Search results for: dynamic association
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2274

Search results for: dynamic association

654 A Detection Method of Faults in Railway Pantographs Based on Dynamic Phase Plots

Authors: G. Santamato, M. Solazzi, A. Frisoli

Abstract:

Systems for detection of damages in railway pantographs effectively reduce the cost of maintenance and improve time scheduling. In this paper, we present an approach to design a monitoring tool fitting strong customer requirements such as portability and ease of use. Pantograph has been modeled to estimate its dynamical properties, since no data are available. With the aim to focus on suspensions health, a two Degrees of Freedom (DOF) scheme has been adopted. Parameters have been calculated by means of analytical dynamics. A Finite Element Method (FEM) modal analysis verified the former model with an acceptable error. The detection strategy seeks phase-plots topology alteration, induced by defects. In order to test the suitability of the method, leakage in the dashpot was simulated on the lumped model. Results are interesting because changes in phase plots are more appreciable than frequency-shift. Further calculations as well as experimental tests will support future developments of this smart strategy.

Keywords: Pantograph models, phase-plots, structural health monitoring, vibration-based condition monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
653 A CFD Study of Heat Transfer Enhancement in Pipe Flow with Al2O3 Nanofluid

Authors: P.Kumar

Abstract:

Fluids are used for heat transfer in many engineering equipments. Water, ethylene glycol and propylene glycol are some of the common heat transfer fluids. Over the years, in an attempt to reduce the size of the equipment and/or efficiency of the process, various techniques have been employed to improve the heat transfer rate of these fluids. Surface modification, use of inserts and increased fluid velocity are some examples of heat transfer enhancement techniques. Addition of milli or micro sized particles to the heat transfer fluid is another way of improving heat transfer rate. Though this looks simple, this method has practical problems such as high pressure loss, clogging and erosion of the material of construction. These problems can be overcome by using nanofluids, which is a dispersion of nanosized particles in a base fluid. Nanoparticles increase the thermal conductivity of the base fluid manifold which in turn increases the heat transfer rate. In this work, the heat transfer enhancement using aluminium oxide nanofluid has been studied by computational fluid dynamic modeling of the nanofluid flow adopting the single phase approach.

Keywords: Heat transfer intensification, nanofluid, CFD, friction factor

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3796
652 Functionally Graded MEMS Piezoelectric Energy Harvester with Magnetic Tip Mass

Authors: M. Derayatifar, M. Packirisamy, R.B. Bhat

Abstract:

Role of piezoelectric energy harvesters has gained interest in supplying power for micro devices such as health monitoring sensors. In this study, in order to enhance the piezoelectric energy harvesting in capturing energy from broader range of excitation and to improve the mechanical and electrical responses, bimorph piezoelectric energy harvester beam with magnetic mass attached at the end is presented. In view of overcoming the brittleness of piezo-ceramics, functionally graded piezoelectric layers comprising of both piezo-ceramic and piezo-polymer is employed. The nonlinear equations of motions are derived using energy method and then solved analytically using perturbation scheme. The frequency responses of the forced vibration case are obtained for the near resonance case. The nonlinear dynamic responses of the MEMS scaled functionally graded piezoelectric energy harvester in this paper may be utilized in different design scenarios to increase the efficiency of the harvester.

Keywords: Energy harvesting, functionally graded piezoelectric material, magnetic force, MEMS piezoelectric, perturbation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 910
651 A Quality Optimization Approach: An Application on Next Generation Networks

Authors: Gülfem I. Alptekin, S. Emre Alptekin

Abstract:

The next generation wireless systems, especially the cognitive radio networks aim at utilizing network resources more efficiently. They share a wide range of available spectrum in an opportunistic manner. In this paper, we propose a quality management model for short-term sub-lease of unutilized spectrum bands to different service providers. We built our model on competitive secondary market architecture. To establish the necessary conditions for convergent behavior, we utilize techniques from game theory. Our proposed model is based on potential game approach that is suitable for systems with dynamic decision making. The Nash equilibrium point tells the spectrum holders the ideal price values where profit is maximized at the highest level of customer satisfaction. Our numerical results show that the price decisions of the network providers depend on the price and QoS of their own bands as well as the prices and QoS levels of their opponents- bands.

