Search results for: curve detection
325 A New Hybrid RMN Image Segmentation Algorithm
Authors: Abdelouahab Moussaoui, Nabila Ferahta, Victor Chen
Abstract:
The development of aid's systems for the medical diagnosis is not easy thing because of presence of inhomogeneities in the MRI, the variability of the data from a sequence to the other as well as of other different source distortions that accentuate this difficulty. A new automatic, contextual, adaptive and robust segmentation procedure by MRI brain tissue classification is described in this article. A first phase consists in estimating the density of probability of the data by the Parzen-Rozenblatt method. The classification procedure is completely automatic and doesn't make any assumptions nor on the clusters number nor on the prototypes of these clusters since these last are detected in an automatic manner by an operator of mathematical morphology called skeleton by influence zones detection (SKIZ). The problem of initialization of the prototypes as well as their number is transformed in an optimization problem; in more the procedure is adaptive since it takes in consideration the contextual information presents in every voxel by an adaptive and robust non parametric model by the Markov fields (MF). The number of bad classifications is reduced by the use of the criteria of MPM minimization (Maximum Posterior Marginal).Keywords: Clustering, Automatic Classification, SKIZ, MarkovFields, Image segmentation, Maximum Posterior Marginal (MPM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412324 Flow Duration Curves and Recession Curves Connection through a Mathematical Link
Authors: Elena Carcano, Mirzi Betasolo
Abstract:
This study helps Public Water Bureaus in giving reliable answers to water concession requests. Rapidly increasing water requests can be supported provided that further uses of a river course are not totally compromised, and environmental features are protected as well. Strictly speaking, a water concession can be considered a continuous drawing from the source and causes a mean annual streamflow reduction. Therefore, deciding if a water concession is appropriate or inappropriate seems to be easily solved by comparing the generic demand to the mean annual streamflow value at disposal. Still, the immediate shortcoming for such a comparison is that streamflow data are information available only for few catchments and, most often, limited to specific sites. Subsequently, comparing the generic water demand to mean daily discharge is indeed far from being completely satisfactory since the mean daily streamflow is greater than the water withdrawal for a long period of a year. Consequently, such a comparison appears to be of little significance in order to preserve the quality and the quantity of the river. In order to overcome such a limit, this study aims to complete the information provided by flow duration curves introducing a link between Flow Duration Curves (FDCs) and recession curves and aims to show the chronological sequence of flows with a particular focus on low flow data. The analysis is carried out on 25 catchments located in North-Eastern Italy for which daily data are provided. The results identify groups of catchments as hydrologically homogeneous, having the lower part of the FDCs (corresponding streamflow interval is streamflow Q between 300 and 335, namely: Q(300), Q(335)) smoothly reproduced by a common recession curve. In conclusion, the results are useful to provide more reliable answers to water request, especially for those catchments which show similar hydrological response and can be used for a focused regionalization approach on low flow data. A mathematical link between streamflow duration curves and recession curves is herein provided, thus furnishing streamflow duration curves information upon a temporal sequence of data. In such a way, by introducing assumptions on recession curves, the chronological sequence upon low flow data can also be attributed to FDCs, which are known to lack this information by nature.
