Search results for: Material removal rate (MRR)
3255 Performance Analysis of an Adaptive Threshold Hybrid Double-Dwell System with Antenna Diversity for Acquisition in DS-CDMA Systems
Authors: H. Krouma, M. Barkat, K. Kemih, M. Benslama, Y. Yacine
Abstract:
In this paper, we consider the analysis of the acquisition process for a hybrid double-dwell system with antenna diversity for DS-CDMA (direct sequence-code division multiple access) using an adaptive threshold. Acquisition systems with a fixed threshold value are unable to adapt to fast varying mobile communications environments and may result in a high false alarm rate, and/or low detection probability. Therefore, we propose an adaptively varying threshold scheme through the use of a cellaveraging constant false alarm rate (CA-CFAR) algorithm, which is well known in the field of radar detection. We derive exact expressions for the probabilities of detection and false alarm in Rayleigh fading channels. The mean acquisition time of the system under consideration is also derived. The performance of the system is analyzed and compared to that of a hybrid single dwell system.Keywords: Adaptive threshold, hybrid double-dwell system, CA-CFAR algorithm, DS-CDMA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17193254 Risk of Plastic Shrinkage Cracking in Recycled Aggregate Concrete
Authors: M. Eckert, M. Oliveira
Abstract:
The intensive use of natural aggregates, near cities and towns, associated to the increase of the global population, leads to its depletion and increases the transport distances. The uncontrolled deposition of construction and demolition waste in landfills and city outskirts, causes pollution and takes up space. The use of recycled aggregates in concrete preparation would contribute to mitigate the problem. However, it arises the problem that the high water absorption of recycled aggregate decreases the bleeding rate of concrete, and when this gets lower than the evaporation rate, plastic shrinkage cracking occurs. This phenomenon can be particularly problematic in hot and windy curing environments. Cracking facilitates the flow of liquid and gas into concrete which attacks the reinforcement and degrades the concrete. These factors reduce the durability of concrete structures and consequently the lifetime of buildings. A ring test was used, cured in a wind tunnel, to evaluate the plastic shrinkage cracking sensitivity of recycled aggregate concrete, in order to implement preventive means to control this phenomenon. The role of several aggregate properties on the concrete segregation and cracking mechanisms were also discussed.
Keywords: Recycled Aggregate, Plastic Shrinkage Cracking; Wind Tunnel, Durability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10293253 Numerical and Experimental Investigation of Air Distribution System of Larder Type Refrigerator
Authors: Funda Erdem Şahnali, Ş. Özgür Atayılmaz, Tolga N. Aynur
Abstract:
Almost all of the domestic refrigerators operate on the principle of the vapor compression refrigeration cycle and removal of heat from the refrigerator cabinets is done via one of the two methods: natural convection or forced convection. In this study, airflow and temperature distributions inside a 375L no-frost type larder cabinet, in which cooling is provided by forced convection, are evaluated both experimentally and numerically. Airflow rate, compressor capacity and temperature distribution in the cooling chamber are known to be some of the most important factors that affect the cooling performance and energy consumption of a refrigerator. The objective of this study is to evaluate the original temperature distribution in the larder cabinet, and investigate for better temperature distribution solutions throughout the refrigerator domain via system optimizations that could provide uniform temperature distribution. The flow visualization and airflow velocity measurements inside the original refrigerator are performed via Stereoscopic Particle Image Velocimetry (SPIV). In addition, airflow and temperature distributions are investigated numerically with Ansys Fluent. In order to study the heat transfer inside the aforementioned refrigerator, forced convection theories covering the following cases are applied: closed rectangular cavity representing heat transfer inside the refrigerating compartment. The cavity volume has been represented with finite volume elements and is solved computationally with appropriate momentum and energy equations (Navier-Stokes equations). The 3D model is analyzed as transient, with k-ε turbulence model and SIMPLE pressure-velocity coupling for turbulent flow situation. The results obtained with the 3D numerical simulations are in quite good agreement with the experimental airflow measurements using the SPIV technique. After Computational Fluid Dynamics (CFD) analysis of the baseline case, the effects of three parameters: compressor capacity, fan rotational speed and type of shelf (glass or wire) are studied on the energy consumption; pull down time, temperature distributions in the cabinet. For each case, energy consumption based on experimental results is calculated. After the analysis, the main effective parameters for temperature distribution inside a cabin and energy consumption based on CFD simulation are determined and simulation results are supplied for Design of Experiments (DOE) as input data for optimization. The best configuration with minimum energy consumption that provides minimum temperature difference between the shelves inside the cabinet is determined.
