Search results for: learning flow.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4289

Search results for: learning flow.

2729 Development of Logic Model for R&D Program Plan Analysis in Preliminary Feasibility Study

Authors: Hyun-Kyu Kang

Abstract:

The Korean Government has applied the preliminary feasibility study to new government R&D program plans as a part of an evaluation system for R&D programs. The preliminary feasibility study for the R&D program is composed of 3 major criteria such as technological, policy and economic analysis. The program logic model approach is used as a part of the technological analysis in the preliminary feasibility study. We has developed and improved the R&D program logic model. The logic model is a very useful tool for evaluating R&D program plans. Using a logic model, we can generally identify important factors of the R&D program plan, analyze its logic flow and find the disconnection or jump in the logic flow among components of the logic model.

Keywords: Preliminary feasibility study, R&D program logic model, technological analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2156
2728 A Machine Learning Approach for Anomaly Detection in Environmental IoT-Driven Wastewater Purification Systems

Authors: Giovanni Cicceri, Roberta Maisano, Nathalie Morey, Salvatore Distefano

Abstract:

The main goal of this paper is to present a solution for a water purification system based on an Environmental Internet of Things (EIoT) platform to monitor and control water quality and machine learning (ML) models to support decision making and speed up the processes of purification of water. A real case study has been implemented by deploying an EIoT platform and a network of devices, called Gramb meters and belonging to the Gramb project, on wastewater purification systems located in Calabria, south of Italy. The data thus collected are used to control the wastewater quality, detect anomalies and predict the behaviour of the purification system. To this extent, three different statistical and machine learning models have been adopted and thus compared: Autoregressive Integrated Moving Average (ARIMA), Long Short Term Memory (LSTM) autoencoder, and Facebook Prophet (FP). The results demonstrated that the ML solution (LSTM) out-perform classical statistical approaches (ARIMA, FP), in terms of both accuracy, efficiency and effectiveness in monitoring and controlling the wastewater purification processes.

Keywords: EIoT, machine learning, anomaly detection, environment monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1027
2727 Numerical Investigation of Nanofluid Based Thermosyphon System

Authors: Kiran Kumar K, Ramesh Babu Bejjam, Atul Najan

Abstract:

A thermosyphon system is a heat transfer loop which operates on the basis of gravity and buoyancy forces. It guarantees a good reliability and low maintenance cost as it does not involve any mechanical pump. Therefore, it can be used in many industrial applications such as refrigeration and air conditioning, electronic cooling, nuclear reactors, geothermal heat extraction, etc. But flow instabilities and loop configuration are the major problems in this system. Several previous researchers studied that stabilities can be suppressed by using nanofluids as loop fluid. In the present study a rectangular thermosyphon loop with end heat exchangers are considered for the study. This configuration is more appropriate for many practical applications such as solar water heater, geothermal heat extraction, etc. In the present work, steady-state analysis is carried out on thermosyphon loop with parallel flow coaxial heat exchangers at heat source and heat sink. In this loop nanofluid is considered as the loop fluid and water is considered as the external fluid in both hot and cold heat exchangers. For this analysis onedimensional homogeneous model is developed. In this model, conservation equations like conservation of mass, momentum, energy are discretized using finite difference method. A computer code is written in MATLAB to simulate the flow in thermosyphon loop. A comparison in terms of heat transfer is made between water and nanofluid as working fluids in the loop.