Keywords: Chronological sequence of discharges, recession curves, streamflow duration curves, water concession.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594323 Combinatorial Optimisation of Worm Propagationon an Unknown Network
Authors: Eric Filiol, Edouard Franc, Alessandro Gubbioli, Benoit Moquet, Guillaume Roblot
Abstract:
Worm propagation profiles have significantly changed since 2003-2004: sudden world outbreaks like Blaster or Slammer have progressively disappeared and slower but stealthier worms appeared since, most of them for botnets dissemination. Decreased worm virulence results in more difficult detection. In this paper, we describe a stealth worm propagation model which has been extensively simulated and analysed on a huge virtual network. The main features of this model is its ability to infect any Internet-like network in a few seconds, whatever may be its size while greatly limiting the reinfection attempt overhead of already infected hosts. The main simulation results shows that the combinatorial topology of routing may have a huge impact on the worm propagation and thus some servers play a more essential and significant role than others. The real-time capability to identify them may be essential to greatly hinder worm propagation.Keywords: Combinatorial worm, worm spreading, worm virulence, stealth worm, spreading simulation, vertex cover, networktopology, WAST simulator, SuWAST simulator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203322 Volatile Organochlorine Compounds Emitted by Temperate Coniferous Forests
Authors: Jana Doležalová, Josef Holík, Zdeněk Wimmer, Sándor T. Forczek
Abstract:
Chlorine is one of the most abundant elements in nature, which undergoes a complex biogeochemical cycle. Chlorine bound in some substances is partly responsible for atmospheric ozone depletion and contamination of some ecosystems. As due to international regulations anthropogenic burden of volatile organochlorines (VOCls) in atmosphere decreases, natural sources (plants, soil, abiotic formation) are expected to dominate VOCl production in the near future. Examples of plant VOCl production are methyl chloride, and bromide emission from (sub)tropical ferns, chloroform, 1,1,1-trichloroethane and tetrachloromethane emission from temperate forest fern and moss. Temperate forests are found to emit in addition to the previous compounds tetrachloroethene, and brominated volatile compounds. VOCls can be taken up and further metabolized in plants. The aim of this work is to identify and quantitatively analyze the formed VOCls in temperate forest ecosystems by a cryofocusing/GC-ECD detection method, hence filling a gap of knowledge in the biogeochemical cycle of chlorine.Keywords: chloroform, cryofocusing-GC-ECD, ozonedepletion, volatile organochlorines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1424321 Elman Neural Network for Diagnosis of Unbalance in a Rotor-Bearing System
Authors: S. Sendhilkumar, N. Mohanasundaram, M. Senthilkumar, S. N. Sivanandam
Abstract:
The operational life of rotating machines has to be extended using a predictive condition maintenance tool. Among various condition monitoring techniques, vibration analysis is most widely used technique in industry. Signals are extracted for evaluating the condition of machine; further diagnostics is carried out with detected signals to extend the life of machine. With help of detected signals, further interpretations are done to predict the occurrence of defects. To study the problem of defects, a test rig with various possibilities of defects is constructed and experiments are performed considering the unbalanced condition. Further, this paper presents an approach for fault diagnosis of unbalance condition using Elman neural network and frequency-domain vibration analysis. Amplitudes with variation in acceleration are fed to Elman neural network to classify fault or no-fault condition. The Elman network is trained, validated and tested with experimental readings. Results illustrate the effectiveness of Elman network in rotor-bearing system.Keywords: Elman neural network, fault detection, rotating machines, unbalance, vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470320 Detection of Oxidative Stress Induced by Mobile Phone Radiation in Tissues of Mice using 8-Oxo-7, 8-Dihydro-2'-Deoxyguanosine as a Biomarker
Authors: Ahmad M. Khalil, Ahmad M. Alshamali, Marwan H. Gagaa
Abstract:
We investigated oxidative DNA damage caused by radio frequency radiation using 8-oxo-7, 8-dihydro-2'- deoxyguanosine (8-oxodG) generated in mice tissues after exposure to 900 MHz mobile phone radio frequency in three independent experiments. The RF was generated by a Global System for Mobile Communication (GSM) signal generator. The radio frequency field was adjusted to 25 V/m. The whole body specific absorption rate (SAR) was 1.0 W/kg. Animals were exposed to this field for 30 min daily for 30 days. 24 h post-exposure, blood serum, brain and spleen were removed and DNA was isolated. Enzyme-linked immunosorbent assay (ELISA) was used to measure 8-oxodG concentration. All animals survived the whole experimental period. The body weight of animals did not change significantly at the end of the experiment. No statistically significant differences observed in the levels of oxidative stress. Our results are not in favor of the hypothesis that 900 MHz RF induces oxidative damage.Keywords: Mice, Mobile phone radiation, oxidative stress, 8-oxo-7, 8-dihydro-2'-deoxyguanosine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051319 Design and Implementation of Reed Solomon Encoder on FPGA
Authors: Amandeep Singh, Mandeep Kaur
Abstract:
Error correcting codes are used for detection and correction of errors in digital communication system. Error correcting coding is based on appending of redundancy to the information message according to a prescribed algorithm. Reed Solomon codes are part of channel coding and withstand the effect of noise, interference and fading. Galois field arithmetic is used for encoding and decoding reed Solomon codes. Galois field multipliers and linear feedback shift registers are used for encoding the information data block. The design of Reed Solomon encoder is complex because of use of LFSR and Galois field arithmetic. The purpose of this paper is to design and implement Reed Solomon (255, 239) encoder with optimized and lesser number of Galois Field multipliers. Symmetric generator polynomial is used to reduce the number of GF multipliers. To increase the capability toward error correction, convolution interleaving will be used with RS encoder. The Design will be implemented on Xilinx FPGA Spartan II.