Keywords: Air distribution, CFD, DOE, energy consumption, larder cabinet, refrigeration, uniform temperature.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5903252 Roughness and Hardness of 60/40 Cu-Zn Alloy
Authors: Pavana Manvikar, G K Purohit
Abstract:
The functional performance of machined components, often, depends on surface topography, hardness, nature of stress and strain induced on the surface, etc. Invariably, surfaces of metallic components obtained by turning, milling, etc., consist of irregularities such as machining marks are responsible for the above. Surface finishing/coating processes used to produce improved surface quality/textures are classified as chip-removal and chip-less processes. Burnishing is chip-less cold working process carried out to improve surface finish, hardness and resistance to fatigue and corrosion; not obtainable by other surface coating and surface treatment processes. It is a very simple, but effective method which improves surface characteristics and is reported to introduce compressive stresses.
Of late, considerable attention is paid to post-machining, finishing operations, such as burnishing. During burnishing the micro-irregularities start to deform plastically, initially the crests are gradually flattened and zones of reduced deformation are formed. When all the crests are deformed, the valleys between the micro-irregularities start moving in the direction of the newly formed surface. The grain structure is then condensed, producing a smoother and harder surface with superior load-carrying and wear-resistant capabilities.
Burnishing can be performed on a lathe with a highly polished ball or roller type tool which is traversed under force over a rotating/stationary work piece. Often, several passes are used to obtain the work piece surface with the desired finish and hardness.
This paper presents the findings of an experimental investigation on the effect of ball burnishing parameters such as, burnishing speed, feed, force and number of passes; on surface roughness (Ra) and micro-hardness (Hv) of a 60/40 copper/zinc alloy, using a 2-level fractional factorial design of experiments (DoE). Mathematical models were developed to predict surface roughness and hardness generated by burnishing in terms of the above process parameters. A ball-type tool, designed and constructed from a high chrome steel material (HRC=63 and Ra=0.012 µm), was used for burnishing of fine-turned cylindrical bars (0.68-0.78µm and 145Hv). They are given by,
Ra= 0.305-0.005X1 - 0.0175X2 + 0.0525X4 + 0.0125X1X4 -0.02X2X4 - 0.0375X3X4
Hv=160.625 -2.37 5X1 + 5.125X2 + 1.875X3 + 4.375X4 - 1.625X1X4 + 4.375X2X4 - 2.375X3X4
High surface microhardness (175HV) was obtained at 400rpm, 2passes, 0.05mm/rev and 15kgf., and high surface finish (0.20µm) was achieved at 30kgf, 0.1mm/rev, 112rpm and single pass. In other words, surface finish improved by 350% and microhardness improved by 21% compared to as machined conditions.
Keywords: Ball burnishing, surface roughness, micro-hardness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25323251 Generalized Maximal Ratio Combining as a Supra-optimal Receiver Diversity Scheme
Authors: Jean-Pierre Dubois, Rania Minkara, Rafic Ayoubi
Abstract:
Maximal Ratio Combining (MRC) is considered the most complex combining technique as it requires channel coefficients estimation. It results in the lowest bit error rate (BER) compared to all other combining techniques. However the BER starts to deteriorate as errors are introduced in the channel coefficients estimation. A novel combining technique, termed Generalized Maximal Ratio Combining (GMRC) with a polynomial kernel, yields an identical BER as MRC with perfect channel estimation and a lower BER in the presence of channel estimation errors. We show that GMRC outperforms the optimal MRC scheme in general and we hereinafter introduce it to the scientific community as a new “supraoptimal" algorithm. Since diversity combining is especially effective in small femto- and pico-cells, internet-associated wireless peripheral systems are to benefit most from GMRC. As a result, many spinoff applications can be made to IP-based 4th generation networks.
Keywords: Bit error rate, femto-internet cells, generalized maximal ratio combining, signal-to-scattering noise ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21523250 Embedded Throughput Improving of Low-rate EDR Packets for Lower-latency
Authors: M. A. M. El-Bendary, A. E. Abu El-Azm, N. A. El-Fishawy, F. Shawky, F. E. El-Samie
Abstract:
With increasing utilization of the wireless devices in different fields such as medical devices and industrial fields, the paper presents a method for simplify the Bluetooth packets with throughput enhancing. The paper studies a vital issue in wireless communications, which is the throughput of data over wireless networks. In fact, the Bluetooth and ZigBee are a Wireless Personal Area Network (WPAN). With taking these two systems competition consideration, the paper proposes different schemes for improve the throughput of Bluetooth network over a reliable channel. The proposition depends on the Channel Quality Driven Data Rate (CQDDR) rules, which determines the suitable packet in the transmission process according to the channel conditions. The proposed packet is studied over additive White Gaussian Noise (AWGN) and fading channels. The Experimental results reveal the capability of extension of the PL length by 8, 16, 24 bytes for classic and EDR packets, respectively. Also, the proposed method is suitable for the low throughput Bluetooth.Keywords: Bluetooth, throughput, adaptive packets, EDRpackets, CQDDR, low latency. Channel condition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19013249 Studies on the Mechanical Behavior of Bottom Ash for a Sustainable Environment
Authors: B. A. Mir, Asim Malik
Abstract:
Bottom ash is a by-product of the combustion process of coal in furnaces in the production of electricity in thermal power plants. In India, about 75% of total power is produced by using pulverized coal. The coal of India has a high ash content which leads to the generation of a huge quantity of bottom ash per year posing the dual problem of environmental pollution and difficulty in disposal. This calls for establishing strategies to use this industry by-product effectively and efficiently. However, its large-scale utilization is possible only in geotechnical applications, either alone or with soil. In the present investigation, bottom ash was collected from National Capital Power Station Dadri, Uttar Pradesh, India. Test samples of bottom ash admixed with 20% clayey soil were prepared and treated with different cement content by weight and subjected to various laboratory tests for assessing its suitability as an engineered construction material. This study has shown that use of 10% cement content is a viable chemical additive to enhance the mechanical properties of bottom ash, which can be used effectively as an engineered construction material in various geotechnical applications. More importantly, it offers an interesting potential for making use of an industrial waste to overcome challenges posed by bottom ash for a sustainable environment.