Keywords: cognitive radio networks, game theory, nextgeneration wireless networks, spectrum management.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1512
650 A Lagrangian Hamiltonian Computational Method for Hyper-Elastic Structural Dynamics

Authors: Hosein Falahaty, Hitoshi Gotoh, Abbas Khayyer

Abstract:

Performance of a Hamiltonian based particle method in simulation of nonlinear structural dynamics is subjected to investigation in terms of stability and accuracy. The governing equation of motion is derived based on Hamilton's principle of least action, while the deformation gradient is obtained according to Weighted Least Square method. The hyper-elasticity models of Saint Venant-Kirchhoff and a compressible version similar to Mooney- Rivlin are engaged for the calculation of second Piola-Kirchhoff stress tensor, respectively. Stability along with accuracy of numerical model is verified by reproducing critical stress fields in static and dynamic responses. As the results, although performance of Hamiltonian based model is evaluated as being acceptable in dealing with intense extensional stress fields, however kinds of instabilities reveal in the case of violent collision which can be most likely attributed to zero energy singular modes.

Keywords: Hamilton's principle of least action, particle based method, hyper-elasticity, analysis of stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1670
649 The Effect of Gross Vehicle Weight on the Stability of Heavy Vehicle during Cornering

Authors: Nurzaki Ikhsan, Ahmad Saifizul Abdullah, Rahizar Ramli

Abstract:

One of the functions of the commercial heavy vehicle is to safely and efficiently transport goods and people. Due to its size and carrying capacity, it is important to study the vehicle dynamic stability during cornering. Study has shown that there are a number of overloaded heavy vehicles or permissible Gross Vehicle Weight (GVW) violations recorded at selected areas in Malaysia assigned by its type and category. Thus, the objective of this study is to investigate the correlation and effect of the GVW on heavy vehicle stability during cornering event using simulation. Various selected heavy vehicle types and category are simulated using IPG/Truck Maker® with different GVW and road condition (coefficient of friction of road surface), while the speed, driver characteristic, center of gravity of load and road geometry are constant. Based on the analysis, the relationship between GVW and lateral acceleration were established. As expected, on the same value of coefficient of friction, the maximum lateral acceleration would be increased as the GVW increases.

Keywords: Heavy Vehicle, Road Safety, Vehicle Stability, Lateral Acceleration, Gross Vehicle Weight.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3090
648 Theoretical Study on the Forced Vibration of One Degree of Freedom System, Equipped with Inerter, under Load-Type or Displacement-Type Excitation

Authors: Barenten Suciu

Abstract:

In this paper, a theoretical study on the forced vibration of one degree of freedom system equipped with inerter, working under load-type or displacement-type excitation, is presented. Differential equations of movement are solved under cosinusoidal excitation, and explicit relations for the magnitude, resonant magnitude, phase angle, resonant frequency, and critical frequency are obtained. Influence of the inertance and damping on these dynamic characteristics is clarified. From the obtained results, one concludes that the inerter increases the magnitude of vibration and the phase angle of the damped mechanical system. Moreover, the magnitude ratio and difference of phase angles are not depending on the actual type of excitation. Consequently, such kind of similitude allows for the comparison of various theoretical and experimental results, which can be broadly found in the literature.

Keywords: One degree of freedom vibration, inerter, parallel connection, load-type excitation, displacement-type excitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 867
647 Prediction of California Bearing Ratio from Physical Properties of Fine-Grained Soils

Authors: Bao Thach Nguyen, Abbas Mohajerani

Abstract:

The California Bearing Ratio (CBR) has been acknowledged as an important parameter to characterize the bearing capacity of earth structures, such as earth dams, road embankments, airport runways, bridge abutments and pavements. Technically, the CBR test can be carried out in the laboratory or in the field. The CBR test is time-consuming and is infrequently performed due to the equipment needed and the fact that the field moisture content keeps changing over time. Over the years, many correlations have been developed for the prediction of CBR by various researchers, including the dynamic cone penetrometer, undrained shear strength and Clegg impact hammer. This paper reports and discusses some of the results from a study on the prediction of CBR. In the current study, the CBR test was performed in the laboratory on some finegrained subgrade soils collected from various locations in Victoria. Based on the test results, a satisfactory empirical correlation was found between the CBR and the physical properties of the experimental soils.