Keywords: Heat exchanger, Heat transfer, Nanofluid, Thermosyphon loop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2500
2726 Application of Machine Learning Methods to Online Test Error Detection in Semiconductor Test

Authors: Matthias Kirmse, Uwe Petersohn, Elief Paffrath

Abstract:

As in today's semiconductor industries test costs can make up to 50 percent of the total production costs, an efficient test error detection becomes more and more important. In this paper, we present a new machine learning approach to test error detection that should provide a faster recognition of test system faults as well as an improved test error recall. The key idea is to learn a classifier ensemble, detecting typical test error patterns in wafer test results immediately after finishing these tests. Since test error detection has not yet been discussed in the machine learning community, we define central problem-relevant terms and provide an analysis of important domain properties. Finally, we present comparative studies reflecting the failure detection performance of three individual classifiers and three ensemble methods based upon them. As base classifiers we chose a decision tree learner, a support vector machine and a Bayesian network, while the compared ensemble methods were simple and weighted majority vote as well as stacking. For the evaluation, we used cross validation and a specially designed practical simulation. By implementing our approach in a semiconductor test department for the observation of two products, we proofed its practical applicability.

Keywords: Ensemble methods, fault detection, machine learning, semiconductor test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274
2725 Neural-Symbolic Machine-Learning for Knowledge Discovery and Adaptive Information Retrieval

Authors: Hager Kammoun, Jean Charles Lamirel, Mohamed Ben Ahmed

Abstract:

In this paper, a model for an information retrieval system is proposed which takes into account that knowledge about documents and information need of users are dynamic. Two methods are combined, one qualitative or symbolic and the other quantitative or numeric, which are deemed suitable for many clustering contexts, data analysis, concept exploring and knowledge discovery. These two methods may be classified as inductive learning techniques. In this model, they are introduced to build “long term" knowledge about past queries and concepts in a collection of documents. The “long term" knowledge can guide and assist the user to formulate an initial query and can be exploited in the process of retrieving relevant information. The different kinds of knowledge are organized in different points of view. This may be considered an enrichment of the exploration level which is coherent with the concept of document/query structure.

Keywords: Information Retrieval Systems, machine learning, classification, Galois lattices, Self Organizing Map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1189
2724 Modeling Language for Machine Learning

Authors: Tsuyoshi Okita, Tatsuya Niwa

Abstract:

For a given specific problem an efficient algorithm has been the matter of study. However, an alternative approach orthogonal to this approach comes out, which is called a reduction. In general for a given specific problem this reduction approach studies how to convert an original problem into subproblems. This paper proposes a formal modeling language to support this reduction approach. We show three examples from the wide area of learning problems. The benefit is a fast prototyping of algorithms for a given new problem.

Keywords: Formal language, statistical inference problem, reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
2723 Forecasting Fraudulent Financial Statements using Data Mining

Authors: S. Kotsiantis, E. Koumanakos, D. Tzelepis, V. Tampakas

Abstract:

This paper explores the effectiveness of machine learning techniques in detecting firms that issue fraudulent financial statements (FFS) and deals with the identification of factors associated to FFS. To this end, a number of experiments have been conducted using representative learning algorithms, which were trained using a data set of 164 fraud and non-fraud Greek firms in the recent period 2001-2002. The decision of which particular method to choose is a complicated problem. A good alternative to choosing only one method is to create a hybrid forecasting system incorporating a number of possible solution methods as components (an ensemble of classifiers). For this purpose, we have implemented a hybrid decision support system that combines the representative algorithms using a stacking variant methodology and achieves better performance than any examined simple and ensemble method. To sum up, this study indicates that the investigation of financial information can be used in the identification of FFS and underline the importance of financial ratios.

Keywords: Machine learning, stacking, classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3054
2722 Gene Expression Data Classification Using Discriminatively Regularized Sparse Subspace Learning

Authors: Chunming Xu

Abstract:

Sparse representation which can represent high dimensional data effectively has been successfully used in computer vision and pattern recognition problems. However, it doesn-t consider the label information of data samples. To overcome this limitation, we develop a novel dimensionality reduction algorithm namely dscriminatively regularized sparse subspace learning(DR-SSL) in this paper. The proposed DR-SSL algorithm can not only make use of the sparse representation to model the data, but also can effective employ the label information to guide the procedure of dimensionality reduction. In addition,the presented algorithm can effectively deal with the out-of-sample problem.The experiments on gene-expression data sets show that the proposed algorithm is an effective tool for dimensionality reduction and gene-expression data classification.