Keywords: Bottom ash, environmental pollution, solid waste, sustainable environment, waste utilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17213248 Assessment of Material Type, Diameter, Orientation and Closeness of Fibers in Vulcanized Reinforced Rubbers
Authors: Ali Osman Güney, Bahattin Kanber
Abstract:
In this work, the effect of material type, diameter, orientation and closeness of fibers on the general performance of reinforced vulcanized rubbers are investigated using finite element method with experimental verification. Various fiber materials such as hemp, nylon, polyester are used for different fiber diameters, orientations and closeness. 3D finite element models are developed by considering bonded contact elements between fiber and rubber sheet interfaces. The fibers are assumed as linear elastic, while vulcanized rubber is considered as hyper-elastic. After an experimental verification of finite element results, the developed models are analyzed under prescribed displacement that causes tension. The normal stresses in fibers and shear stresses between fibers and rubber sheet are investigated in all models. Large deformation of reinforced rubber sheet also represented with various fiber conditions under incremental loading. A general assessment is achieved about best fiber properties of reinforced rubber sheets for tension-load conditions.
Keywords: Fiber properties, finite element method, tension-load condition, reinforced vulcanized rubbers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9213247 Type–2 Fuzzy Programming for Optimizing the Heat Rate of an Industrial Gas Turbine via Absorption Chiller Technology
Authors: T. Ganesan, M. S. Aris, I. Elamvazuthi, Momen Kamal Tageldeen
Abstract:
Terms set in power purchase agreements (PPA) challenge power utility companies in balancing between the returns (from maximizing power production) and securing long term supply contracts at capped production. The production limitation set in the PPA has driven efforts to maximize profits through efficient and economic power production. In this paper, a combined industrial-scale gas turbine (GT) - absorption chiller (AC) system is considered to cool the GT air intake for reducing the plant’s heat rate (HR). This GT-AC system is optimized while considering power output limitations imposed by the PPA. In addition, the proposed formulation accounts for uncertainties in the ambient temperature using Type-2 fuzzy programming. Using the enhanced chaotic differential evolution (CEDE), the Pareto frontier was constructed and the optimization results are analyzed in detail.Keywords: Absorption chillers, turbine inlet air cooling, power purchase agreement, multiobjective optimization, type-2 fuzzy programming, chaotic differential evolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9343246 Effects of Preparation Conditions on the Properties of Crumb Rubber Modified Binder
Authors: Baha Vural Kök, Mehmet Yilmaz, Mustafa Akpolat, Cihat Sav
Abstract:
Various types of additives are used frequently in order to improve the rheological and mechanical properties of bituminous mixtures. Small devices instead of full scale machines are used for bitumen modification in the laboratory. These laboratory scale devices vary in terms of their properties such as mixing rate, mixing blade and the amount of binder. In this study, the effect of mixing rate and time during the bitumen modification processes on conventional and rheological properties of pure and crumb rubber modified binder were investigated. Penetration, softening point, rotational viscosity (RV) and dynamic shear rheometer (DSR) tests were applied to pure and CR modified bitumen. It was concluded that the penetration and softening point test did not show the efficiency of CR obtained by different mixing conditions. Besides, oxidation that occurred during the preparation processes plays a great part in the improvement effects of the modified binder.
