Search results for: Energy Optimization
2894 Study of Crashworthiness Behavior of Thin-Walled Tube under Axial Loading by Using Computational Mechanics
Authors: M. Kamal M. Shah, Noorhifiantylaily Ahmad, O. Irma Wani, J. Sahari
Abstract:
This paper presents the computationally mechanics analysis of energy absorption for cylindrical and square thin wall tubed structure by using ABAQUS/explicit. The crashworthiness behavior of AISI 1020 mild steel thin-walled tube under axial loading has been studied. The influence effects of different model’s cross-section, as well as model length on the crashworthiness behavior of thin-walled tube, are investigated. The model was placed on loading platform under axial loading with impact velocity of 5 m/s to obtain the deformation results of each model under quasi-static loading. The results showed that model undergoes different deformation mode exhibits different energy absorption performance.
Keywords: Axial loading, energy absorption performance, computational mechanics, crashworthiness behavior, deformation mode, thin-walled tubes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11582893 Performance Analysis of Polycrystalline and Monocrystalline Solar Module in Dhaka, Bangladesh
Authors: N. J. Imu, N. Rabbani, Md E. Hossain
Abstract:
Achieving national climate goals requires transforming the energy system and increasing the use of renewable energy in Bangladesh as renewable energy offers an environmentally friendly energy supply. In view of this, Bangladesh has set a goal of 100% renewable power generation by 2050. Among all the renewable energy, solar is the most effective and popular source of renewable energy in Bangladesh. In order to build up on-grid and off-grid solar systems to increase energy transformation, monocrystalline type (highly efficient) solar module, and the polycrystalline type (low-efficient) solar module are commonly used. Due to their low price and availability, polycrystalline-type solar modules dominated the local market in the past years. However, in recent times the use of monocrystalline types modules has increased considerably owing to the significant decrease in price difference that existed between these two modules. Despite the deployment of both mono- and poly-crystalline modules in the market, the proliferation of low-quality solar panels are dominating the market resulting in reduced generation of solar electricity than expected. This situation is further aggravated by insufficient information regarding the effect of solar irradiation on solar module performance in relation to the quality of the materials used for the production of the module. This research aims to evaluate the efficiency of monocrystalline and polycrystalline solar modules that are available in Bangladesh by considering seasonal variations. Both types of solar modules have been tested for three different capacities 45W, 60W, and 100W in Dhaka regions to evaluate their power generation capability under Standard Test Conditions (STC). Module testing data were recorded twelve months in a full year from January to December. Data for solar irradiation were collected using HT304N while HT I-V400 multifunction instrument was used for testing voltage and current of photovoltaic (PV) systems and complete power quality analyzer. Results obtained in this study indicated differences between the efficiencies of polycrystalline and monocrystalline solar modules under the country’s solar irradiation. The average efficiencies of 45W, 60W, and 100W monocrystalline solar panels were recorded as 11.73%, 13.41%, and 15.37% respectively while for polycrystalline panels were 8.66%, 9.37%, and 12.34%. Monocrystalline solar panels, which offer greater working output than polycrystalline ones, are also represented by the Pearson Correlation value. The output of polycrystalline solar panels fluctuated highly with the changes in irradiation and temperature whereas monocrystalline panels were much stable.