Keywords: sparse representation, dimensionality reduction, labelinformation, sparse subspace learning, gene-expression data classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
2721 Implementing Education 4.0 Trends in Language Learning

Authors: Luz Janeth Ospina M.

Abstract:

The fourth industrial revolution is changing the role of education substantially and, therefore, the role of instructors and learners at all levels. Education 4.0 is an imminent response to the needs of a globalized world where humans and technology are being aligned to enable endless possibilities, among them the need for students, as digital natives, to communicate effectively in at least one language besides their mother tongue, and also the requirement of developing theirs. This is an exploratory study in which a control group (N = 21), all of the students of Spanish as a foreign language at the university level, after taking a Spanish class, responded to an online questionnaire about the engagement, atmosphere, and environment in which their course was delivered. These aspects considered in the survey were relative to the instructor’s teaching style, including: (a) active, hands-on learning; (b) flexibility for in-class activities, easily switching between small group work, individual work, and whole-class discussion; and (c) integrating technology into the classroom. Strongly believing in these principles, the instructor deliberately taught the course in a SCALE-UP room, as it could facilitate such a positive and encouraging learning environment. These aspects are trends related to Education 4.0 and have become integral to the instructor’s pedagogical stance that calls for a constructive-affective role, instead of a transmissive one. As expected, with a learning environment that (a) fosters student engagement and (b) improves student outcomes, the subjects were highly engaged, which was partially due to the learning environment. An overwhelming majority (all but one) of students agreed or strongly agreed that the atmosphere and the environment were ideal. Outcomes of this study are relevant and indicate that it is about time for teachers to build up a meaningful correlation between humans and technology. We should see the trends of Education 4.0 not as a threat but as practices that should be in the hands of critical and creative instructors whose pedagogical stance responds to the needs of the learners in the 21st century.

Keywords: Active learning, education 4.0, higher education, pedagogical stance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 703
2720 A Numerical Study of Force-Based Boundary Conditions in Multiparticle Collision Dynamics

Authors: Arturo Ayala-Hernandez, Humberto H´ıjar

Abstract:

We propose a new alternative method for imposing fluid-solid boundary conditions in simulations of Multiparticle Collision Dynamics. Our method is based on the introduction of an explicit potential force acting between the fluid particles and a surface representing a solid boundary. We show that our method can be used in simulations of plane Poiseuille flows. Important quantities characterizing the flow and the fluid-solid interaction like the slip coefficient at the solid boundary and the effective viscosity of the fluid, are measured in terms of the set of independent parameters defining the numerical implementation. We find that our method can be used to simulate the correct hydrodynamic flow within a wide range of values of these parameters.

Keywords: Multiparticle Collision Dynamics, Fluid-Solid Boundary Conditions, Molecular Dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2227
2719 On the Early Development of Dispersion in Flow through a Tube with Wall Reactions

Authors: M. W. Lau, C. O. Ng

Abstract:

This is a study on numerical simulation of the convection-diffusion transport of a chemical species in steady flow through a small-diameter tube, which is lined with a very thin layer made up of retentive and absorptive materials. The species may be subject to a first-order kinetic reversible phase exchange with the wall material and irreversible absorption into the tube wall. Owing to the velocity shear across the tube section, the chemical species may spread out axially along the tube at a rate much larger than that given by the molecular diffusion; this process is known as dispersion. While the long-time dispersion behavior, well described by the Taylor model, has been extensively studied in the literature, the early development of the dispersion process is by contrast much less investigated. By early development, that means a span of time, after the release of the chemical into the flow, that is shorter than or comparable to the diffusion time scale across the tube section. To understand the early development of the dispersion, the governing equations along with the reactive boundary conditions are solved numerically using the Flux Corrected Transport Algorithm (FCTA). The computation has enabled us to investigate the combined effects on the early development of the dispersion coefficient due to the reversible and irreversible wall reactions. One of the results is shown that the dispersion coefficient may approach its steady-state limit in a short time under the following conditions: (i) a high value of Damkohler number (say Da ≥ 10); (ii) a small but non-zero value of absorption rate (say Γ* ≤ 0.5).