Keywords: Bitumen, crumb rubber, modification, rheological properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9823245 Degree of Hydrolysis of Proteinaceous Components of Porang Flour Using Papain
Authors: Fadilah Fadilah, Rochmadi Rochmadi, Siti Syamsiah, Djagal W. Marseno
Abstract:
Glucomannan can be found in the tuber of porang together with starch and proteinaceous components which were regarded as impurities. An enzymatic process for obtaining higher glucomannan content from Porang flour have been conducted. Papain was used for hydrolysing proteinaceous components in Porang flour which was conducted after a simultaneous extraction of glucomannan and enzymatic starch hydrolysis. Three variables affecting the rate were studied, i.e. temperature, the amount of enzyme and the stirring speed. The ninhydrin method was used to determine degree of protein hydrolysis. Results showed that the rising of degree of hydrolysis were fast in the first ten minutes of the reaction and then proceeded slowly afterward. The optimum temperature for hydrolysis was 60 oC. Increasing the amount of enzyme showed a remarkable effect to degree of hydrolysis, but the stirring speed had no significant effect. This indicated that the reaction controlled the rate of hydrolysis.Keywords: Degree of hydrolysis, ninhydrin, papain, porang flour, proteinaceous components.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12763244 A Study of the Hand-Hold Impact on the EM Interaction of a Cellular Handset and a Human
Authors: Salah I. Al-Mously, Marai M. Abousetta
Abstract:
This paper investigates the impact of the hand-hold positions on both antenna performance and the specific absorption rate (SAR) induced in the user-s head. A cellular handset with external antenna operating at GSM-900 frequency is modeled and simulated using a finite difference time-domain (FDTD)-based platform SEMCAD-X. A specific anthropomorphic mannequin (SAM) is adopted to simulate the user-s head, whereas a semirealistic CAD-model of three-tissues is designed to simulate the user-s hand. The results show that in case of the handset in hand close to head at different positions; the antenna total efficiency gets reduced to (14.5% - 5.9%) at cheek-position and to (27.5% to 11.8%) at tilt-position. The peak averaged SAR1g values in head close to handset without hand, are 4.67 W/Kg and 2.66 W/Kg at cheek and tilt-position, respectively. Due to the presence of hand, the SAR1g in head gets reduced to (3.67-3.31 W/Kg) at cheek-position and to (1.84-1.64 W/Kg) at tilt-position, depending on the hand-hold position.Keywords: FDTD, phantom, specific absorption rate (SAR), cellular handset exposure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14073243 Entropy Generation Analysis of Free Convection Film Condensation on a Vertical Ellipsoid with Variable Wall Temperature
Authors: Sheng-An Yang, Ren-Yi Hung, Ying-Yi Ho
Abstract:
This paper aims to perform the second law analysis of thermodynamics on the laminar film condensation of pure saturated vapor flowing in the direction of gravity on an ellipsoid with variable wall temperature. The analysis provides us understanding how the geometric parameter- ellipticity and non-isothermal wall temperature variation amplitude “A." affect entropy generation during film-wise condensation heat transfer process. To understand of which irreversibility involved in this condensation process, we derived an expression for the entropy generation number in terms of ellipticity and A. The result indicates that entropy generation increases with ellipticity. Furthermore, the irreversibility due to finite temperature difference heat transfer dominates over that due to condensate film flow friction and the local entropy generation rate decreases with increasing A in the upper half of ellipsoid. Meanwhile, the local entropy generation rate enhances with A around the rear lower half of ellipsoid.Keywords: Free convection; Non-isothermal; Thermodynamic second law; Entropy, Ellipsoid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19583242 Study on Buckling and Yielding Behaviors of Low Yield Point Steel Plates
Authors: David Boyajian, Tadeh Zirakian
Abstract:
Stability and performance of steel plates are characterized by geometrical buckling and material yielding. In this paper, the geometrical buckling and material yielding behaviors of low yield point (LYP) steel plates are studied from the point of view of their application in steel plate shear wall (SPSW) systems. Use of LYP steel facilitates the design and application of web plates with improved buckling and energy absorption capacities in SPSW systems. LYP steel infill plates may yield first and then undergo inelastic buckling. Hence, accurate determination of the limiting plate thickness corresponding to simultaneous buckling and yielding can be effective in seismic design of such lateral force-resisting and energy dissipating systems. The limiting thicknesses of plates with different loading and support conditions are determined theoretically and verified through detailed numerical simulations. Effects of use of LYP steel and plate aspect ratio parameter on the limiting plate thickness are investigated as well. In addition, detailed studies are performed on determination of the limiting web-plate thickness in code-designed SPSWs. Some practical recommendations are accordingly provided for efficient seismic design of SPSW systems with LYP steel infill plates.Keywords: Plates, buckling, yielding, low yield point steel, steel plate shear walls.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12083241 Production of Energetic Nanomaterials by Spray Flash Evaporation
Authors: Martin Klaumünzer, Jakob Hübner, Denis Spitzer
Abstract:
Within this paper, latest results on processing of energetic nanomaterials by means of the Spray Flash Evaporation technique are presented. This technology constitutes a highly effective and continuous way to prepare fascinating materials on the nano- and micro-scale. Within the process, a solution is set under high pressure and sprayed into an evacuated atomization chamber. Subsequent ultrafast evaporation of the solvent leads to an aerosol stream, which is separated by cyclones or filters. No drying gas is required, so the present technique should not be confused with spray dying. Resulting nanothermites, insensitive explosives or propellants and compositions are foreseen to replace toxic (according to REACH) and very sensitive matter in military and civil applications. Diverse examples are given in detail: nano-RDX (n-Cyclotrimethylentrinitramin) and nano-aluminum based systems, mixtures (n-RDX/n-TNT - trinitrotoluene) or even cocrystalline matter like n-CL-20/HMX (Hexanitrohexaazaisowurtzitane/ Cyclotetra-methylentetranitramin). These nanomaterials show reduced sensitivity by trend without losing effectiveness and performance. An analytical study for material characterization was performed by using Atomic Force Microscopy, X-Ray Diffraction, and combined techniques as well as spectroscopic methods. As a matter of course, sensitivity tests regarding electrostatic discharge, impact, and friction are provided.