Keywords: Solar energy, solar irradiation, efficiency, polycrystalline solar module, monocrystalline solar module, SPSS analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612892 System Identification with General Dynamic Neural Networks and Network Pruning
Authors: Christian Endisch, Christoph Hackl, Dierk Schröder
Abstract:
This paper presents an exact pruning algorithm with adaptive pruning interval for general dynamic neural networks (GDNN). GDNNs are artificial neural networks with internal dynamics. All layers have feedback connections with time delays to the same and to all other layers. The structure of the plant is unknown, so the identification process is started with a larger network architecture than necessary. During parameter optimization with the Levenberg- Marquardt (LM) algorithm irrelevant weights of the dynamic neural network are deleted in order to find a model for the plant as simple as possible. The weights to be pruned are found by direct evaluation of the training data within a sliding time window. The influence of pruning on the identification system depends on the network architecture at pruning time and the selected weight to be deleted. As the architecture of the model is changed drastically during the identification and pruning process, it is suggested to adapt the pruning interval online. Two system identification examples show the architecture selection ability of the proposed pruning approach.Keywords: System identification, dynamic neural network, recurrentneural network, GDNN, optimization, Levenberg Marquardt, realtime recurrent learning, network pruning, quasi-online learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19372891 Optimization of Conditions for Xanthan Gum Production from Waste Date in Submerged Fermantation
Authors: S. Moshaf, Z. Hamidi-Esfahani, M. H. Azizi
Abstract:
Xanthan gum is one of the major commercial biopolymers. Due to its excellent rheological properties xanthan gum is used in many applications, mainly in food industry. Commercial production of xanthan gum uses glucose as the carbon substrate; consequently the price of xanthan production is high. One of the ways to decrease xanthan price, is using cheaper substrate like agricultural wastes. Iran is one of the biggest date producer countries. However approximately 50% of date production is wasted annually. The goal of this study is to produce xanthan gum from waste date using Xanthomonas campestris PTCC1473 by submerged fermentation. In this study the effect of three variables including phosphor and nitrogen amount and agitation rate in three levels using response surface methodology (RSM) has been studied. Results achieved from statistical analysis Design Expert 7.0.0 software showed that xanthan increased with increasing level of phosphor. Low level of nitrogen leaded to higher xanthan production. Xanthan amount, increasing agitation had positive influence. The statistical model identified the optimum conditions nitrogen amount=3.15g/l, phosphor amount=5.03 g/l and agitation=394.8 rpm for xanthan. To model validation, experiments in optimum conditions for xanthan gum were carried out. The mean of result for xanthan was 6.72±0.26. The result was closed to the predicted value by using RSM.Keywords: Optimization, RSM, Waste date, Xanthan gum, Xanthomonas Campestris
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26112890 Comparative Analysis of the Third Generation of Research Data for Evaluation of Solar Energy Potential
Authors: Claudineia Brazil, Elison Eduardo Jardim Bierhals, Luciane Teresa Salvi, Rafael Haag
Abstract:
Renewable energy sources are dependent on climatic variability, so for adequate energy planning, observations of the meteorological variables are required, preferably representing long-period series. Despite the scientific and technological advances that meteorological measurement systems have undergone in the last decades, there is still a considerable lack of meteorological observations that form series of long periods. The reanalysis is a system of assimilation of data prepared using general atmospheric circulation models, based on the combination of data collected at surface stations, ocean buoys, satellites and radiosondes, allowing the production of long period data, for a wide gamma. The third generation of reanalysis data emerged in 2010, among them is the Climate Forecast System Reanalysis (CFSR) developed by the National Centers for Environmental Prediction (NCEP), these data have a spatial resolution of 0.50 x 0.50. In order to overcome these difficulties, it aims to evaluate the performance of solar radiation estimation through alternative data bases, such as data from Reanalysis and from meteorological satellites that satisfactorily meet the absence of observations of solar radiation at global and/or regional level. The results of the analysis of the solar radiation data indicated that the reanalysis data of the CFSR model presented a good performance in relation to the observed data, with determination coefficient around 0.90. Therefore, it is concluded that these data have the potential to be used as an alternative source in locations with no seasons or long series of solar radiation, important for the evaluation of solar energy potential.
Keywords: Climate, reanalysis, renewable energy, solar radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9062889 Two-Channels Thermal Energy Storage Tank: Experiments and Short-Cut Modelling
Authors: M. Capocelli, A. Caputo, M. De Falco, D. Mazzei, V. Piemonte
Abstract:
This paper presents the experimental results and the related modeling of a thermal energy storage (TES) facility, ideated and realized by ENEA and realizing the thermocline with an innovative geometry. Firstly, the thermal energy exchange model of an equivalent shell & tube heat exchanger is described and tested to reproduce the performance of the spiral exchanger installed in the TES. Through the regression of the experimental data, a first-order thermocline model was also validated to provide an analytical function of the thermocline, useful for the performance evaluation and the comparison with other systems and implementation in simulations of integrated systems (e.g. power plants). The experimental data obtained from the plant start-up and the short-cut modeling of the system can be useful for the process analysis, for the scale-up of the thermal storage system and to investigate the feasibility of its implementation in actual case-studies.Keywords: Thermocline, modelling, heat exchange, spiral, shell, tube.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9252888 Experimental Analysis of the Influence of Water Mass Flow Rate on the Performance of a CO2 Direct-Expansion Solar Assisted Heat Pump