Keywords: Dispersion coefficient, early development of dispersion, FCTA, wall reactions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339
2718 Drag models for Simulation Gas-Solid Flow in the Bubbling Fluidized Bed of FCC Particles

Authors: S. Benzarti, H. Mhiri, H. Bournot

Abstract:

In the current work, a numerical parametric study was performed in order to model the fluid mechanics in the riser of a bubbling fluidized bed (BFB). The gas-solid flow was simulated by mean of a multi-fluid Eulerian model incorporating the kinetic theory for solid particles. The bubbling fluidized bed was simulated two dimensionally by mean of a Computational Fluid Dynamic (CFD) commercial software package, Fluent. The effects of using different inter-phase drag function (the drag model of Gidaspow, Syamlal and O-Brien and the EMMS drag model) on the model predictions were evaluated and compared. The results showed that the drag models of Gidaspow and Syamlal and O-Brien overestimated the drag force for the FCC particles and predicted a greater bed expansion in comparison to the EMMS drag model.

Keywords: Bubbling fluidized bed, CFD, drag model, EMMS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6740
2717 Effects of Channel Bed Slope on Energy Dissipation of Different Types of Piano Key Weir

Authors: Munendra Kumar, Deepak Singh

Abstract:

The present investigation aims to study the effect of channel bed slopes on energy dissipation across the different types of Piano Key Weir (PK weir or PKW) under the free-flow conditions in rigid rectangular channels. To this end, three different types (type-A, type-B, and type-C) of PKW models were tested and examined. To document and quantify this experimental investigation, a total of 270 tests were performed, including detailed observations of the flow field. The results show that the energy dissipation of all PKW models increases with the bed slopes and decreases with increasing the discharge over the weirs. In addition, the energy dissipation over the PKW varies significantly with the geometry of the weir. The type-A PKW has shown the highest energy dissipation than the other PKWs. As the bottom slope changed from Sb = 0% to 1.25%, the energy dissipation increased by about 8.5%, 9.1%, and 10.55% for type-A, type-B, and type-C, respectively.

Keywords: Piano key weir, bed slope, energy dissipation across PKW, free overfalls.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 522
2716 Non-reacting Numerical Simulation of Axisymmetric Trapped Vortex Combustor

Authors: Heval Serhat Uluk, Sam M. Dakka, Kuldeep Singh, Richard Jefferson-Loveday

Abstract:

This paper will focus on the suitability of a trapped vortex combustor as a candidate for gas turbine combustor objectives to minimize pressure drop across the combustor and investigate aerodynamic performance. Non-reacting simulation of axisymmetric cavity trapped vortex combustors was run to investigate the pressure drop for various cavity aspect ratios of 0.3, 0.6 and 1 and for air mass flow rates of 14 m/s, 28 m/s and 42 m/s. A numerical study of an axisymmetric trapped vortex combustor was carried out by using two-dimensional and three-dimensional computational domains. A comparison study was conducted between Reynolds Averaged Navier Stokes (RANS) k-ε Realizable with enhanced wall treatment and RANS k-ω Shear Stress Transport (SST) models to find the most suitable turbulence model. It was found that the k-ω SST model gives relatively close results to experimental outcomes. The numerical results were validated and showed good agreement with the experimental data. Pressure drop rises with increasing air mass flow rate, and the lowest pressure drop was observed at 0.6 cavity aspect ratio for all air mass flow rates tested, which agrees with the experimental outcome. A mixing enhancement study showed that 30-degree angle air injectors provide improved fuel-air mixing.