Keywords: California bearing ratio, fine-grained soils, pavement, soil physical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6615
646 Enhance the Modeling of BLDC Motor Based on Fuzzy Logic

Authors: Murugan Marimuthu, Jeyabharath Rajaih

Abstract:

This paper describes a simple way to control the speed of PMBLDC motor using Fuzzy logic control method. In the conventional PI controller the performance of the motor system is simulated and the speed is regulated by using PI controller. These methods used to improve the performance of PMSM drives, but in some cases at different operating conditions when the dynamics of the system also vary over time and it can change the reference speed, parameter variations and the load disturbance. The simulation is powered with the MATLAB program to get a reliable and flexible simulation. In order to highlight the effectiveness of the speed control method the FLC method is used. The proposed method targeted in achieving the improved dynamic performance and avoids the variations of the motor drive. This drive has high accuracy, robust operation from near zero to high speed. The effectiveness and flexibility of the individual techniques of the speed control method will be thoroughly discussed for merits and demerits and finally verified through simulation and experimental results for comparative analysis.

Keywords: Hall position sensors, permanent magnet brushless DC motor, PI controller, Fuzzy Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1785
645 Computational Approaches for Ballistic Impact Response of Stainless Steel 304

Authors: A. Mostafa

Abstract:

This paper presents a numerical study on determination of ballistic limit velocity (V50) of stainless steel 304 (SS 304) used in manufacturing security screens. The simulated ballistic impact tests were conducted on clamped sheets with different thicknesses using ABAQUS/Explicit nonlinear finite element (FE) package. The ballistic limit velocity was determined using three approaches, namely: numerical tests based on material properties, FE calculated residual velocities and FE calculated residual energies. Johnson-Cook plasticity and failure criterion were utilized to simulate the dynamic behaviour of the SS 304 under various strain rates, while the well-known Lambert-Jonas equation was used for the data regression for the residual velocity and energy model. Good agreement between the investigated numerical methods was achieved. Additionally, the dependence of the ballistic limit velocity on the sheet thickness was observed. The proposed approaches present viable and cost-effective assessment methods of the ballistic performance of SS 304, which will support the development of robust security screen systems.

Keywords: Ballistic velocity, stainless steel, numerical approaches, security screen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 663
644 Modeling and Simulating Human Arm Movement Using a 2 Dimensional 3 Segments Coupled Pendulum System

Authors: Loay A. Al-Zu'be, Asma A. Al-Tamimi, Thakir D. Al-Momani, Ayat J. Alkarala, Maryam A. Alzawahreh

Abstract:

A two dimensional three segments coupled pendulum system that mathematically models human arm configuration was developed along with constructing and solving the equations of motions for this model using the energy (work) based approach of Lagrange. The equations of motion of the model were solved iteratively both as an initial value problem and as a two point boundary value problem. In the initial value problem solutions, both the initial system configuration (segment angles) and initial system velocity (segment angular velocities) were used as inputs, whereas, in the two point boundary value problem solutions initial and final configurations and time were used as inputs to solve for the trajectory of motion. The results suggest that the model solutions are sensitive to small changes in the dynamic forces applied to the system as well as to the initial and boundary conditions used. To overcome the system sensitivity a new approach is suggested.