Authors: Sabrina N. Rabelo, Tiago de F. Paulino, Willian M. Duarte, Samer Sawalha, Luiz Machado
Abstract:
Energy use is one of the main indicators for the economic and social development of a country, reflecting directly in the quality of life of the population. The expansion of energy use together with the depletion of fossil resources and the poor efficiency of energy systems have led many countries in recent years to invest in renewable energy sources. In this context, solar-assisted heat pump has become very important in energy industry, since it can transfer heat energy from the sun to water or another absorbing source. The direct-expansion solar assisted heat pump (DX-SAHP) water heater system operates by receiving solar energy incident in a solar collector, which serves as an evaporator in a refrigeration cycle, and the energy reject by the condenser is used for water heating. In this paper, a DX-SAHP using carbon dioxide as refrigerant (R744) was assembled, and the influence of the variation of the water mass flow rate in the system was analyzed. The parameters such as high pressure, water outlet temperature, gas cooler outlet temperature, evaporator temperature, and the coefficient of performance were studied. The mainly components used to assemble the heat pump were a reciprocating compressor, a gas cooler which is a countercurrent concentric tube heat exchanger, a needle-valve, and an evaporator that is a copper bare flat plate solar collector designed to capture direct and diffuse radiation. Routines were developed in the LabVIEW and CoolProp through MATLAB software’s, respectively, to collect data and calculate the thermodynamics properties. The range of coefficient of performance measured was from 3.2 to 5.34. It was noticed that, with the higher water mass flow rate, the water outlet temperature decreased, and consequently, the coefficient of performance of the system increases since the heat transfer in the gas cooler is higher. In addition, the high pressure of the system and the CO2 gas cooler outlet temperature decreased. The heat pump using carbon dioxide as a refrigerant, especially operating with solar radiation has been proven to be a renewable source in an efficient system for heating residential water compared to electrical heaters reaching temperatures between 40 °C and 80 °C.
Keywords: Water mass flow rate, R-744, heat pump, solar evaporator, water heater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11122887 MPSO based Model Order Formulation Technique for SISO Continuous Systems
Authors: S. N. Deepa, G. Sugumaran
Abstract:
This paper proposes a new version of the Particle Swarm Optimization (PSO) namely, Modified PSO (MPSO) for model order formulation of Single Input Single Output (SISO) linear time invariant continuous systems. In the General PSO, the movement of a particle is governed by three behaviors namely inertia, cognitive and social. The cognitive behavior helps the particle to remember its previous visited best position. In Modified PSO technique split the cognitive behavior into two sections like previous visited best position and also previous visited worst position. This modification helps the particle to search the target very effectively. MPSO approach is proposed to formulate the higher order model. The method based on the minimization of error between the transient responses of original higher order model and the reduced order model pertaining to the unit step input. The results obtained are compared with the earlier techniques utilized, to validate its ease of computation. The proposed method is illustrated through numerical example from literature.Keywords: Continuous System, Model Order Formulation, Modified Particle Swarm Optimization, Single Input Single Output, Transfer Function Approach
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17822886 Improvement of the Reliability of the Industrial Electric Networks
Authors: M. Bouguerra, I. Habi
Abstract:
The continuity in the electric supply of the electric installations is becoming one of the main requirements of the electric supply network (generation, transmission, and distribution of the electric energy). The achievement of this requirement depends from one side on the structure of the electric network and on the other side on the avaibility of the reserve source provided to maintain the supply in case of failure of the principal one. The avaibility of supply does not only depends on the reliability parameters of the both sources (principal and reserve) but it also depends on the reliability of the circuit breaker which plays the role of interlocking the reserve source in case of failure of the principal one. In addition, the principal source being under operation, its control can be ideal and sure, however, for the reserve source being in stop, a preventive maintenances which proceed on time intervals (periodicity) and for well defined lengths of time are envisaged, so that this source will always available in case of the principal source failure. The choice of the periodicity of preventive maintenance of the source of reserve influences directly the reliability of the electric feeder system In this work and on the basis of the semi- markovian's processes, the influence of the time of interlocking the reserve source upon the reliability of an industrial electric network is studied and is given the optimal time of interlocking the reserve source in case of failure the principal one, also the influence of the periodicity of the preventive maintenance of the source of reserve is studied and is given the optimal periodicity.Keywords: Semi-Markovians processes, reliability, optimization, industrial electric network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12742885 Experimental Study for the Development of a Wireless Communication System in a Solar Central Tower Facility
Authors: Victor H. Benitez, Ramon V. Armas-Flores, Jesus H. Pacheco-Ramirez
Abstract:
Systems transforming solar energy into electrical power have emerged as a viable source of clean, renewable energy. Solar power tower technology is a good example of this type of system, which consists of several mobile mirrors, called heliostats, which reflect the sun's radiation to the same point, located on top of a tower at the center of heliostat field, for collection or transformation into another type of energy. The so-called Hermosillo’s Solar Platform (Plataforma Solar de Hermosillo, PSH, in Spanish) is a facility constituted with several heliostats, its aim and scope is for research purposes. In this paper, the implementation of a wireless communication system based on intelligent nodes is proposed in order to allow the communication and control of the heliostats in PSH. Intelligent nodes transmit information from one point to another, and can perform other actions that allow them to adapt to the conditions and limitations of a field of heliostats, thus achieving effective communication system. After deployment of the nodes in the heliostats, tests were conducted to measure the effectiveness of the communication, and determine the feasibility of using the proposed technologies. The test results were always positive, exceeding expectations held for its operation in the field of heliostats. Therefore, it was possible to validate the efficiency of the wireless communication system to be implemented in PSH, allowing communication and control of the heliostats.Keywords: Solar energy, heliostat, wireless communication, intelligent node.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16682884 An Optimization of Machine Parameters for Modified Horizontal Boring Tool Using Taguchi Method
Authors: Thirasak Panyaphirawat, Pairoj Sapsmarnwong, Teeratas Pornyungyuen
Abstract:
This paper presents the findings of an experimental investigation of important machining parameters for the horizontal boring tool modified to mouth with a horizontal lathe machine to bore an overlength workpiece. In order to verify a usability of a modified tool, design of experiment based on Taguchi method is performed. The parameters investigated are spindle speed, feed rate, depth of cut and length of workpiece. Taguchi L9 orthogonal array is selected for four factors three level parameters in order to minimize surface roughness (Ra and Rz) of S45C steel tubes. Signal to noise ratio analysis and analysis of variance (ANOVA) is performed to study an effect of said parameters and to optimize the machine setting for best surface finish. The controlled factors with most effect are depth of cut, spindle speed, length of workpiece, and feed rate in order. The confirmation test is performed to test the optimal setting obtained from Taguchi method and the result is satisfactory.
Keywords: Design of Experiment, Taguchi Design, Optimization, Analysis of Variance, Machining Parameters, Horizontal Boring Tool.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27062883 Tri-Axis Receiver for Wireless Micro-Power Transmission
Authors: Nan-Chyuan Tsai, Sheng-Liang Hsu
Abstract:
An innovative tri-axes micro-power receiver is proposed. The tri-axes micro-power receiver consists of two sets 3-D micro-solenoids and one set planar micro-coils in which iron core is embedded. The three sets of micro-coils are designed to be orthogonal to each other. Therefore, no matter which direction the flux is present along, the magnetic energy can be harvested and transformed into electric power. Not only dead space of receiving power is mostly reduced, but also transformation efficiency of electromagnetic energy to electric power can be efficiently raised. By employing commercial software, Ansoft Maxwell, the preliminary simulation results verify that the proposed micro-power receiver can efficiently pick up the energy transmitted by magnetic power source. As to the fabrication process, the isotropic etching technique is employed to micro-machine the inverse-trapezoid fillister so that the copper wire can be successfully electroplated. The adhesion between micro-coils and fillister is much enhanced.Keywords: Wireless Power Transmission, Magnetic Flux, Tri-axes Micro-power Receiver
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13492882 Optimization of Control Parameters for EWR in Injection Flushing Type of EDM on Stainless Steel 304 Workpiece
Authors: M. S. Reza, M. Hamdi, S. H. Tomadi, A. R. Ismail
Abstract:
The operating control parameters of injection flushing type of electrical discharge machining process on stainless steel 304 workpiece using copper tools are being optimized according to its individual machining characteristic i.e. Electrode Wear Ratio (EWR). Higher EWR would give bad dimensional precision for the EDM machined workpiece because of high electrode wear. Hence, the quality characteristic for EWR is set to lower-the-better to achieve the optimum dimensional precision for the machined workpiece. Taguchi method has been used for the construction, layout and analysis of the experiment for EWR machining characteristic. The use of Taguchi method in the experiment saves a lot of time and cost of preparing and machining the experiment samples. Therefore, an L18 Orthogonal array which was the fundamental component in the statistical design of experiments has been used to plan the experiments and Analysis of Variance (ANOVA) is used to determine the optimum machining parameters for this machining characteristic. The control parameters selected for this optimization experiments are polarity, pulse on duration, discharge current, discharge voltage, machining depth, machining diameter and dielectric liquid pressure. The result had shown that negative polarity machining parameter setting will decreases EWR.Keywords: ANOVA, EDM, Injection Flushing, L18Orthogonal Array, EWR, Stainless Steel 304
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18482881 Optimization of Process Parameters of Pressure Die Casting using Taguchi Methodology
Authors: Satish Kumar, Arun Kumar Gupta, Pankaj Chandna
Abstract:
The present work analyses different parameters of pressure die casting to minimize the casting defects. Pressure diecasting is usually applied for casting of aluminium alloys. Good surface finish with required tolerances and dimensional accuracy can be achieved by optimization of controllable process parameters such as solidification time, molten temperature, filling time, injection pressure and plunger velocity. Moreover, by selection of optimum process parameters the pressure die casting defects such as porosity, insufficient spread of molten material, flash etc. are also minimized. Therefore, a pressure die casting component, carburetor housing of aluminium alloy (Al2Si2O5) has been considered. The effects of selected process parameters on casting defects and subsequent setting of parameters with the levels have been accomplished by Taguchi-s parameter design approach. The experiments have been performed as per the combination of levels of different process parameters suggested by L18 orthogonal array. Analyses of variance have been performed for mean and signal-to-noise ratio to estimate the percent contribution of different process parameters. Confidence interval has also been estimated for 95% consistency level and three conformational experiments have been performed to validate the optimum level of different parameters. Overall 2.352% reduction in defects has been observed with the help of suggested optimum process parameters.