Keywords: Continuous synthesis, energetic material, nanoscale, nanothermite, nanoexplosive.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14383240 Regulation of Transfer of 137cs by Polymeric Sorbents for Grow Ecologically Sound Biomass
Authors: A. H. Tadevosyan, S. K. Mayrapetyan, N. B. Tavakalyan, K. I. Pyuskyulyan, A. H. Hovsepyan, S. N. Sergeeva
Abstract:
Soil contamination with radiocesium has a long-term radiological impact due to its long physical half-life (30.1 years for 137Cs and 2 years for 134Cs) and its high biological availability. 137Cs causes the largest concerns because of its deleterious effect on agriculture and stock farming, and, thus, human life for decades. One of the important aspects of the problem of contaminated soils remediation is understand of protective actions aimed at the reduction of biological migration of radionuclides in soil-plant system. The most effective way to bind radionuclides is the use of selective sorbents. The proposed research mainly aims to achieve control on transfer of 137Cs in a system growing media – plant due to counter ions variation in the polymeric sorbents. As research object Japanese basil - Perilla frutescens was chosen. Productivity of plants depending on the presence (control-without presence of polymer) and type of polymer material, as well as content of 137Cs in plant material has been determined. The character of different polymers influences on the 137Cs migration in growing media – plant system as well as accumulation in the plants has been cleared up.
Keywords: Radioceaseum, Japanese basil, polymer, soil-plant system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18423239 Lagrange and Multilevel Wavelet-Galerkin with Polynomial Time Basis for Heat Equation
Authors: Watcharakorn Thongchuay, Puntip Toghaw, Montri Maleewong
Abstract:
The Wavelet-Galerkin finite element method for solving the one-dimensional heat equation is presented in this work. Two types of basis functions which are the Lagrange and multi-level wavelet bases are employed to derive the full form of matrix system. We consider both linear and quadratic bases in the Galerkin method. Time derivative is approximated by polynomial time basis that provides easily extend the order of approximation in time space. Our numerical results show that the rate of convergences for the linear Lagrange and the linear wavelet bases are the same and in order 2 while the rate of convergences for the quadratic Lagrange and the quadratic wavelet bases are approximately in order 4. It also reveals that the wavelet basis provides an easy treatment to improve numerical resolutions that can be done by increasing just its desired levels in the multilevel construction process.Keywords: Galerkin finite element method, Heat equation , Lagrange basis function, Wavelet basis function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17293238 Feature Extraction of Dorsal Hand Vein Pattern Using a Fast Modified PCA Algorithm Based On Cholesky Decomposition and Lanczos Technique
Authors: Maleika Heenaye- Mamode Khan , Naushad Mamode Khan, Raja K.Subramanian
Abstract:
Dorsal hand vein pattern is an emerging biometric which is attracting the attention of researchers, of late. Research is being carried out on existing techniques in the hope of improving them or finding more efficient ones. In this work, Principle Component Analysis (PCA) , which is a successful method, originally applied on face biometric is being modified using Cholesky decomposition and Lanczos algorithm to extract the dorsal hand vein features. This modified technique decreases the number of computation and hence decreases the processing time. The eigenveins were successfully computed and projected onto the vein space. The system was tested on a database of 200 images and using a threshold value of 0.9 to obtain the False Acceptance Rate (FAR) and False Rejection Rate (FRR). This modified algorithm is desirable when developing biometric security system since it significantly decreases the matching time.