Keywords: Body Configurations, Equations of Motion, Mathematical Modeling, Movement Trajectories.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2157
643 Driver Fatigue State Recognition with Pixel Based Caveat Scheme Using Eye-Tracking

Authors: K. Thulasimani, K. G. Srinivasagan

Abstract:

Driver fatigue is an important factor in the increasing number of road accidents. Dynamic template matching method was proposed to address the problem of real-time driver fatigue detection system based on eye-tracking. An effective vision based approach was used to analyze the driver’s eye state to detect fatigue. The driver fatigue system consists of Face detection, Eye detection, Eye tracking, and Fatigue detection. Initially frames are captured from a color video in a car dashboard and transformed from RGB into YCbCr color space to detect the driver’s face. Canny edge operator was used to estimating the eye region and the locations of eyes are extracted. The extracted eyes were considered as a template matching for eye tracking. Edge Map Overlapping (EMO) and Edge Pixel Count (EPC) matching function were used for eye tracking which is used to improve the matching accuracy. The pixel of eyeball was tracked from the eye regions which are used to determine the fatigue state of the driver.

Keywords: Driver fatigue detection, Driving safety, Eye tracking, Intelligent transportation system, Template matching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1727
642 Dynamical Characteristics of Interaction between Water Droplet and Aerosol Particle in Dedusting Technology

Authors: Ding Jue, Li Jiahua, Lei Zhidi, Weng Peifen, Li Xiaowei

Abstract:

With the rapid development of national modern industry, people begin to pay attention to environmental pollution and harm caused by industrial dust. Based on above, a numerical study on the dedusting technology of industrial environment was conducted. The dynamic models of multicomponent particles collision and coagulation, breakage and deposition are developed, and the interaction of water droplet and aerosol particle in 2-Dimension flow field was researched by Eulerian-Lagrangian method and Multi-Monte Carlo method. The effects of the droplet scale, movement speed of droplet and the flow field structure on scavenging efficiency were analyzed. The results show that under the certain condition, 30μm of droplet has the best scavenging efficiency. At the initial speed 1m/s of droplets, droplets and aerosol particles have more time to interact, so it has a better scavenging efficiency for the particle.

Keywords: Water droplet, aerosol particle, collision and coagulation, multi-Monte Carlo method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 878
641 Energy Efficient Clustering Algorithm with Global and Local Re-clustering for Wireless Sensor Networks

Authors: Ashanie Guanathillake, Kithsiri Samarasinghe

Abstract:

Wireless Sensor Networks consist of inexpensive, low power sensor nodes deployed to monitor the environment and collect data. Gathering information in an energy efficient manner is a critical aspect to prolong the network lifetime. Clustering  algorithms have an advantage of enhancing the network lifetime. Current clustering algorithms usually focus on global re-clustering and local re-clustering separately. This paper, proposed a combination of those two reclustering methods to reduce the energy consumption of the network. Furthermore, the proposed algorithm can apply to homogeneous as well as heterogeneous wireless sensor networks. In addition, the cluster head rotation happens, only when its energy drops below a dynamic threshold value computed by the algorithm. The simulation result shows that the proposed algorithm prolong the network lifetime compared to existing algorithms.

Keywords: Energy efficient, Global re-clustering, Local re-clustering, Wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2370
640 Modeling and Analysis of a Cycling Prosthetic

Authors: John Tolentino, Yong Seok Park

Abstract:

There are currently many people living with limb loss in the USA. The main causes for amputation can range from vascular disease, to trauma, or cancer. This number is expected increase over the next decade. Many patients have a single prosthetic for the first year but end up getting a second one to accommodate their changing physique. Afterwards, the prosthesis gets replaced every three to five years depending on how often it is used. This could cost the patient up to $500,000 throughout their lifetime. Complications do not end there, however. Due to the absence of nerves, it becomes more difficult to traverse terrain with a prosthetic. Moving on an incline or decline becomes difficult, thus curbs and stairs can be a challenge. Certain physical activities, such as cycling, could be even more strenuous. It will need to be relearned to accommodate for the change in weight, center of gravity, and transfer of energy from the leg to the pedal. The purpose of this research project is to develop a new, alternate below-knee cycling prosthetic using Dieter & Schmidt’s design process approach. It will be subjected to fatigue analysis under dynamic loading to observe the limitations as well as the strengths and weaknesses of the prosthetic. Benchmark comparisons will be made between existing prosthetics and the proposed one, examining the benefits and disadvantages. The resulting prosthetic will be 3D printed using acrylonitrile butadiene styrene (ABS) or polycarbonate (PC) plastic.