Keywords: Galois Field, Generator polynomial, LFSR, Reed Solomon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4844318 Detection of Near Failure Winding due to Deformation in 33/11kV Power Transformer by using Low Voltage Impulse (LVI) Test Method and Validated through Untanking
Authors: R. Samsudin, Yogendra, Hairil Satar, Y.Zaidey
Abstract:
Power transformer consists of components which are under consistent thermal and electrical stresses. The major component which degrades under these stresses is the paper insulation of the power transformer. At site, lightning impulses and cable faults may cause the winding deformation. In addition, the winding may deform due to impact during transportation. A deformed winding will excite more stress to its insulating paper thus will degrade it. Insulation degradation will shorten the life-span of the transformer. Currently there are two methods of detecting the winding deformation which are Sweep Frequency Response Analysis (SFRA) and Low Voltage Impulse Test (LVI). The latter injects current pulses to the winding and capture the admittance plot. In this paper, a transformer which experienced overheating and arcing was identified, and both SFRA and LVI were performed. Next, the transformer was brought to the factory for untanking. The untanking results revealed that the LVI is more accurate than the SFRA method for this case study.Keywords: Winding Deformation, Arcing, Dissolved GasAnalysis, Sweep Frequency Response Analysis, Low VoltageImpulse Method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2846317 Impact of Masonry Joints on Detection of Humidity Distribution in Aerated Concrete Masonry Constructions by Electric Impedance Spectrometry Measurements
Authors: Sanita Rubene, Martins Vilnitis, Juris Noviks
Abstract:
Aerated concrete is a load bearing construction material, which has high heat insulation parameters. Walls can be erected from aerated concrete masonry constructions and in perfect circumstances additional heat insulation is not required. The most common problem in aerated concrete heat insulation properties is the humidity distribution throughout the cross section of the masonry elements as well as proper and conducted drying process of the aerated concrete construction because only dry aerated concrete masonry constructions can reach high heat insulation parameters. In order to monitor drying process of the masonry and detect humidity distribution throughout the cross section of aerated concrete masonry construction application of electrical impedance spectrometry is applied. Further test results and methodology of this non-destructive testing method is described in this paper.
Keywords: Aerated concrete, electrical impedance spectrometry, humidity distribution, non-destructive testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118316 A Car Parking Monitoring System Using a Line-Topology Wireless Sensor Network
Authors: Dae Il Kim, Jungho Moon, Tae Yun Chung
Abstract:
This paper presents a car parking monitoring system using a wireless sensor network. The presented sensor network has a line-shaped topology and adopts a TDMA-based protocol for allowing multi-hop communications. Sensor nodes are deployed in the ground of an outdoor parking lot in such a way that a sensor node monitors a parking space. Each sensor node detects the availability of the associated parking space and transmits the detection result to a sink node via intermediate sensor nodes existing between the source sensor node and the sink node. We evaluate the feasibility of the presented sensor network and the TDMA-based communication protocol through experiments using 11 sensor nodes deployed in a real parking lot. The result shows that the presented car parking monitoring system is robust to changes in the communication environments and efficient for monitoring parking spaces of outdoor parking lots.