Keywords: Aerodynamic, Computational Fluid Dynamics, Propulsion, Trapped Vortex Combustor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 72
2715 An Evaluation of TIG Welding Parametric Influence on Tensile Strength of 5083 Aluminium Alloy

Authors: Lakshman Singh, Rajeshwar Singh, Naveen Kumar Singh, Davinder Singh, Pargat Singh

Abstract:

Tungsten Inert Gas (TIG) welding is a high quality welding process used to weld the thin metals and their alloy. 5083 Aluminium alloys play an important role in engineering and metallurgy field because of excellent corrosion properties, ease of fabrication and high specific strength coupled with best combination of toughness and formability.

TIG welding technique is one of the precise and fastest processes used in aerospace, ship and marine industries. TIG welding process is used to analyze the data and evaluate the influence of input parameters on tensile strength of 5083 Al-alloy specimens with dimensions of 100mm long x 15mm wide x 5mm thick. Welding current (I), gas flow rate (G) and welding speed (S) are the input parameters which effect tensile strength of 5083 Al-alloy welded joints. As welding speed increased, tensile strength increases first till optimum value and after that both decreases by increasing welding speed further. Results of the study show that maximum tensile strength of 129 MPa of weld joint are obtained at welding current of 240 Amps, gas flow rate of 7 Lt/min and welding speed of 98 mm/min. These values are the optimum values of input parameters which help to produce efficient weld joint that have good mechanical properties as a tensile strength.

Keywords: 5083 Aluminium alloy, Gas flow rate, TIG welding, Welding current, Welding speed and Tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4085
2714 Linear Instability of Wake-Shear Layers in Two-Phase Shallow Flows

Authors: Inta Volodko, Valentina Koliskina

Abstract:

Linear stability analysis of wake-shear layers in twophase shallow flows is performed in the present paper. Twodimensional shallow water equations are used in the analysis. It is assumed that the fluid contains uniformly distributed solid particles. No dynamic interaction between the carrier fluid and particles is expected in the initial moment. The stability calculations are performed for different values of the particle loading parameter and two other parameters which characterize the velocity ratio and the velocity deficit. The results show that the particle loading parameter has a stabilizing effect on the flow while the increase in the velocity ratio or in the velocity deficit destabilizes the flow.

Keywords: Linear stability, Shallow flows, Wake-shear flows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1334
2713 CFD Predictions of Dense Slurry Flow in Centrifugal Pump Casings

Authors: Krishnan V. Pagalthivarthi, Pankaj K. Gupta, Vipin Tyagi, M. R. Ravi

Abstract:

Dense slurry flow through centrifugal pump casing has been modeled using the Eulerian-Eulerian approach with Eulerian multiphase model in FLUENT 6.1®. First order upwinding is considered for the discretization of momentum, k and ε terms. SIMPLE algorithm has been applied for dealing with pressurevelocity coupling. A mixture property based k-ε turbulence model has been used for modeling turbulence. Results are validated first against mesh independence and experiments for a particular set of operational and geometric conditions. Parametric analysis is then performed to determine the effect on important physical quantities viz. solid velocities, solid concentration and solid stresses near the wall with various operational geometric conditions of the pump.

Keywords: Centrifugal pump casing, Dense slurry, Solidsconcentration, Wall shear stress, Pump geometric parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4914
2712 Towards an E-Learning Platform Multi-Agent Based On the E-Tutoring for Collaborative Work

Authors: Badr Hssina, Belaid Bouikhalene, Abdelkrim Merbouha

Abstract:

This article presents our prototype MASET (Multi Agents System for E-Tutoring Learners engaged in online collaborative work). MASET that we propose is a system which basically aims to help tutors in monitoring the collaborative work of students and their various interactions. The evaluation of such interactions by the tutor is based on the results provided by the automatic analysis of the interaction indicators. This system is predicated upon the middleware JADE (Java Agent Development Framework) and e-learning Moodle platform. The MASET environment is modeled by AUML which allows structuring the different interactions between agents for the fulfillment and performance of online collaborative work. This multi-agent system has been the subject of a practical experimentation based on the interactions data between Master Computer Engineering and System students.