Keywords: Aluminium Casting, Pressure Die Casting, Taguchi Methodology, Design of Experiments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73352880 Application of Biogas Technology in Turkey
Authors: B. Demirel, T.T. Onay, O. Yenigün
Abstract:
The potential, opportunities and drawbacks of biogas technology use in Turkey are evaluated in this paper. Turkey is dependent on foreign sources of energy. Therefore, use of biogas technology would provide a safe way of waste disposal and recovery of renewable energy, particularly from a sustainable domestic source, which is less unlikely to be influenced by international price or political fluctuations. Use of biogas technology would especially meet the cooking, heating and electricity demand in rural areas and protect the environment, additionally creating new job opportunities and improving social-economical conditions.Keywords: anaerobic digestion, agricultural biogas plant, biogas, biomass, methane, waste
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34092879 Interaction of Low-Energy Positrons with Mg Atoms: Elastic Scattering, Bound States, and Annihilation
Authors: Mahasen M. Abdel-Mageed, H. S. Zaghloul
Abstract:
Annihilations, phase shifts, scattering lengths and elastic cross sections of low energy positrons scattering from magnesium atoms were studied using the least-squares variational method (LSVM). The possibility of positron binding to the magnesium atoms is investigated. A trial wave function is suggested to represent e+-Mg elastic scattering and scattering parameters were derived to estimate the binding energy and annihilation rates. The trial function is taken to depend on several adjustable parameters, and is improved iteratively by increasing the number of terms. The present results have the same behavior as reported semi-empirical, theoretical and experimental results. Especially, the estimated positive scattering length supports the possibility of positronmagnesium bound state system that was confirmed in previous experimental and theoretical work.Keywords: Bound wave function, Positron Annihilation, scattering phase shift, scattering length.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11842878 On the use of Ionic Liquids for CO2 Capturing
Authors: Emad Ali, Inas Alnashef, Abdelhamid Ajbar, Mohamed HadjKali, Sarwono Mulyono
Abstract:
In this work, ionic liquids (ILs) for CO2 capturing in typical absorption/stripper process are considered. The use of ionic liquids is considered to be cost-effective because it requires less energy for solvent recovery compared to other conventional processes. A mathematical model is developed for the process based on Peng-Robinson (PR) equation of state (EoS) which is validated with experimental data for various solutions involving CO2. The model is utilized to study the sorbent and energy demand for three types of ILs at specific CO2 capturing rates. The energy demand is manifested by the vapor-liquid equilibrium temperature necessary to remove the captured CO2 from the used solvent in the regeneration step. It is found that higher recovery temperature is required for solvents with higher solubility coefficient. For all ILs, the temperature requirement is less than that required by the typical monoethanolamine (MEA) solvent. The effect of the CO2 loading in the sorbent stream on the process performance is also examined.
