. Ahmed, R.M. Yunus

Abstract:

Computational fluid dynamics (CFD) simulations carried out in this paper show that spacer orientation has a major influence on temperature patterns and on the heat transfer rates. The local heat flux values significantly vary from high to very low values at each filament when spacer touches the membrane surface. The heat flux profile is more uniform when spacer filaments are not in contact with the membrane thus making this arrangement more beneficial. The temperature polarization is also found to be less in this case when compared to the empty channel.

Keywords: heat transfer, membrane distillation, spacer, temperature polarization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
4043 Applications for Accounting of Inherited Object-Oriented Class Members

Authors: Jehad Al Dallal

Abstract:

A class in an Object-Oriented (OO) system is the basic unit of design, and it encapsulates a set of attributes and methods. In OO systems, instead of redefining the attributes and methods that are included in other classes, a class can inherit these attributes and methods and only implement its unique attributes and methods, which results in reducing code redundancy and improving code testability and maintainability. Such mechanism is called Class Inheritance. However, some software engineering applications may require accounting for all the inherited class members (i.e., attributes and methods). This paper explains how to account for inherited class members and discusses the software engineering applications that require such consideration.

Keywords: Object-oriented design, inheritance, internal quality attribute, external quality attribute, class flattening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
4042 Achieving Implementable Nature-Based Solutions While Reshaping Architectural Education: A Case Study of URBiNAT and BUILD Solutions

Authors: C. Farinea, A. Conserva, F. Demeur

Abstract:

Nature has often been something humans have fought against. However, with the changing climate and urban challenges such as air pollution and food shortages, to name but a few, it has never been more crucial to work with nature to find solutions that can help us to adapt to the current planetary situation and mitigate the challenges that we will continue to face in the future. Nature-based solutions (NBS) have been gaining ground as one strategy that can help to create more sustainable solutions for our planet and simultaneously, provide several ecosystem services. As designers, there are a lot of insights that can be extracted and gained from nature. However, nature is a complex and sometimes difficult to predict system and its implementation in cities requires a multidisciplinary knowledge. To keep up with the solutions and prepare the future generations of architects and designers with the skills to be able to implement NBS, educational systems also have to adapt with the times. Architecture is no longer solely about drawing buildings with beautiful forms. It is no longer discipline bound. With the input from different disciplines, the implementation of NBS can be significantly more successful. Transdisciplinary strategies can encourage architects and designers to think beyond their discipline, and ensure the success and realization of the NBS. The paper will demonstrate how transdisciplinary teaching methodologies, including also taking part in participatory processes with experts intended as gathering local knowledge, can be implemented with architectural master students to achieve implementable NBS. Through two projects co-funded by the European Union, strategies such as participatory co-design and transdisciplinary start-ups were implemented into seminars that focused on the development of NBS with a transdisciplinary approach. Within the “Design with Living Systems” seminar, students took part in participatory co-design strategies with experts to design solutions that will be implemented in Porto as part of a healthy corridor, and that respond to the needs of the users and site. On the other hand, within the “Design for Living Systems” seminar, the transdisciplinary start-up approach created start-ups with students of architecture, business and biology focusing on identifying a problem and designing a NBS as a product. Both seminars proved to be successful in achieving implementable NBS through strategies of transdisciplinary education and gave the students the skill sets to be able to work with nature in their future careers.

Keywords: Architectural higher education, digital fabrication, nature-based solutions, transdisciplinary approaches.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 146
4041 Statistical Analysis of First Order Plus Dead-time System using Operational Matrix

Authors: Pham Luu Trung Duong, Moonyong Lee

Abstract:

To increase precision and reliability of automatic control systems, we have to take into account of random factors affecting the control system. Thus, operational matrix technique is used for statistical analysis of first order plus time delay system with uniform random parameter. Examples with deterministic and stochastic disturbance are considered to demonstrate the validity of the method. Comparison with Monte Carlo method is made to show the computational effectiveness of the method.

Keywords: First order plus dead-time, Operational matrix, Statistical analysis, Walsh function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1366
4040 Optimized Multiplier Based upon 6-Input Luts and Vedic Mathematics

Authors: Zulhelmi Zakaria, Shuja A. Abbasi

Abstract:

A new approach has been used for optimized design of multipliers based upon the concepts of Vedic mathematics. The design has been targeted to state-of-the art field-programmable gate arrays (FPGAs). The multiplier generates partial products using Vedic mathematics method by employing basic 4x4 multipliers designed by exploiting 6-input LUTs and multiplexers in the same slices resulting in drastic reduction in area. The multiplier is realized on Xilinx FPGAs using devices Virtex-5 and Virtex-6.Carry Chain Adder was employed to obtain final products. The performance of the proposed multiplier was examined and compared to well-known multipliers such as Booth, Carry Save, Carry ripple, and array multipliers. It is demonstrated that the proposed multiplier is superior in terms of speed as well as power consumption.

Keywords: Multiplier, Vedic Mathematics, LUTs, FPGAs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2924