Keywords: AUML, Collaborative work, E-learning, E-tutoring, JADE, Moodle, SMA, Web Agent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1831
2711 Evaluating the Effectiveness of Electronic Response Systems in Technology-Oriented Classes

Authors: Ahmad Salman

Abstract:

Electronic Response Systems such as Kahoot, Poll Everywhere, and Google Classroom are gaining a lot of popularity when surveying audiences in events, meetings, and classroom. The reason is mainly because of the ease of use and the convenience these tools bring since they provide mobile applications with a simple user interface. In this paper, we present a case study on the effectiveness of using Electronic Response Systems on student participation and learning experience in a classroom. We use a polling application for class exercises in two different technology-oriented classes. We evaluate the effectiveness of the usage of the polling applications through statistical analysis of the students performance in these two classes and compare them to the performances of students who took the same classes without using the polling application for class participation. Our results show an increase in the performances of the students who used the Electronic Response System when compared to those who did not by an average of 11%.

Keywords: Interactive learning, classroom technology, electronic response systems, polling applications, learning evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 645
2710 Influence and Dissemination of Solecism among Moroccan High School and University Students

Authors: Rachid Ed-Dali, Khalid Elasri

Abstract:

Mass media seem to provide a rich content for language acquisition. Exposure to television, the Internet, the mobile phone and other technological gadgets and devices helps enrich the student’s lexicon positively as well as negatively. The difficulties encountered by students while learning and acquiring second languages in addition to their eagerness to comprehend the content of a particular program prompt them to diversify their methods so as to achieve their targets. The present study highlights the significance of certain media channels and their involvement in language acquisition with the employment of the Natural Approach to further grasp whether students, especially secondary and high school students, learn and acquire errors through watching subtitled television programs. The chief objective is investigating the deductive and inductive relevance of certain programs beside the involvement of peripheral learning while acquiring mistakes.

Keywords: Errors, mistakes, natural Approach, peripheral learning, solecism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 575
2709 ATC in Competitive Electricity Market Using TCSC

Authors: S. K. Gupta, Richa Bansal

Abstract:

In a deregulated power system structure, power producers and customers share a common transmission network for wheeling power from the point of generation to the point of consumption. All parties in this open access environment may try to purchase the energy from the cheaper source for greater profit margins, which may lead to overloading and congestion of certain corridors of the transmission network. This may result in violation of line flow, voltage and stability limits and thereby undermine the system security. Utilities therefore need to determine adequately their available transfer capability (ATC) to ensure that system reliability is maintained while serving a wide range of bilateral and multilateral transactions. This paper presents power transfer distribution factor based on AC load flow for the determination and enhancement of ATC. The study has been carried out for IEEE 24 bus Reliability Test System.

Keywords: Available Transfer Capability, FACTS devices, Power Transfer Distribution Factors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2357
2708 Train the Trainer: The Bricks in the Learning Community Scaffold of Professional Development

Authors: S. Pancucci

Abstract:

Professional development is the focus of this study. It reports on questionnaire data that examined the perceived effectiveness of the Train the Trainer model of technology professional development for elementary teachers. Eighty-three selected teachers called Information Technology Coaches received four half-day and one after-school in-service sessions. Subsequently, coaches shared the information and skills acquired during training with colleagues. Results indicated that participants felt comfortable as Information Technology Coaches and felt well prepared because of their technological professional development. Overall, participants perceived the Train the Trainer model to be effective. The outcomes of this study suggest that the use of the Train the Trainer model, a known professional development model, can be an integral and interdependent component of the newer more comprehensive learning community professional development model.