Keywords: 3D printing, cycling, prosthetic design, synthetic design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 624
639 A Value-Oriented Metamodel for Small and Medium Enterprises’ Decision Making

Authors: Romain Ben Taleb, Aurélie Montarnal, Matthieu Lauras, Mathieu Dahan, Romain Miclo

Abstract:

To be competitive and sustainable, any company has to maximize its value. However, unlike listed companies that can assess their values based on market shares, most Small and Medium Enterprises (SMEs) which are non-listed cannot have direct and live access to this critical information. Traditional accounting reports only give limited insights to SME decision-makers about the real impact of their day-to-day decisions on the company’s performance and value. Most of the time, an SME’s financial valuation is made one time a year as the associated process is time and resource-consuming, requiring several months and external expertise to be completed. To solve this issue, we propose in this paper a value-oriented metamodel that enables real-time and dynamic assessment of the SME’s value based on the large definition of their assets. These assets cover a wider scope of resources of the company and better account for immaterial assets. The proposal, which is illustrated in a case study, discusses the benefits of incorporating assets in the SME valuation.

Keywords: SME, metamodel, decision support system, financial valuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 442
638 Seismic Excitation of Steel Frame Retrofitted by a Multi-Panel PMC Infill Wall

Authors: Bu Seog Ju, Woo Young Jung

Abstract:

A multi-panel PMC infilled system, using polymer matrix composite (PMC) material, was introduced as new conceptual design for seismic retrofitting. A proposed multi panel PMC infilled system was composed of two basic structural components: inner PMC sandwich infills and outer FRP damping panels. The PMC material had high stiffness-to-weight and strength-to-weight ratios. Therefore, the addition of PMC infill panels into existing structures would not significantly alter the weight of the structure, while providing substantial structural enhancement.

In this study, an equivalent linearized dynamic analysis for a proposed multi-panel PMC infilled frame was performed, in order to assess their effectiveness and their responses under the simulated earthquake loading. Upon comparing undamped (without PMC panel) and damped (with PMC panel) structures, numerical results showed that structural damping with passive interface damping layer could significantly enhance the seismic response.

Keywords: Polymer Matrix Composite (PMC), Panel, Piece-wise linear, Earthquake, FRP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2331
637 Seismic Fragility Curves for Shallow Circular Tunnels under Different Soil Conditions

Authors: Siti Khadijah Che Osmi, Syed Mohd Ahmad

Abstract:

This paper presents a methodology to develop fragility curves for shallow tunnels so as to describe a relationship between seismic hazard and tunnel vulnerability. Emphasis is given to the influence of surrounding soil material properties because the dynamic behaviour of the tunnel mostly depends on it. Four ground properties of soils ranging from stiff to soft soils are selected. A 3D nonlinear time history analysis is used to evaluate the seismic response of the tunnel when subjected to five real earthquake ground intensities. The derived curves show the future probabilistic performance of the tunnels based on the predicted level of damage states corresponding to the peak ground acceleration. A comparison of the obtained results with the previous literature is provided to validate the reliability of the proposed fragility curves. Results show the significant role of soil properties and input motions in evaluating the seismic performance and response of shallow tunnels.

Keywords: Fragility analysis, seismic performance, tunnel lining, vulnerability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1390
636 Study of Mixed Convection in a Vertical Channel Filled with a Reactive Porous Medium in the Absence of Local Thermal Equilibrium

Authors: Hamid Maidat, Khedidja Bouhadef, Djamel Eddine Ameziani, Azzedine Abdedou

Abstract:

This work consists of a numerical simulation of convective heat transfer in a vertical plane channel filled with a heat generating porous medium, in the absence of local thermal equilibrium. The walls are maintained to a constant temperature and the inlet velocity is uniform. The dynamic range is described by the Darcy-Brinkman model and the thermal field by two energy equations model. A dimensionless formulation is developed for performing a parametric study based on certain dimensionless groups such as, the Biot interstitial number, the thermal conductivity ratio and the volumetric heat generation, q '''. The governing equations are solved using the finite volume method, gave rise to a multitude of results concerning in particular the thermal field in the porous channel and the existence or not of the local thermal equilibrium.