Keywords: Ionic liquid, CO2 capturing, CO2 solubility, Vaporliquid equilibrium.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27142877 Algorithms for Computing of Optimization Problems with a Common Minimum-Norm Fixed Point with Applications
Authors: Apirak Sombat, Teerapol Saleewong, Poom Kumam, Parin Chaipunya, Wiyada Kumam, Anantachai Padcharoen, Yeol Je Cho, Thana Sutthibutpong
Abstract:
This research is aimed to study a two-step iteration process defined over a finite family of σ-asymptotically quasi-nonexpansive nonself-mappings. The strong convergence is guaranteed under the framework of Banach spaces with some additional structural properties including strict and uniform convexity, reflexivity, and smoothness assumptions. With similar projection technique for nonself-mapping in Hilbert spaces, we hereby use the generalized projection to construct a point within the corresponding domain. Moreover, we have to introduce the use of duality mapping and its inverse to overcome the unavailability of duality representation that is exploit by Hilbert space theorists. We then apply our results for σ-asymptotically quasi-nonexpansive nonself-mappings to solve for ideal efficiency of vector optimization problems composed of finitely many objective functions. We also showed that the obtained solution from our process is the closest to the origin. Moreover, we also give an illustrative numerical example to support our results.Keywords: σ-asymptotically quasi-nonexpansive nonselfmapping, strong convergence, fixed point, uniformly convex and uniformly smooth Banach space.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10952876 Robust Design and Optimization of Production Wastes: An Application for Industries
Authors: Christopher C. Ihueze, Charles C. Okpala, Christian E. Okafor, Peter O. Ogbobe
Abstract:
This paper focuses on robust design and optimization of industrial production wastes. Past literatures were reviewed to case study Clamason Industries Limited (CIL) - a leading ladder-tops manufacturer. A painstaking study of the firm-s practices at the shop floor revealed that Over-production, Waiting time, Excess inventory, and Defects are the major wastes that are impeding their progress and profitability. Design expert8 software was used to apply Taguchi robust design and response surface methodology in order to model, analyse and optimise the wastes cost in CIL. Waiting time and overproduction rank first and second in contributing to the costs of wastes in CIL. For minimal wastes cost the control factors of overproduction, waiting-time, defects and excess-inventory must be set at 0.30, 390.70, 4 and 55.70 respectively for CIL. The optimal value of cost of wastes for the months studied was 22.3679. Finally, a recommendation was made that for the company to enhance their profitability and customer satisfaction, they must adopt the Shingeo Shingo-s Single Minute Exchange of Dies (SMED), which will immediately tackle the waste of waiting by drastically reducing their setup time.Keywords: Excess-inventory, setup time, single minute exchange of dies, optimal value, over-production, robust design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17152875 Simulation Study on Vehicle Drag Reduction by Surface Dimples
Authors: S. F. Wong, S. S. Dol
Abstract:
Automotive designers have been trying to use dimples to reduce drag in vehicles. In this work, a car model has been applied with dimple surface with a parameter called dimple ratio DR, the ratio between the depths of the half dimple over the print diameter of the dimple, has been introduced and numerically simulated via k-ε turbulence model to study the aerodynamics performance with the increasing depth of the dimples The Ahmed body car model with 25 degree slant angle is simulated with the DR of 0.05, 0.2, 0.3 0.4 and 0.5 at Reynolds number of 176387 based on the frontal area of the car model. The geometry of dimple changes the kinematics and dynamics of flow. Complex interaction between the turbulent fluctuating flow and the mean flow escalates the turbulence quantities. The maximum level of turbulent kinetic energy occurs at DR = 0.4. It can be concluded that the dimples have generated extra turbulence energy at the surface and as a result, the application of dimples manages to reduce the drag coefficient of the car model compared to the model with smooth surface.
Keywords: Aerodynamics, Boundary Layer, Dimple, Drag, Kinetic Energy, Turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23502874 Interstate Comparison of Environmental Performance using Stochastic Frontier Analysis: The United States Case Study
Authors: Alexander Y. Vaninsky
Abstract:
Environmental performance of the U.S. States is investigated for the period of 1990 – 2007 using Stochastic Frontier Analysis (SFA). The SFA accounts for both efficiency measure and stochastic noise affecting a frontier. The frontier is formed using indicators of GDP, energy consumption, population, and CO2 emissions. For comparability, all indicators are expressed as ratios to total. Statistical information of the Energy Information Agency of the United States is used. Obtained results reveal the bell - shaped dynamics of environmental efficiency scores. The average efficiency scores rise from 97.6% in 1990 to 99.6% in 1999, and then fall to 98.4% in 2007. The main factor is insufficient decrease in the rate of growth of CO2 emissions with regards to the growth of GDP, population and energy consumption. Data for 2008 following the research period allow for an assumption that the environmental performance of the U.S. States has improved in the last years.