Keywords: Multi-hop communication, parking monitoring system, TDMA, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616315 The Use of Lane-Centering to Assure the Visible Light Communication Connectivity for a Platoon of Autonomous Vehicles
Authors: Mohammad Y. Abualhoul, Edgar Talavera Munoz, Fawzi Nashashibi
Abstract:
The new emerging Visible Light Communication (VLC) technology has been subjected to intensive investigation, evaluation, and lately, deployed in the context of convoy-based applications for Intelligent Transportations Systems (ITS). The technology limitations were defined and supported by different solutions proposals to enhance the crucial alignment and mobility limitations. In this paper, we propose the incorporation of VLC technology and Lane-Centering (LC) technique to assure the VLC-connectivity by keeping the autonomous vehicle aligned to the lane center using vision-based lane detection in a convoy-based formation. Such combination can ensure the optical communication connectivity with a lateral error less than 30 cm. As soon as the road lanes are detectable, the evaluated system showed stable behavior independently from the inter-vehicle distances and without the need for any exchanged information of the remote vehicles. The evaluation of the proposed system is verified using VLC prototype and an empirical result of LC running application over 60 km in Madrid M40 highway.Keywords: VLC, lane-centering, platoon, ITS, road safety applications.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 772314 Damage Localization of Deterministic-Stochastic Systems
Authors: Yen-Po Wang, Ming-Chih Huang, Ming-Lian Chang
Abstract:
A scheme integrated with deterministic–stochastic subspace system identification and the method of damage localization vector is proposed in this study for damage detection of structures based on seismic response data. A series of shaking table tests using a five-storey steel frame has been conducted in National Center for Research on Earthquake Engineering (NCREE), Taiwan. Damage condition is simulated by reducing the cross-sectional area of some of the columns at the bottom. Both single and combinations of multiple damage conditions at various locations have been considered. In the system identification analysis, either full or partial observation conditions have been taken into account. It has been shown that the damaged stories can be identified from global responses of the structure to earthquakes if sufficiently observed. In addition to detecting damage(s) with respect to the intact structure, identification of new or extended damages of the as-damaged (ill-conditioned) counterpart has also been studied. The proposed scheme proves to be effective.
Keywords: Damage locating vectors, deterministic-stochastic subspace system, shaking table tests, system identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699313 Analysis of Target Location Estimation in High Performance Radar System
Authors: Jin-Hyeok Kim, Won-Chul Choi, Seung-Ri Jin, Dong-Jo Park
Abstract:
In this paper, an analysis of a target location estimation system using the best linear unbiased estimator (BLUE) for high performance radar systems is presented. In synthetic environments, we are here concerned with three key elements of radar system modeling, which makes radar systems operates accurately in strategic situation in virtual ground. Radar Cross Section (RCS) modeling is used to determine the actual amount of electromagnetic waves that are reflected from a tactical object. Pattern Propagation Factor (PPF) is an attenuation coefficient of the radar equation that contains the reflection from the surface of the earth, the diffraction, the refraction and scattering by the atmospheric environment. Clutter is the unwanted echoes of electronic systems. For the data fusion of output results from radar detection in synthetic environment, BLUE is used and compared with the mean values of each simulation results. Simulation results demonstrate the performance of the radar system.Keywords: Best linear unbiased estimator (BLUE) , data fusion, radar system modeling, target location estimation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084312 3D High-Precision Tunnel Gravity Exploration Method for Concealed High-Density Ore-Bodies: A Case Study on the Zhaotong Maoping Carbonate-Hosted Zn-Pb-(Ag-Ge) Deposit in Northeastern Yunnan, China
Authors: Han Run-Sheng, Li Wen-Yao, Wang Feng, Liu Fei, Qiu Wen-Long, Lei Li
Abstract:
Accurately positioning detection of concealed deposits or ore-bodies is one of the difficult problems in mineral exploration field. Theory calculation and exploration practices for tunnel gravity indicate that 3D high-precision Tunnel Gravity Exploration Method (TGEM) can find concealed high-density three-dimensional ore-bodies in the depth. The ore-finding breakthroughs at the depth of the Zhaotong Maoping carbonate-hosted Zn–Pb–(Ag–Ge) deposit in Northeastern Yunnan have proved that the exploration method in combination with MEAHFZ method is effective to detect concealed high-density ore-bodies. TGEM may overcome anomalous ambiguity of other geophysical methods for 3D positioning of concealed ore-bodies.