Keywords: Mixed convection, porous medium, power generation, local thermal non equilibrium model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
635 Heat and Mass Transfer in a Solar Dryer with Biomass Backup Burner

Authors: Andrew R.H. Rigit, Patrick T.K. Low

Abstract:

Majority of pepper farmers in Malaysia are using the open-sun method for drying the pepper berries. This method is time consuming and exposed the berries to rain and contamination. A maintenance-friendly and properly enclosed dryer is therefore desired. A dryer design with a solar collector and a chimney was studied and adapted to suit the needs of small-scale pepper farmers in Malaysia. The dryer will provide an environment with an optimum operating temperature meant for drying pepper berries. The dryer model was evaluated by using commercially available computational fluid dynamic (CFD) software in order to understand the heat and mass transfer inside the dryer. Natural convection was the only mode of heat transportation considered in this study as in accordance to the idea of having a simple and maintenance-friendly design. To accommodate the effect of low buoyancy found in natural convection driers, a biomass burner was integrated into the solar dryer design.

Keywords: Computational fluid dynamics, heat and masstransfer, solar dryer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3664
634 Modified PSO Based Optimal Control for Maximizing Benefits of Distributed Generation System

Authors: Priyanka Sen, Kaibalya Prasad Panda, Soumyakanta Samantaray, Sreyasee Rout, Bishnupriya Biswal

Abstract:

Deregulation in the power system industry and the invention of new technologies for producing electrical energy has led to innovations in power system planning. Distributed generation (DG) is one of the most attractive technologies that bring different kinds of advantages to a lot of entities, engaged in power systems. In this paper, a model for considering DGs in the power system planning problem is presented. Dynamic power system planning for reduction of maintenance and operational cost is presented in this paper. In addition to that, a modified particle swarm optimization (PSO) is used to find the optimal topology solution. Voltage Profile Improvement Index (VPII) and Line Loss Reduction Index (LLRI) are taken as benefit index of employing DG. The effectiveness of this method is demonstrated through examination of IEEE 30 bus test system.

Keywords: Distributed generation, line loss reduction index, particle swarm optimization, power system, voltage profile improvement index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 913
633 MIMO System Order Reduction Using Real-Coded Genetic Algorithm

Authors: Swadhin Ku. Mishra, Sidhartha Panda, Simanchala Padhy, C. Ardil

Abstract:

In this paper, real-coded genetic algorithm (RCGA) optimization technique has been applied for large-scale linear dynamic multi-input-multi-output (MIMO) system. The method is based on error minimization technique where the integral square error between the transient responses of original and reduced order models has been minimized by RCGA. The reduction procedure is simple computer oriented and the approach is comparable in quality with the other well-known reduction techniques. Also, the proposed method guarantees stability of the reduced model if the original high-order MIMO system is stable. The proposed approach of MIMO system order reduction is illustrated with the help of an example and the results are compared with the recently published other well-known reduction techniques to show its superiority.

Keywords: Multi-input-multi-output (MIMO) system.Modelorder reduction. Integral squared error (ISE). Real-coded geneticalgorithm

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2262
632 Optimization of Car Seat Considering Whiplash Injury

Authors: Wookyung Baik, Seungchan Lee, Choongmin Jeong, Siwoo Kim, Myungwon Suh

Abstract:

Development of motor car safety devices has reduced fatality rates in car accidents. Yet despite this increase in car safety, neck injuries resulting from rear impact collisions, particularly at low speed, remain a primary concern. In this study, FEA(Finite Element Analysis) of seat was performed to evaluate neck injuries in rear impact. And the FEA result was verified by comparison with the actual test results. The dummy used in FE model and actual test is BioRID II which is regarded suitable for rear impact collision analysis. A threshold of the BioRID II neck injury indicators was also proposed to upgrade seat performance in order to reduce whiplash injury. To optimize the seat for a low-speed rear impact collision, a method was proposed, which is multi-objective optimization idea using DOE (Design of Experiments) results.