Keywords: Dorsal hand vein pattern, PCA, Cholesky decomposition, Lanczos algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18373237 Experimental Investigation of a Novel Reaction in Reduction of Sulfates by Natural Gas as a Reducing Agent
Authors: Ali Ghiaseddin , Akram Nemati
Abstract:
In a pilot plant scale of a fluidized bed reactor, a reduction reaction of sodium sulfate by natural gas has been investigated. Natural gas is applied in this study as a reductant. Feed density, feed mass flow rate, natural gas and air flow rate (independent parameters)and temperature of bed and CO concentration in inlet and outlet of reactor (dependent parameters) were monitored and recorded at steady state. The residence time was adjusted close to value of traditional reaction [1]. An artificial neural network (ANN) was established to study dependency of yield and carbon gradient on operating parameters. Resultant 97% accuracy of applied ANN is a good prove that natural gas can be used as a reducing agent. Predicted ANN model for relation between other sources carbon gradient (accuracy 74%) indicates there is not a meaningful relation between other sources carbon variation and reduction process which means carbon in granule does not have significant effect on the reaction yield.Keywords: reduction by natural gas, fluidized bed, sulfate, sulfide, artificial neural network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15223236 Evaluation of Microleakage of a New Generation Nano-Ionomer in Class II Restoration of Primary Molars
Authors: Ghada Salem, Nihal Kabel
Abstract:
Objective: This in vitro study was carried out to assess the microleakage properties of nano-filled glass ionomer in comparison to resin-reinforced glass ionomers. Material and Methods: 40 deciduous molar teeth were included in this study. Class-II cavity was prepared in a standard form for all the specimens. The teeth were randomly distributed into two groups (20 per group) according to the restorative material used either nano-glass ionomer or Photac Fill glass ionomer restoration. All specimens were thermocycled for 1000 cycles between 5 and 55 °C. After that, the teeth were immersed in 2% methylene blue dye then sectioned and evaluated under a stereomicroscope. Microleakage was assessed using linear dye penetration and on a scale from zero to five. Results: Two way ANOVA test revealed a statistically significant lower degree of microleakage in both occlusal and gingival restorations (0.4±0.2), (0.9±0.1) for nano-filled glass ionomer group in comparison to resin modified glass ionomer (2.3±0.7), (2.4±0.5). No statistical difference was found between gingival and occlusal leakage regarding the effect of the measured site. Conclusion: Nano-filled glass ionomer shows superior sealing ability which enables this type of restoration to be used in minimum invasive treatment.Keywords: Microleakage, nano-ionomer, resin-reinforced glass ionomer, proximal cavity preparation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12583235 Molecular Dynamics Simulation for Buckling Analysis at Nanocomposite Beams
Authors: Babak Safaei, A. M. Fattahi
Abstract:
In the present study we have investigated axial buckling characteristics of nanocomposite beams reinforced by single-walled carbon nanotubes (SWCNTs). Various types of beam theories including Euler-Bernoulli beam theory, Timoshenko beam theory and Reddy beam theory were used to analyze the buckling behavior of carbon nanotube-reinforced composite beams. Generalized differential quadrature (GDQ) method was utilized to discretize the governing differential equations along with four commonly used boundary conditions. The material properties of the nanocomposite beams were obtained using molecular dynamic (MD) simulation corresponding to both short-(10,10) SWCNT and long- (10,10) SWCNT composites which were embedded by amorphous polyethylene matrix. Then the results obtained directly from MD simulations were matched with those calculated by the mixture rule to extract appropriate values of carbon nanotube efficiency parameters accounting for the scale-dependent material properties. The selected numerical results were presented to indicate the influences of nanotube volume fractions and end supports on the critical axial buckling loads of nanocomposite beams relevant to long- and short-nanotube composites.Keywords: Nanocomposites, molecular dynamics simulation, axial buckling, generalized differential quadrature (GDQ).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18993234 Improvement in Power Transformer Intelligent Dissolved Gas Analysis Method
Authors: S. Qaedi, S. Seyedtabaii
Abstract:
Non-Destructive evaluation of in-service power transformer condition is necessary for avoiding catastrophic failures. Dissolved Gas Analysis (DGA) is one of the important methods. Traditional, statistical and intelligent DGA approaches have been adopted for accurate classification of incipient fault sources. Unfortunately, there are not often enough faulty patterns required for sufficient training of intelligent systems. By bootstrapping the shortcoming is expected to be alleviated and algorithms with better classification success rates to be obtained. In this paper the performance of an artificial neural network, K-Nearest Neighbour and support vector machine methods using bootstrapped data are detailed and shown that while the success rate of the ANN algorithms improves remarkably, the outcome of the others do not benefit so much from the provided enlarged data space. For assessment, two databases are employed: IEC TC10 and a dataset collected from reported data in papers. High average test success rate well exhibits the remarkable outcome.Keywords: Dissolved gas analysis, Transformer incipient fault, Artificial Neural Network, Support Vector Machine (SVM), KNearest Neighbor (KNN)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27393233 Equilibrium and Kinetic Studies of Lead Adsorption on Activated Carbon Derived from Mangrove Propagule Waste by Phosphoric Acid Activation
Authors: Widi Astuti, Rizki Agus Hermawan, Hariono Mukti, Nurul Retno Sugiyono
Abstract:
The removal of lead ion (Pb2+) from aqueous solution by activated carbon with phosphoric acid activation employing mangrove propagule as precursor was investigated in a batch adsorption system. Batch studies were carried out to address various experimental parameters including pH and contact time. The Langmuir and Freundlich models were able to describe the adsorption equilibrium, while the pseudo first order and pseudo second order models were used to describe kinetic process of Pb2+ adsorption. The results show that the adsorption data are seen in accordance with Langmuir isotherm model and pseudo-second order kinetic model.