Keywords: 3D tunnel gravity exploration method, concealed high-density ore-bodies, Zn–Pb–(Ag–Ge) deposit, Zaotong Maoping, Northeastern Yunnan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1167311 Diagnosis of Multivariate Process via Nonlinear Kernel Method Combined with Qualitative Representation of Fault Patterns
Authors: Hyun-Woo Cho
Abstract:
The fault detection and diagnosis of complicated production processes is one of essential tasks needed to run the process safely with good final product quality. Unexpected events occurred in the process may have a serious impact on the process. In this work, triangular representation of process measurement data obtained in an on-line basis is evaluated using simulation process. The effect of using linear and nonlinear reduced spaces is also tested. Their diagnosis performance was demonstrated using multivariate fault data. It has shown that the nonlinear technique based diagnosis method produced more reliable results and outperforms linear method. The use of appropriate reduced space yielded better diagnosis performance. The presented diagnosis framework is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. The use of reduced model space helps to mitigate the sensitivity of the fault pattern to noise.Keywords: Real-time Fault diagnosis, triangular representation of patterns in reduced spaces, Nonlinear kernel technique, multivariate statistical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604310 The Effect of Body Condition Score on Hormonal and Vaginal Histological Changes During Estrus of Synchronized Etawah Cross Bred Does
Authors: Diah Tri Widayati, Sunendar, Kresno Suharto, Pudji Asuti, Aris Junaid
Abstract:
Eight Etawah cross bred does were divided into two groups based on body condition score (BCS). Group I (BSC 2, body weight 25-30 kg; n = 4), and Group II (BSC 3, body weight, 35-40 kg, n=4). All does received intravaginal controlled internal drug release devices (CIDR) for 10 days, and a prostaglandin F2α at 48 h before CIDR removal. Estrus detection was carried out using vasectomized buck. Vaginal epithelium was taken to determine estrus cycle. Blood samples were taken every 3-6 hours, started from moment of CIDR removal until the end of estrus. The results showed vaginal histological indicated estrus occurred at the hours of 25 to 60 and 30 to 70 post CIDR removal in BCS 2 and 3, respectively. Progesterone peak of BCS 2 and BCS 3 were 0.18±0.31 and 0.48±0.31 ng/mL on the hour 0 post CIDR removal. Estradiol -17ß peak of each group was 53.25±35.08 and 89.91±92.84 pg/mL at 48 post CIDR removal. LH surge only occurred on BCS 3 groups, the LH concentrations were 9.9± 9.1; 4.5± 4.0; and 18.2± 9.1 ng/mL at 45, 48 and 51 hours post CIDR removal, respectively. It was concluded that the BCS had effects on vaginal histological changes and LH surge.Keywords: Estrus synchronization, Vaginal histological changes, Progesterone, Estradiol -17ß , LH
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877309 Data Embedding Based on Better Use of Bits in Image Pixels
Authors: Rehab H. Alwan, Fadhil J. Kadhim, Ahmad T. Al-Taani
Abstract:
In this study, a novel approach of image embedding is introduced. The proposed method consists of three main steps. First, the edge of the image is detected using Sobel mask filters. Second, the least significant bit LSB of each pixel is used. Finally, a gray level connectivity is applied using a fuzzy approach and the ASCII code is used for information hiding. The prior bit of the LSB represents the edged image after gray level connectivity, and the remaining six bits represent the original image with very little difference in contrast. The proposed method embeds three images in one image and includes, as a special case of data embedding, information hiding, identifying and authenticating text embedded within the digital images. Image embedding method is considered to be one of the good compression methods, in terms of reserving memory space. Moreover, information hiding within digital image can be used for security information transfer. The creation and extraction of three embedded images, and hiding text information is discussed and illustrated, in the following sections.
Keywords: Image embedding, Edge detection, gray level connectivity, information hiding, digital image compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2148308 Optimization of Solar Tracking Systems
Authors: A. Zaher, A. Traore, F. Thiéry, T. Talbert, B. Shaer
Abstract:
In this paper, an intelligent approach is proposed to optimize the orientation of continuous solar tracking systems on cloudy days. Considering the weather case, the direct sunlight is more important than the diffuse radiation in case of clear sky. Thus, the panel is always pointed towards the sun. In case of an overcast sky, the solar beam is close to zero, and the panel is placed horizontally to receive the maximum of diffuse radiation. Under partly covered conditions, the panel must be pointed towards the source that emits the maximum of solar energy and it may be anywhere in the sky dome. Thus, the idea of our approach is to analyze the images, captured by ground-based sky camera system, in order to detect the zone in the sky dome which is considered as the optimal source of energy under cloudy conditions. The proposed approach is implemented using experimental setup developed at PROMES-CNRS laboratory in Perpignan city (France). Under overcast conditions, the results were very satisfactory, and the intelligent approach has provided efficiency gains of up to 9% relative to conventional continuous sun tracking systems.