Keywords: change, education, learning community, professional development, school improvement, technology coach, Train the Trainer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2645
2707 Time Series Forecasting Using Various Deep Learning Models

Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan

Abstract:

Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed length window in the past as an explicit input. In this paper, we study how the performance of predictive models change as a function of different look-back window sizes and different amounts of time to predict into the future. We also consider the performance of the recent attention-based transformer models, which had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (Recurrent Neural Network (RNN), Long Short-term Memory (LSTM), Gated Recurrent Units (GRU), and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the website of University of California, Irvine (UCI), which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean   Absolute Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.

Keywords: Air quality prediction, deep learning algorithms, time series forecasting, look-back window.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1171
2706 Automatic Fluid-Structure Interaction Modeling and Analysis of Butterfly Valve Using Python Script

Authors: N. Guru Prasath, Sangjin Ma, Chang-Wan Kim

Abstract:

A butterfly valve is a quarter turn valve which is used to control the flow of a fluid through a section of pipe. Generally, butterfly valve is used in wide range of applications such as water distribution, sewage, oil and gas plants. In particular, butterfly valve with larger diameter finds its immense applications in hydro power plants to control the fluid flow. In-lieu with the constraints in cost and size to run laboratory setup, analysis of large diameter values will be mostly studied by computational method which is the best and inexpensive solution. For fluid and structural analysis, CFD and FEM software is used to perform large scale valve analyses, respectively. In order to perform above analysis in butterfly valve, the CAD model has to recreate and perform mesh in conventional software’s for various dimensions of valve. Therefore, its limitation is time consuming process. In-order to overcome that issue, python code was created to outcome complete pre-processing setup automatically in Salome software. Applying dimensions of the model clearly in the python code makes the running time comparatively lower and easier way to perform analysis of the valve. Hence, in this paper, an attempt was made to study the fluid-structure interaction (FSI) of butterfly valves by varying the valve angles and dimensions using python code in pre-processing software, and results are produced.

Keywords: Butterfly valve, fluid-structure interaction, automatic CFD analysis, flow coefficient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1297
2705 Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion

Authors: Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro

Abstract:

Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances.

Keywords: Basketball, deep learning, feature extraction, single-camera, tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698
2704 Critical Thinking Perspectives on Work Integrated Learning in Information Systems Education

Authors: A. Harmse, R. Goede

Abstract:

Students with high level skills are in demand, especially in scare skill environments. If universities wish to be successful and competitive, its students need to be adequately equipped with the necessary tools. Work Integrated Learning (WIL) is an essential component of the education of a student. The relevance of higher education should be assessed in terms of how it meets the needs of society and the world of work in a global economy. This paper demonstrates how to use Habermas's theory of communicative action to reflect on students- perceptions on their integration in the work environment to achieve social integration and financial justification. Interpretive questionnaires are used to determine the students- view of how they are integrated into society, and contributing to the economy. This paper explores the use of Habermas-s theory of communicative action to give theoretical and methodological guidance for the practice of social findings obtained in this inquiry.

Keywords: Discourse, Habermas, Information Systems Education, Theory of Communicative Action, Work Integrated Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626
2703 An Experimental Comparison of Unsupervised Learning Techniques for Face Recognition

Authors: Dinesh Kumar, C.S. Rai, Shakti Kumar

Abstract:

Face Recognition has always been a fascinating research area. It has drawn the attention of many researchers because of its various potential applications such as security systems, entertainment, criminal identification etc. Many supervised and unsupervised learning techniques have been reported so far. Principal Component Analysis (PCA), Self Organizing Maps (SOM) and Independent Component Analysis (ICA) are the three techniques among many others as proposed by different researchers for Face Recognition, known as the unsupervised techniques. This paper proposes integration of the two techniques, SOM and PCA, for dimensionality reduction and feature selection. Simulation results show that, though, the individual techniques SOM and PCA itself give excellent performance but the combination of these two can also be utilized for face recognition. Experimental results also indicate that for the given face database and the classifier used, SOM performs better as compared to other unsupervised learning techniques. A comparison of two proposed methodologies of SOM, Local and Global processing, shows the superiority of the later but at the cost of more computational time.