Keywords: Activated carbon, adsorption, equilibrium, kinetic, Pb2+, mangrove propagule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7413232 A Study of Performance of Wastewater Treatment Systems for Small Sites
Authors: Fu E. Tang, Vun J. Ngu
Abstract:
The pollutant removal efficiency of the Intermittently Decanted Extended Aeration (IDEA) wastewater treatment system at Curtin University Sarawak Campus, and conventional activated sludge wastewater treatment system at a local resort, Resort A, is monitored. The influent and effluent characteristics are tested during wet and dry weather conditions, and peak and off peak periods. For the wastewater treatment systems at Curtin Sarawak and Resort A, during dry weather and peak season, it was found that the BOD5 concentration in the influent is 121.7mg/L and 80.0mg/L respectively, and in the effluent, 18.7mg/L and and 18.0mg/L respectively. Analysis of the performance of the IDEA treatment system showed that the operational costs can be minimized by 3%, by decreasing the number of operating cycles. As for the treatment system in Resort A, by utilizing a smaller capacity air blower, a saving of 12% could be made in the operational costs.Keywords: Conventional Activated Sludge, IDEA, Performance Monitoring, Wastewater Treatment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34053231 Reducing Greenhouse Gas Emissions by Recyclable Material Bank Project of Universities in Central Region of Thailand
Authors: Ronbanchob Apiratikul
Abstract:
This research studied recycled waste by the Recyclable Material Bank Project of 4 universities in the central region of Thailand for the evaluation of reducing greenhouse gas emissions compared with landfilling activity during July 2012 to June 2013. The results showed that the projects collected total amount of recyclable wastes of about 911,984.80 kilograms. Office paper had the largest amount among these recycled wastes (50.68% of total recycled waste). Groups of recycled waste can be prioritized from high to low according to their amount as paper, plastic, glass, mixed recyclables, and metal, respectively. The project reduced greenhouse gas emissions equivalent to about 2814.969 metric tons of carbon dioxide. The most significant recycled waste that affects the reduction of greenhouse gas emissions is office paper which is 70.16% of total reduced greenhouse gasses emission. According to amount of reduced greenhouse gasses emission, groups of recycled waste can be prioritized from high to low significances as paper, plastic, metals, mixed recyclables, and glass, respectively.
Keywords: Recycling, garbage bank, waste management, recyclable wastes, greenhouse gasses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18773230 Adsorption of Textile Reactive Dye by Palm Shell Activated Carbon: Response Surface Methodology
Authors: Siti Maryam Rusly, Shaliza Ibrahim
Abstract:
The adsorption of simulated aqueous solution containing textile remazol reactive dye, namely Red 3BS by palm shell activated carbon (PSAC) as adsorbent was carried out using Response Surface Methodology (RSM). A Box-Behnken design in three most important operating variables; initial dye concentration, dosage of adsorbent and speed of impeller was employed for experimental design and optimization of results. The significance of independent variables and their interactions were tested by means of the analysis of variance (ANOVA) with 95% confidence limits. Model indicated that with the increasing of dosage and speed give the result of removal up to 90% with the capacity uptake more than 7 mg/g. High regression coefficient between the variables and the response (R-Sq = 93.9%) showed of good evaluation of experimental data by polynomial regression model.
Keywords: Adsorption, Box-Behnken Design, Palm ShellActivated Carbon, Red 3BS, RSM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19993229 A Study on the Pressure Void Ratio Relationship for Rock Powder Blends with Brick Dust
Authors: Aktan Ozsoy, Ali Fırat Cabalar, Eyyub Karakan
Abstract:
Climate change is one of the biggest issues facing communities. Increasing population, growing economies, rapid industrialization are the main factors triggering it. On the other hand, the millions of tons of waste have generated by the period of rapid global growth not only harm to the environment but also lead to the use of valuable lands around the world as landfill sites. Moreover, it is rapidly consuming our resources and this forces the human population and wildlife to share increasingly shrinking space. In this direction, it is vital to reuse waste materials with a sustainability philosophy. This study was carried out to contribute to the combat against climate change, conserve our natural resources and the environment. An oedometer (consolidation) test was performed on two waste materials combined in certain proportions to evaluate their sustainable usage. Crushed brick dust (BD) was mixed with rock powder (RP) in 0%, 5%, 10%, 20%, 30%, 40%, and 50% (dry weight of soil). The results obtained revealed the importance of the gradation of the material used in the consolidation test. It was found that there was a negligible difference between the initial and final void ratio of mixtures with BD added.