Keywords: Clouds detection, fuzzy inference systems, images processing, sun trackers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1212307 Effect of Miniature Cracks on the Fracture Strength and Strain of Tensile Armour Wires
Authors: Kazeem K. Adewole, Steve J. Bull
Abstract:
Tensile armour wires provide a flexible pipe's resistance to longitudinal stresses. Flexible pipe manufacturers need to know the effect of defects such as scratches and cracks, with dimensions less than 0.2mm which is the limit of the current nondestructive detection technology, on the fracture stress and fracture strain of the wire for quality assurance purposes. Recent research involving the determination of the fracture strength of cracked wires employed laboratory testing and classical fracture mechanics approach using non-standardised fracture mechanics specimens because standard test specimens could not be manufactured from the wires owing to their sizes. In this work, the effect of miniature cracks on the fracture properties of tensile armour wires was investigated using laboratory and finite element tensile testing simulations with the phenomenological shear fracture model. The investigation revealed that the presence of cracks shallower than 0.2mm is worse on the fracture strain of the wire.Keywords: Cracks, Finite Element Simulations, Fracture Mechanics, Shear Fracture Model, Tensile Armour Wire
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1852306 Cost Effective Real-Time Image Processing Based Optical Mark Reader
Authors: Amit Kumar, Himanshu Singal, Arnav Bhavsar
Abstract:
In this modern era of automation, most of the academic exams and competitive exams are Multiple Choice Questions (MCQ). The responses of these MCQ based exams are recorded in the Optical Mark Reader (OMR) sheet. Evaluation of the OMR sheet requires separate specialized machines for scanning and marking. The sheets used by these machines are special and costs more than a normal sheet. Available process is non-economical and dependent on paper thickness, scanning quality, paper orientation, special hardware and customized software. This study tries to tackle the problem of evaluating the OMR sheet without any special hardware and making the whole process economical. We propose an image processing based algorithm which can be used to read and evaluate the scanned OMR sheets with no special hardware required. It will eliminate the use of special OMR sheet. Responses recorded in normal sheet is enough for evaluation. The proposed system takes care of color, brightness, rotation, little imperfections in the OMR sheet images.Keywords: OMR, image processing, hough circle transform, interpolation, detection, Binary Thresholding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544305 Analysis of Pharmaceuticals in Influents of Municipal Wastewater Treatment Plants in Jordan
Authors: O. A. Al-Mashaqbeh, A. M. Ghrair, D. Alsafadi, S. S. Dalahmeh, S. L. Bartelt-Hunt, D. D. Snow
Abstract:
Grab samples were collected in the summer to characterize selected pharmaceuticals and personal care products (PPCPs) in the influent of two wastewater treatment plants (WWTPs) in Jordan. Liquid chromatography tandem mass spectrometry (LC–MS/MS) was utilized to determine the concentrations of 18 compounds of PPCPs. Among all of the PPCPs analyzed, eight compounds were detected in the influent samples (1,7-dimethylxanthine, acetaminophen, caffeine, carbamazepine, cotinine, morphine, sulfamethoxazole and trimethoprim). However, five compounds (amphetamine, cimetidine, diphenhydramine, methylenedioxyamphetamine (MDA) and sulfachloropyridazine) were not detected in collected samples (below the detection limits <0.005 ng/l). Moreover, the results indicated that the highest concentration levels detected in collected samples were caffeine, acetaminophen, 1,7-dimethylxanthine, cotinine and carbamazepine at concentration of 182.5 µg/L, 28.7 µg/l, 7.47 µg/l, 4.67 µg/l and 1.54 µg/L, respectively. In general, most of compounds concentrations measured in wastewater in Jordan are within the range for wastewater previously reported in India wastewater except caffeine.