Keywords: Whiplash injury, Dynamic assessment, Finite element method, Optimization, DOE (Design of Experiments), WSM (Weighed Sum Method).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
631 Blood Cell Dynamics in a Simple Shear Flow using an Implicit Fluid-Structure Interaction Method Based on the ALE Approach

Authors: Choeng-Ryul Choi, Chang-Nyung Kim, Tae-Hyub Hong

Abstract:

A numerical method is developed for simulating the motion of particles with arbitrary shapes in an effectively infinite or bounded viscous flow. The particle translational and angular motions are numerically investigated using a fluid-structure interaction (FSI) method based on the Arbitrary-Lagrangian-Eulerian (ALE) approach and the dynamic mesh method (smoothing and remeshing) in FLUENT ( ANSYS Inc., USA). Also, the effects of arbitrary shapes on the dynamics are studied using the FSI method which could be applied to the motions and deformations of a single blood cell and multiple blood cells, and the primary thrombogenesis caused by platelet aggregation. It is expected that, combined with a sophisticated large-scale computational technique, the simulation method will be useful for understanding the overall properties of blood flow from blood cellular level (microscopic) to the resulting rheological properties of blood as a mass (macroscopic).

Keywords: Blood Flow, Fluid-Structure Interaction (FSI), Micro-Channels, Arbitrary Shapes, Red Blood Cells (RBCs)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2310
630 Software-Defined Radio Based Channel Measurement System of Wideband HF Communication System in Low-Latitude Region

Authors: P. H. Mukti, I. Kurniawati, F. Oktaviansyah, A. D. Adhitya, N. Rachmadani, R. Corputty, G. Hendrantoro, T. Fukusako

Abstract:

HF Communication system is one of the attractive fields among many researchers since it can be reached long-distance areas with low-cost. This long-distance communication can be achieved by exploiting the ionosphere as a transmission medium for the HF radio wave. However, due to the dynamic nature of ionosphere, the channel characteristic of HF communication has to be investigated in order to gives better performances. Many techniques to characterize HF channel are available in the literature. However, none of those techniques describe the HF channel characteristic in low-latitude regions, especially equatorial areas. Since the ionosphere around equatorial region has an ESF phenomenon, it becomes an important investigation to characterize the wideband HF Channel in low-latitude region. On the other sides, the appearance of software-defined radio attracts the interest of many researchers. Accordingly, in this paper a SDR-based channel measurement system is proposed to be used for characterizing the HF channel in low-latitude region.

Keywords: Channel Characteristic, HF Communication System, LabVIEW, Software-Defined Radio, Universal Software Radio Pheripheral.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3009
629 Forced Vibration of a Planar Curved Beam on Pasternak Foundation

Authors: Akif Kutlu, Merve Ermis, Nihal Eratlı, Mehmet H. Omurtag

Abstract:

The objective of this study is to investigate the forced vibration analysis of a planar curved beam lying on elastic foundation by using the mixed finite element method. The finite element formulation is based on the Timoshenko beam theory. In order to solve the problems in frequency domain, the element matrices of two nodded curvilinear elements are transformed into Laplace space. The results are transformed back to the time domain by the well-known numerical Modified Durbin’s transformation algorithm. First, the presented finite element formulation is verified through the forced vibration analysis of a planar curved Timoshenko beam resting on Winkler foundation and the finite element results are compared with the results available in the literature. Then, the forced vibration analysis of a planar curved beam resting on Winkler-Pasternak foundation is conducted.