Keywords: Waste material, oedometer test, environmental geotechnics, sustainability, crushed brick dust, rock powder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2823228 Experimental Analysis of the Influence of Water Mass Flow Rate on the Performance of a CO2 Direct-Expansion Solar Assisted Heat Pump
Authors: Sabrina N. Rabelo, Tiago de F. Paulino, Willian M. Duarte, Samer Sawalha, Luiz Machado
Abstract:
Energy use is one of the main indicators for the economic and social development of a country, reflecting directly in the quality of life of the population. The expansion of energy use together with the depletion of fossil resources and the poor efficiency of energy systems have led many countries in recent years to invest in renewable energy sources. In this context, solar-assisted heat pump has become very important in energy industry, since it can transfer heat energy from the sun to water or another absorbing source. The direct-expansion solar assisted heat pump (DX-SAHP) water heater system operates by receiving solar energy incident in a solar collector, which serves as an evaporator in a refrigeration cycle, and the energy reject by the condenser is used for water heating. In this paper, a DX-SAHP using carbon dioxide as refrigerant (R744) was assembled, and the influence of the variation of the water mass flow rate in the system was analyzed. The parameters such as high pressure, water outlet temperature, gas cooler outlet temperature, evaporator temperature, and the coefficient of performance were studied. The mainly components used to assemble the heat pump were a reciprocating compressor, a gas cooler which is a countercurrent concentric tube heat exchanger, a needle-valve, and an evaporator that is a copper bare flat plate solar collector designed to capture direct and diffuse radiation. Routines were developed in the LabVIEW and CoolProp through MATLAB software’s, respectively, to collect data and calculate the thermodynamics properties. The range of coefficient of performance measured was from 3.2 to 5.34. It was noticed that, with the higher water mass flow rate, the water outlet temperature decreased, and consequently, the coefficient of performance of the system increases since the heat transfer in the gas cooler is higher. In addition, the high pressure of the system and the CO2 gas cooler outlet temperature decreased. The heat pump using carbon dioxide as a refrigerant, especially operating with solar radiation has been proven to be a renewable source in an efficient system for heating residential water compared to electrical heaters reaching temperatures between 40 °C and 80 °C.
Keywords: Water mass flow rate, R-744, heat pump, solar evaporator, water heater.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11123227 Analytical Mathematical Expression for the Channel Capacity of a Power and Rate Simultaneous Adaptive Cellular DS/FFH-CDMA Systemin a Rayleigh Fading Channel
Authors: P.Varzakas
Abstract:
In this paper, an accurate theoretical analysis for the achievable average channel capacity (in the Shannon sense) per user of a hybrid cellular direct-sequence/fast frequency hopping code-division multiple-access (DS/FFH-CDMA) system operating in a Rayleigh fading environment is presented. The analysis covers the downlink operation and leads to the derivation of an exact mathematical expression between the normalized average channel capacity available to each system-s user, under simultaneous optimal power and rate adaptation and the system-s parameters, as the number of hops per bit, the processing gain applied, the number of users per cell and the received signal-tonoise power ratio over the signal bandwidth. Finally, numerical results are presented to illustrate the proposed mathematical analysis.
Keywords: Shannon capacity, adaptive systems, code-division multiple access, fading channels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15263226 Fatigue Strength of S275 Mild Steel under Cyclic Loading
Authors: T. Aldeeb, M. Abduelmula
Abstract:
This study examines the fatigue life of S275 mild steel at room temperature. Mechanical components can fail under cyclic loading during period of time, known as the fatigue phenomenon. In order to prevent fatigue induced failures, material behavior should be investigated to determine the endurance limit of the material for safe design and infinite life, thus leading to reducing the economic cost and loss in human lives. The fatigue behavior of S275 mild steel was studied and investigated. Specimens were prepared in accordance with ASTM E3-11, and fatigue tests of the specimen were conducted in accordance with ASTM E466-07 on a smooth plate, with a continuous radius between ends (hourglass-shaped plate). The method of fatigue testing was applied with constant load amplitude and constant frequency of 4 Hz with load ratio (Fully Reversal R= -1). Surface fractures of specimens were investigated using Scanning Electron Microscope (SEM). The experimental results were compared with the results of a Finite Element Analysis (FEA), using simulation software. The experiment results indicated that the endurance fatigue limit of S275 mild steel was 195.47 MPa.Keywords: Fatigue life, fatigue strength, finite element analysis, S275 mild steel, scanning electron microscope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2453