Keywords: Face Recognition, Principal Component Analysis, Self Organizing Maps, Independent Component Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
2702 A Development of Online Lessons to Strengthen the Learning Process of Master's Degree Students Majoring in Curriculum and Instruction at Suan Sunandha Rajabhat University

Authors: Chaiwat Waree

Abstract:

The purposes of the research were to develop online lessons to strengthen the learning process of Master's degree students majoring in Curriculum and Instruction at Suan Sunandha Rajabhat University; to achieve the efficiency criteria of 80/80; and to study the satisfaction of students who use online lessons to strengthen the learning process of Master’s degree students majoring in Curriculum and Instruction at Suan Sunandha Rajabhat University. The sample consisted of 40 university students studying in semester 1, academic year 2012. The sample was determined by Purposive Sampling. Selected students were from the class which the researcher was the homeroom tutor. The tutor was responsible for the teaching of learning process. Tools used in the study were online lessons, 60-point performance test, and evaluation test of satisfaction of students on online lessons. Data analysis yielded the following results; 83.66/88.29 efficiency of online lessons measured against the criteria; the comparison of performance before and after taking online lessons using t-test yielded 29.67. The statistical significance was at 0.05; the average satisfaction level of forty students on online lessons was 4.46 with standard deviation of 0.68.

Keywords: Online Lessons, Curriculum and Instruction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1434
2701 Designing for Inclusion within the Learning Management System: Social Justice, Identities, and Online Design for Digital Spaces in Higher Education

Authors: Christina Van Wingerden

Abstract:

The aim of this paper is to propose pedagogical design for learning management systems (LMS) that offers greater inclusion for students based on a number of theoretical perspectives and delineated through an example. Considering the impact of COVID-19, including on student mental health, the research suggesting the importance of student sense of belonging on retention, success, and student well-being, the author describes intentional LMS design incorporating theoretically based practices informed by critical theory, feminist theory, indigenous theory and practices, and new materiality. This article considers important aspects of these theories and practices which attend to inclusion, identities, and socially just learning environments. Additionally, increasing student sense of belonging and mental health through LMS design influenced by adult learning theory and the community of inquiry model are described.  The process of thinking through LMS pedagogical design with inclusion intentionally in mind affords the opportunity to allow LMS to go beyond course use as a repository of documents, to an intentional community of practice that facilitates belonging and connection, something much needed in our times. In virtual learning environments it has been harder to discern how students are doing, especially in feeling connected to their courses, their faculty, and their student peers. Increasingly at the forefront of public universities is addressing the needs of students with multiple and intersecting identities and the multiplicity of needs and accommodations. Education in 2020, and moving forward, calls for embedding critical theories and inclusive ideals and pedagogies to the ways instructors design and teach in online platforms. Through utilization of critical theoretical frameworks and instructional practices, students may experience the LMS as a welcoming place with intentional plans for welcoming diversity in identities.

Keywords: Belonging, critical pedagogy, instructional design, Learning Management System, LMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 836
2700 Simulation of Natural Convection Flow in an Inclined open Cavity using Lattice Boltzmann Method

Authors: H. Sajjadi, M. Gorji, GH.R. Kefayati, D. D. Ganji, M. Shayan nia

Abstract:

In this paper effects of inclination angle on natural convection flow in an open cavity has been analyzed with Lattice Boltzmann Method (LBM).The angle of inclination varied from θ= - 45° to 45° with 15° intervals. Study has been conducted for Rayleigh numbers (Ra) 104 to 106. The comparisons show that the average Nusselt number increases with growth of Rayleigh number and the average Nusselt number increase as inclination angles increases at Ra=104.At Ra=105 and Ra=106 the average Nusselt number enhance as inclination angels varied from θ= -45° to θ= 0° and decrease as inclination angels increase in θ= 0° to θ= 45°.

Keywords: Lattice Boltzmann Method, Inclination angle, Opencavity, Natural convection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2007