Keywords: Stochastic frontier analysis, environmental performance, interstate comparisons.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17102873 Submicron Size of Alumina/Titania Tubes for CO2-CH4 Conversion
Authors: Chien-Wan Hun, Shao-Fu Chang, Jheng-En Yang, Chien-Chon Chen, Wern-Dare Jheng
Abstract:
This research provides a systematic way to study and better understand double nano-tubular structure of alunina (Al2O3) and titania (TiO2). The TiO2 NT was prepared by immersing Al2O3 template in 0.02 M titanium fluoride (TiF4) solution (pH=3) at 25 °C for 120 min, followed by annealing at 450 °C for 1 h to obtain anatase TiO2 NT in the Al2O3 template. Large-scale development of film for nanotube-based CO2 capture and conversion can potentially result in more efficient energy harvesting. In addition, the production process will be relatively environmentally friendly. The knowledge generated by this research will significantly advance research in the area of Al2O3, TiO2, CaO, and Ca2O3 nano-structure film fabrication and applications for CO2 capture and conversion. This green energy source will potentially reduce reliance on carbon-based energy resources and increase interest in science and engineering careers.Keywords: Alumina, titania, nano-tubular, film, CO2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15702872 Experimental Testing of Composite Tubes with Different Corrugation Profile Subjected to Lateral Compression Load
Authors: Elfetori F. Abdewi
Abstract:
This paper presents the effect of corrugation profile geometry on the crushing behavior, energy absorption, failure mechanism, and failure mode of woven roving glass fibre/epoxy laminated composite tube. Experimental investigations were carried out on composite tubes with three different profile shapes: sinusoidal, triangular and trapezoidal. The tubes were subjected to lateral compressive loading. On the addition to a radial corrugated composite tube, cylindrical composite tube, were fabricated and tested under the same condition in order to know the effect of corrugation geometry. Typical histories of their deformation are presented. Behavior of tubes as regards the peak crushing load, energy absorbed and mode of crushing has been discussed. The results show that the behavior of the tube under lateral compression load is influenced by the geometry of the tube itself.Keywords: Corrugated composite specimens, Energy absorption, Lateral crushing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23392871 The Study of Chain Initiation Effect on the Direct Initiation of Detonation
Authors: Masoud Afrand, Saeid Farahat, Mehdi Alamkar
Abstract:
In this research, effect of combustion reaction mechanism on direct initiation of detonation has been studied numerically. For this purpose, reaction mechanism has been simulated by using a three-step chemical kinetics model. The reaction scheme consists sequentially of a chain-initiation and chainbranching step, followed by a temperature -independent chaintermination. In a previous research, the effect of chain-branching on the direct initiation of detonation is studied. In this research effect of chain-initiation on direct initiation of detonation is investigated. For the investigation, first a characteristic time (τ) for each step of mechanism, which includes effect of different kinetics parameters, is defined. Then the effect of characteristic time of chain-initiation (τI) on critical initiation energy is studied. It is seen that increasing τI, causes critical initiation energy to be increased. Drawing detonation's shock pressure diagrams for different cases, shows that in small value of τI , kinetics has more important effect on the behavior of the wave.Keywords: Detonation initiation, Initiation energy, Reaction rate, Characteristic time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19642870 Applications for Additive Manufacturing Technology for Reducing the Weight of Body Parts of Gas Turbine Engines
Authors: Liubov A. Magerramova, Mikhail A. Petrov, Vladimir V. Isakov, Liana A. Shcherbinina, Suren G. Gukasyan, Daniil V. Povalyukhin, Olga G. Klimova-Korsmik, Darya V. Volosevich
Abstract:
Aircraft engines are developing along the path of increasing resource, strength, reliability, and safety. The building of gas turbine engine body parts is a complex design and technological task. Particularly complex in the design and manufacturing are the casings of the input stages of helicopter gearboxes and central drives of aircraft engines. Traditional technologies, such as precision casting or isothermal forging, are characterized by significant limitations in parts production. For parts like housing, additive technologies guarantee spatial freedom and limitless or flexible design. This article presents the results of computational and experimental studies. These investigations justify the applicability of additive technologies (AT) to reduce the weight of aircraft housing gearbox parts by up to 32%. This is possible due to geometrical optimization compared to the classical, less flexible manufacturing methods and as-casted aircraft parts with over-insured values of safety factors. Using an example of the body of the input stage of an aircraft gearbox, visualization of the layer-by-layer manufacturing of a part based on thermal deformation was demonstrated.
Keywords: Additive technologies, gas turbine engines, geometric optimization, weight reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222869 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms
Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat
Abstract:
In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.