Keywords: Curved beam, dynamic analysis, elastic foundation, finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1089
628 Simulating Laboratory Short Term Aging to Suit Malaysian Field Conditions

Authors: Meor O. Hamzah, Seyed R. Omranian, Ali Jamshidi, Mohd R M. Hasan

Abstract:

This paper characterizes the effects of artificial short term aging in the laboratory on the rheological properties of virgin 80/100 penetration grade asphalt binder. After several years in service, asphalt mixture started to deteriorate due to aging. Aging is a complex physico-chemical phenomenon that influences asphalt binder rheological properties causing a deterioration in asphalt mixture performance. To ascertain asphalt binder aging effects, the virgin, artificially aged and extracted asphalt binder were tested via the Rolling Thin film Oven (RTFO), Dynamic Shear Rheometer (DSR) and Rotational Viscometer (RV). A comparative study between laboratory and field aging conditions were also carried out. The results showed that the specimens conditioned for 85 minutes inside the RTFO was insufficient to simulate the actual short term aging caused that took place in the field under Malaysian field conditions

Keywords: Asphalt binder, Short term aging, Rheological properties, Viscosity, Temperature susceptibility.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2527
627 Generalized d-q Model of n-Phase Induction Motor Drive

Authors: G. Renukadevi, K. Rajambal

Abstract:

This paper presents a generalized d-q model of n- phase induction motor drive. Multi -phase (n-phase) induction motor (more than three phases) drives possess several advantages over conventional three-phase drives, such as reduced current/phase without increasing voltage/phase, lower torque pulsation, higher torque density, fault tolerance, stability, high efficiency and lower current ripple. When the number of phases increases, it is also possible to increase the power in the same frame. In this paper, a generalized dq-axis model is developed in Matlab/Simulink for an n-phase induction motor. The simulation results are presented for 5, 6, 7, 9 and 12 phase induction motor under varying load conditions. Transient response of the multi-phase induction motors are given for different number of phases. Fault tolerant feature is also analyzed for 5-phase induction motor drive.

Keywords: d-q model, dynamic Response, fault tolerant feature, Matlab/Simulink, multi-phase induction motor, transient response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10560
626 Study of Stress Wave Propagation with NHDMOC

Authors: G.Y. Zhang , M.L. Xu, R.Q. Zhang, W.H. Tang

Abstract:

MOC (method of cell) is a new method of investigating wave propagating in material with periodic microstructure, and can reflect the effect of microstructure. Wave propagation in periodically laminated medium consisting of linearly elastic layers can be treated as a special application of this method. In this paper, it was used to simulate the dynamic response of carbon-phenolic to impulsive loading under certain boundary conditions. From the comparison between the results obtained from this method and the exact results based on propagator matrix theory, excellent agreement is achieved. Conclusion can be made that the oscillation periodicity is decided by the thickness of sub-cells. In the end, the NHDMOC method, which permits studying stress wave propagation with one dimensional strain, was applied to study the one-dimensional stress wave propagation. In this paper, the ZWT nonlinear visco-elastic constitutive relationship with 7 parameters, NHDMOC, and corresponding equations were deduced. The equations were verified, comparing the elastic stress wave propagation in SHPB with, respectively, the elastic and the visco-elastic bar. Finally the dispersion and attenuation of stress wave in SHPB with visco-elastic bar was studied.

Keywords: MOC, NHDMOC, visco-elastic, wave propagation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
625 Vibration Attenuation in Layered and Welded Beams with Unequal Thickness

Authors: B. Singh, K. K. Agrawal, B. K. Nanda

Abstract:

In built-up structures, one of the effective ways of dissipating unwanted vibration is to exploit the occurrence of slip at the interfaces of structural laminates. The present work focuses on the dynamic analysis of welded structures. A mathematical formulation has been developed for the mechanism of slip damping in layered and welded mild steel beams with unequal thickness subjected to both periodic and non-periodic forces. It is observed that a number of vital parameters such as; thickness ratio, pressure distribution characteristics, relative slip and kinematic co-efficient of friction at the interfaces, nature of exciting forces, length and thickness of the beam specimen govern the damping characteristics of these structures. Experimental verification has been carried out to validate the analysis and study the effect of these parameters. The developed damping model for the structure is found to be in fairly good agreement with the measured data. Finally, the results of the analysis are discussed and rationalized.

Keywords: Slip damping, tack welded joint, thickness ratio, inplane bending stress

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494