Keywords: Pharmaceuticals and personal care products, wastewater, Jordan.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1280304 Natural Radioactivity in Foods Consumed in Turkey
Authors: E. Kam, G. Karahan, H. Aslıyuksek, A. Bozkurt
Abstract:
This study aims to determine the natural radioactivity levels in some foodstuffs produced in Turkey. For this purpose, 48 different foods samples were collected from different land parcels throughout the country. All samples were analyzed to designate both gross alpha and gross beta radioactivities and the radionuclides’ concentrations. The gross alpha radioactivities were measured as below 1 Bq kg-1 in most of the samples, some of them being due to the detection limit of the counting system. The gross beta radioactivity levels ranged from 1.8 Bq kg-1 to 453 Bq kg-1, larger levels being observed in leguminous seeds while the highest level being in haricot bean. The concentrations of natural radionuclides in the foodstuffs were investigated by the method of gamma spectroscopy. High levels of 40K were measured in all the samples, the highest activities being again in leguminous seeds. Low concentrations of 238U and 226Ra were found in some of the samples, which are comparable to the reported results in the literature. Based on the activity concentrations obtained in this study, average annual effective dose equivalents for the radionuclides 226Ra, 238U, and 40K were calculated as 77.416 µSv y-1, 0.978 µSv y-1, and 140.55 µSv y-1, respectively.
Keywords: Foods, radioactivity, gross alpha, gross beta, annual equivalent dose, Turkey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999303 Parametric Approach for Reserve Liability Estimate in Mortgage Insurance
Authors: Rajinder Singh, Ram Valluru
Abstract:
Chain Ladder (CL) method, Expected Loss Ratio (ELR) method and Bornhuetter-Ferguson (BF) method, in addition to more complex transition-rate modeling, are commonly used actuarial reserving methods in general insurance. There is limited published research about their relative performance in the context of Mortgage Insurance (MI). In our experience, these traditional techniques pose unique challenges and do not provide stable claim estimates for medium to longer term liabilities. The relative strengths and weaknesses among various alternative approaches revolve around: stability in the recent loss development pattern, sufficiency and reliability of loss development data, and agreement/disagreement between reported losses to date and ultimate loss estimate. CL method results in volatile reserve estimates, especially for accident periods with little development experience. The ELR method breaks down especially when ultimate loss ratios are not stable and predictable. While the BF method provides a good tradeoff between the loss development approach (CL) and ELR, the approach generates claim development and ultimate reserves that are disconnected from the ever-to-date (ETD) development experience for some accident years that have more development experience. Further, BF is based on subjective a priori assumption. The fundamental shortcoming of these methods is their inability to model exogenous factors, like the economy, which impact various cohorts at the same chronological time but at staggered points along their life-time development. This paper proposes an alternative approach of parametrizing the loss development curve and using logistic regression to generate the ultimate loss estimate for each homogeneous group (accident year or delinquency period). The methodology was tested on an actual MI claim development dataset where various cohorts followed a sigmoidal trend, but levels varied substantially depending upon the economic and operational conditions during the development period spanning over many years. The proposed approach provides the ability to indirectly incorporate such exogenous factors and produce more stable loss forecasts for reserving purposes as compared to the traditional CL and BF methods.
Keywords: Actuarial loss reserving techniques, logistic regression, parametric function, volatility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 416302 Enzymes Activity in Bovine Cervical Mucus Related to the Time of Ovulation And Insemination
Authors: S. Benbia, A.Kalla, M. Yahia, K. Belhadi, A. Zidani
Abstract:
Forty-five dairy cows were used to compare the enzyme activity of alkaline phosphatase (ALP), lactate dehydrogenase (LDH), α -amylase in the cervical mucus of cows during spontaneous and induced estrus using progestagen or PGF2 α and to determine whether these enzymes affect the fertility in cows with induced estrus, at the time of Al. The animals were assigned to 3 groups (no treatment, a Crestar® for 12 days, a double im injection of PGF2 α). The cows were artificially inseminated (AI). Cervical mucus samples were collected from all cows 3 to 5 min before the AI. The results are summarized as follows: ALP and α -amylase activity for spontaneous estrus were similar to those for induced estrus (P>0.05) . LDH activity levels during spontaneous and PGF2 α induced estrus was significantly lower (P < 0.001) than that in progestagene induced estrus groups. While no difference was found between the first and the third groups. Our result showed a significant difference in LDH activity levels between cows conceived with 2 or more AI and those conceived with 1 AI. The result of this study showed that the enzyme activity in cervical mucus is helpful for detection of ovulation and time of AI.Keywords: cervical mucus, dairy cow, enzyme, induced, estrus, ovulation, AI