Keywords: Availability, design for maintenance, DFM, dynamic maintenance, life cycle cost, LCC, maintenance free operating period, MFOP, simultaneous optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5972868 Reliability and Cost Focused Optimization Approach for a Communication Satellite Payload Redundancy Allocation Problem
Authors: Mehmet Nefes, Selman Demirel, Hasan H. Ertok, Cenk Sen
Abstract:
A typical reliability engineering problem regarding communication satellites has been considered to determine redundancy allocation scheme of power amplifiers within payload transponder module, whose dominant function is to amplify power levels of the received signals from the Earth, through maximizing reliability against mass, power, and other technical limitations. Adding each redundant power amplifier component increases not only reliability but also hardware, testing, and launch cost of a satellite. This study investigates a multi-objective approach used in order to solve Redundancy Allocation Problem (RAP) for a communication satellite payload transponder, focusing on design cost due to redundancy and reliability factors. The main purpose is to find the optimum power amplifier redundancy configuration satisfying reliability and capacity thresholds simultaneously instead of analyzing respectively or independently. A mathematical model and calculation approach are instituted including objective function definitions, and then, the problem is solved analytically with different input parameters in MATLAB environment. Example results showed that payload capacity and failure rate of power amplifiers have remarkable effects on the solution and also processing time.
Keywords: Communication satellite payload, multi-objective optimization, redundancy allocation problem, reliability, transponder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11932867 Analysis of the Performance of a Solar Water Heating System with Flat Collector
Authors: Aurea Lúcia Georgi Vendramin, Carlos Itsuo Yamamoto, Carlos Eduardo Camargo Nogueira, Anderson Miguel Lenz, Samuel N. Souza Melegari
Abstract:
The thermal performance of a solar water heating with 1.00 m2 flat plate collectors in Cascavel - PR, is which presented in this article, paper presents the solution to leverage the marketing of solar heating systems through detailed constituent materials of the solar collector studies, these abundant materials in construction, such as expanded polyethylene, PVC, aluminum and glass tubes, mixing them with new materials to minimize loss of efficiency while decreasing its cost. The system was tested during months and the collector obtained maximum recorded temperature of outlet fluid of 55°C, while the maximum temperature of the water at the bottom of the hot water tank was 35°C. The average daily energy collected was 19.6 MJ/d; the energy supplied by the solar plate was 16.2 MJ/d; the loss in the feed pipe was 3.2 MJ/d; the solar fraction was 32.2%, the efficiency of the collector was 45.6% and the efficiency of the system was 37.8%.
Keywords: Recycled materials, energy efficiency, solar collector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30152866 Postbuckling Analysis of End Supported Rods under Self-Weight Using Intrinsic Coordinate Finite Elements
Authors: C. Juntarasaid, T. Pulngern, S. Chucheepsakul
Abstract:
A formulation of postbuckling analysis of end supported rods under self-weight has been presented by the variational method. The variational formulation involving the strain energy due to bending and the potential energy of the self-weight, are expressed in terms of the intrinsic coordinates. The variational formulation is accomplished by introducing the Lagrange multiplier technique to impose the boundary conditions. The finite element method is used to derive a system of nonlinear equations resulting from the stationary of the total potential energy and then Newton-Raphson iterative procedure is applied to solve this system of equations. The numerical results demonstrate the postbluckled configurations of end supported rods under self-weight. This finite element method based on variational formulation expressed in term of intrinsic coordinate is highly recommended for postbuckling analysis of end-supported rods under self-weight.
Keywords: Variational method, postbuckling, finite element method, intrinsic coordinate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8492865 Energy and Economic Analysis of Heat Recovery from Boiler Exhaust Flue Gas
Authors: Kemal Comakli, Meryem Terhan
Abstract:
In this study, the potential of heat recovery from waste flue gas was examined in 60 MW district heating system of a university, and fuel saving was aimed by using the recovered heat in the system as a source again. Various scenarios are intended to make use of waste heat. For this purpose, actual operation data of the system were taken. Besides, the heat recovery units that consist of heat exchangers such as flue gas condensers, economizers or air pre-heaters were designed theoretically for each scenario. Energy analysis of natural gas-fired boiler’s exhaust flue gas in the system, and economic analysis of heat recovery units to predict payback periods were done. According to calculation results, the waste heat loss ratio from boiler flue gas in the system was obtained as average 16%. Thanks to the heat recovery units, thermal efficiency of the system can be increased, and fuel saving can be provided. At the same time, a huge amount of green gas emission can be decreased by installing the heat recovery units.
Keywords: Heat recovery from flue gas, energy analysis of flue gas, economical analysis, payback period.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2852