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2101301 Energy-Efficient Clustering Protocol in Wireless Sensor Networks for Healthcare Monitoring
Authors: Ebrahim Farahmand, Ali Mahani
Abstract:
Wireless sensor networks (WSNs) can facilitate continuous monitoring of patients and increase early detection of emergency conditions and diseases. High density WSNs helps us to accurately monitor a remote environment by intelligently combining the data from the individual nodes. Due to energy capacity limitation of sensors, enhancing the lifetime and the reliability of WSNs are important factors in designing of these networks. The clustering strategies are verified as effective and practical algorithms for reducing energy consumption in WSNs and can tackle WSNs limitations. In this paper, an Energy-efficient weight-based Clustering Protocol (EWCP) is presented. Artificial retina is selected as a case study of WSNs applied in body sensors. Cluster heads’ (CHs) selection is equipped with energy efficient parameters. Moreover, cluster members are selected based on their distance to the selected CHs. Comparing with the other benchmark protocols, the lifetime of EWCP is improved significantly.Keywords: Clustering of WSNs, healthcare monitoring, weight-based clustering, wireless sensor networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555300 Malaria Parasite Detection Using Deep Learning Methods
Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko
Abstract:
Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.Keywords: Malaria, deep learning, DL, convolution neural network, CNN, thin blood smears.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 655299 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network
Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman
Abstract:
We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.
Keywords: Autonomous surveillance, Bayesian reasoning, decision-support, interventions, patterns-of-life, predictive analytics, predictive insights.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 540298 Detection and Correction of Ectopic Beats for HRV Analysis Applying Discrete Wavelet Transforms
Authors: Desmond B. Keenan
Abstract:
The clinical usefulness of heart rate variability is limited to the range of Holter monitoring software available. These software algorithms require a normal sinus rhythm to accurately acquire heart rate variability (HRV) measures in the frequency domain. Premature ventricular contractions (PVC) or more commonly referred to as ectopic beats, frequent in heart failure, hinder this analysis and introduce ambiguity. This investigation demonstrates an algorithm to automatically detect ectopic beats by analyzing discrete wavelet transform coefficients. Two techniques for filtering and replacing the ectopic beats from the RR signal are compared. One technique applies wavelet hard thresholding techniques and another applies linear interpolation to replace ectopic cycles. The results demonstrate through simulation, and signals acquired from a 24hr ambulatory recorder, that these techniques can accurately detect PVC-s and remove the noise and leakage effects produced by ectopic cycles retaining smooth spectra with the minimum of error.Keywords: Heart rate variability, vagal tone, sympathetic, parasympathetic, wavelets, ectopic beats, spectral analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2069297 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation
Authors: Hamed Alqahtani, Manolya Kavakli-Thorne
Abstract:
The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.Keywords: Video surveillance, disentanglement, face detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 607296 The First Prevalence Report of Direct Identification and Differentiation of B. abortus and B. melitensis using Real Time PCR in House Mouse of Iran
Authors: A. Doosti, S. Moshkelani
Abstract:
Brucellosis is a zoonotic disease; its symptoms and appearances are not exclusive in human and its traditional diagnosis is based on culture, serological methods and conventional PCR. For more sensitive, specific detection and differentiation of Brucella spp., the real time PCR method is recommended. This research has performed to determine the presence and prevalence of Brucella spp. and differentiation of Brucella abortus and Brucella melitensis in house mouse (Mus musculus) in west of Iran. A TaqMan analysis and single-step PCR was carried out in total 326 DNA of Mouse's spleen samples. From the total number of 326 samples, 128 (39.27%) gave positive results for Brucella spp. by conventional PCR, also 65 and 32 out of the 128 specimens were positive for B. melitensis, B. abortus, respectively. These results indicate a high presence of this pathogen in this area and that real time PCR is considerably faster than current standard methods for identification and differentiation of Brucella species. To our knowledge, this study is the first prevalence report of direct identification and differentiation of B. abortus and B. melitensis by real time PCR in mouse tissue samples in Iran.
Keywords: Differentiation, B. abortus, B. melitensis, TaqManprobe, Iran.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567