Search results for: Gaussian Mixture Models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3178

Search results for: Gaussian Mixture Models

1618 Encrypter Information Software Using Chaotic Generators

Authors: Cardoza-Avendaño L., López-Gutiérrez R.M., Inzunza-González E., Cruz-Hernández C., García-Guerrero E., Spirin V., Serrano H.

Abstract:

This document shows a software that shows different chaotic generator, as continuous as discrete time. The software gives the option for obtain the different signals, using different parameters and initial condition value. The program shows then critical parameter for each model. All theses models are capable of encrypter information, this software show it too.

Keywords: cryptography, chaotic attractors, software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
1617 Resistance to Chloride Penetration of High Strength Self-Compacting Concretes: Pumice and Zeolite Effect

Authors: Kianoosh Samimi, Siham Kamali-Bernard, Ali Akbar Maghsoudi

Abstract:

This paper aims to contribute to the characterization and the understanding of fresh state, compressive strength and chloride penetration tendency of high strength self-compacting concretes (HSSCCs) where Portland cement type II is partially substituted by 10% and 15% of natural pumice and zeolite. First, five concrete mixtures with a control mixture without any pozzolan are prepared and tested in both fresh and hardened states. Then, resistance to chloride penetration for all formulation is investigated in non-steady state and steady state by measurement of chloride penetration and diffusion coefficient. In non-steady state, the correlation between initial current and chloride penetration with diffusion coefficient is studied. Moreover, the relationship between diffusion coefficient in non-steady state and electrical resistivity is determined. The concentration of free chloride ions is also measured in steady state. Finally, chloride penetration for all formulation is studied in immersion and tidal condition. The result shows that, the resistance to chloride penetration for HSSCC in immersion and tidal condition increases by incorporating pumice and zeolite. However, concrete with zeolite displays a better resistance. This paper shows that the HSSCC with 15% pumice and 10% zeolite is suitable in fresh, hardened, and durability characteristics.

Keywords: Chloride penetration, immersion, pumice, HSSCC, tidal, zeolite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 803
1616 Metallic Coating for Carbon Fiber Reinforced Polymer Matrix Composite Substrate

Authors: Amine Rezzoug, Said Abdi, Nadjet Bouhelal, Ismail Daoud

Abstract:

This paper investigates the application of metallic coatings on high fiber volume fraction carbon/epoxy polymer matrix composites. For the grip of the metallic layer, a method of modifying the surface of the composite by introducing a mixture of copper and steel powder (filler powders) which can reduce the impact of thermal spray particles. The powder was introduced to the surface at the time of the forming. Arc spray was used to project the zinc coating layer. The substrate was grit blasted to avoid poor adherence. The porosity, microstructure, and morphology of layers are characterized by optical microscopy, SEM and image analysis. The samples were studied also in terms of hardness and erosion resistance. This investigation did not reveal any visible evidence damage to the substrates. The hardness of zinc layer was about 25.94 MPa and the porosity was around (∼6.70%). The erosion test showed that the zinc coating improves the resistance to erosion. Based on the results obtained, we can conclude that thermal spraying allows the production of protective coating on PMC. Zinc coating has been identified as a compatible material with the substrate. The filler powders layer protects the substrate from the impact of hot particles and allows avoiding the rupture of brittle carbon fibers.

Keywords: Arc spray, coating, composite, erosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3385
1615 Development of an Ensemble Classification Model Based on Hybrid Filter-Wrapper Feature Selection for Email Phishing Detection

Authors: R. B. Ibrahim, M. S. Argungu, I. M. Mungadi

Abstract:

It is obvious in this present time, internet has become an indispensable part of human life since its inception. The Internet has provided diverse opportunities to make life so easy for human beings, through the adoption of various channels. Among these channels are email, internet banking, video conferencing, and the like. Email is one of the easiest means of communication hugely accepted among individuals and organizations globally. But over decades the security integrity of this platform has been challenged with malicious activities like Phishing. Email phishing is designed by phishers to fool the recipient into handing over sensitive personal information such as passwords, credit card numbers, account credentials, social security numbers, etc. This activity has caused a lot of financial damage to email users globally which has resulted in bankruptcy, sudden death of victims, and other health-related sicknesses. Although many methods have been proposed to detect email phishing, in this research, the results of multiple machine-learning methods for predicting email phishing have been compared with the use of filter-wrapper feature selection. It is worth noting that all three models performed substantially but one outperformed the other. The dataset used for these models is obtained from Kaggle online data repository, while three classifiers: decision tree, Naïve Bayes, and Logistic regression are ensemble (Bagging) respectively. Results from the study show that the Decision Tree (CART) bagging ensemble recorded the highest accuracy of 98.13% using PEF (Phishing Essential Features). This result further demonstrates the dependability of the proposed model.

Keywords: Ensemble, hybrid, filter-wrapper, phishing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179
1614 A Hyperbolic Characterization of Projective Klingenberg Planes

Authors: Basri Çelik

Abstract:

In this paper, the notion of Hyperbolic Klingenberg plane is introduced via a set of axioms like as Affine Klingenberg planes and Projective Klingenberg planes. Models of such planes are constructed by deleting a certain number m of equivalence classes of lines from a Projective Klingenberg plane. In the finite case, an upper bound for m is established and some combinatoric properties are investigated.

Keywords: Hyperbolic planes, Klingenberg planes, Projective planes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1330
1613 FT-NIR Method to Determine Moisture in Gluten Free Rice Based Pasta during Drying

Authors: Navneet Singh Deora, Aastha Deswal, H. N. Mishra

Abstract:

Pasta is one of the most widely consumed food products around the world. Rapid determination of the moisture content in pasta will assist food processors to provide online quality control of pasta during large scale production. Rapid Fourier transform near-infrared method (FT-NIR) was developed for determining moisture content in pasta. A calibration set of 150 samples, a validation set of 30 samples and a prediction set of 25 samples of pasta were used. The diffuse reflection spectra of different types of pastas were measured by FT-NIR analyzer in the 4,000-12,000cm-1 spectral range. Calibration and validation sets were designed for the conception and evaluation of the method adequacy in the range of moisture content 10 to 15 percent (w.b) of the pasta. The prediction models based on partial least squares (PLS) regression, were developed in the near-infrared. Conventional criteria such as the R2, the root mean square errors of cross validation (RMSECV), root mean square errors of estimation (RMSEE) as well as the number of PLS factors were considered for the selection of three pre-processing (vector normalization, minimum-maximum normalization and multiplicative scatter correction) methods. Spectra of pasta sample were treated with different mathematic pre-treatments before being used to build models between the spectral information and moisture content. The moisture content in pasta predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (R2 = 0.983), which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of moisture content in pasta. The best calibration model was developed with min-max normalization (MMN) spectral pre-processing (R2 = 0.9775). The MMN pre-processing method was found most suitable and the maximum coefficient of determination (R2) value of 0.9875 was obtained for the calibration model developed.

Keywords: FT-NIR, Pasta, moisture determination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2822
1612 Faster Pedestrian Recognition Using Deformable Part Models

Authors: Alessandro Preziosi, Antonio Prioletti, Luca Castangia

Abstract:

Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations.

Keywords: Autonomous vehicles, deformable part model, dpm, pedestrian recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
1611 Fuzzy Optimization in Metabolic Systems

Authors: Feng-Sheng Wang, Wu-Hsiung Wu, Kai-Cheng Hsu

Abstract:

The optimization of biological systems, which is a branch of metabolic engineering, has generated a lot of industrial and academic interest for a long time. In the last decade, metabolic engineering approaches based on mathematical optimizations have been used extensively for the analysis and manipulation of metabolic networks. In practical optimization of metabolic reaction networks, designers have to manage the nature of uncertainty resulting from qualitative characters of metabolic reactions, e.g., the possibility of enzyme effects. A deterministic approach does not give an adequate representation for metabolic reaction networks with uncertain characters. Fuzzy optimization formulations can be applied to cope with this problem. A fuzzy multi-objective optimization problem can be introduced for finding the optimal engineering interventions on metabolic network systems considering the resilience phenomenon and cell viability constraints. The accuracy of optimization results depends heavily on the development of essential kinetic models of metabolic networks. Kinetic models can quantitatively capture the experimentally observed regulation data of metabolic systems and are often used to find the optimal manipulation of external inputs. To address the issues of optimizing the regulatory structure of metabolic networks, it is necessary to consider qualitative effects, e.g., the resilience phenomena and cell viability constraints. Combining the qualitative and quantitative descriptions for metabolic networks makes it possible to design a viable strain and accurately predict the maximum possible flux rates of desired products. Considering the resilience phenomena in metabolic networks can improve the predictions of gene intervention and maximum synthesis rates in metabolic engineering. Two case studies will present in the conference to illustrate the phenomena.

Keywords: Fuzzy multi-objective optimization problem, kinetic model, metabolic engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
1610 Prediction of Time to Crack Reinforced Concrete by Chloride Induced Corrosion

Authors: Anuruddha Jayasuriya, Thanakorn Pheeraphan

Abstract:

In this paper, a review of different mathematical models which can be used as prediction tools to assess the time to crack reinforced concrete (RC) due to corrosion is investigated. This investigation leads to an experimental study to validate a selected prediction model. Most of these mathematical models depend upon the mechanical behaviors, chemical behaviors, electrochemical behaviors or geometric aspects of the RC members during a corrosion process. The experimental program is designed to verify the accuracy of a well-selected mathematical model from a rigorous literature study. Fundamentally, the experimental program exemplifies both one-dimensional chloride diffusion using RC squared slab elements of 500 mm by 500 mm and two-dimensional chloride diffusion using RC squared column elements of 225 mm by 225 mm by 500 mm. Each set consists of three water-to-cement ratios (w/c); 0.4, 0.5, 0.6 and two cover depths; 25 mm and 50 mm. 12 mm bars are used for column elements and 16 mm bars are used for slab elements. All the samples are subjected to accelerated chloride corrosion in a chloride bath of 5% (w/w) sodium chloride (NaCl) solution. Based on a pre-screening of different models, it is clear that the well-selected mathematical model had included mechanical properties, chemical and electrochemical properties, nature of corrosion whether it is accelerated or natural, and the amount of porous area that rust products can accommodate before exerting expansive pressure on the surrounding concrete. The experimental results have shown that the selected model for both one-dimensional and two-dimensional chloride diffusion had ±20% and ±10% respective accuracies compared to the experimental output. The half-cell potential readings are also used to see the corrosion probability, and experimental results have shown that the mass loss is proportional to the negative half-cell potential readings that are obtained. Additionally, a statistical analysis is carried out in order to determine the most influential factor that affects the time to corrode the reinforcement in the concrete due to chloride diffusion. The factors considered for this analysis are w/c, bar diameter, and cover depth. The analysis is accomplished by using Minitab statistical software, and it showed that cover depth is the significant effect on the time to crack the concrete from chloride induced corrosion than other factors considered. Thus, the time predictions can be illustrated through the selected mathematical model as it covers a wide range of factors affecting the corrosion process, and it can be used to predetermine the durability concern of RC structures that are vulnerable to chloride exposure. And eventually, it is further concluded that cover thickness plays a vital role in durability in terms of chloride diffusion.

Keywords: Accelerated corrosion, chloride diffusion, corrosion cracks, passivation layer, reinforcement corrosion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 895
1609 Climate Change in Albania and Its Effect on Cereal Yield

Authors: L. Basha, E. Gjika

Abstract:

This study is focused on analyzing climate change in Albania and its potential effects on cereal yields. Initially, monthly temperature and rainfalls in Albania were studied for the period 1960-2021. Climacteric variables are important variables when trying to model cereal yield behavior, especially when significant changes in weather conditions are observed. For this purpose, in the second part of the study, linear and nonlinear models explaining cereal yield are constructed for the same period, 1960-2021. The multiple linear regression analysis and lasso regression method are applied to the data between cereal yield and each independent variable: average temperature, average rainfall, fertilizer consumption, arable land, land under cereal production, and nitrous oxide emissions. In our regression model, heteroscedasticity is not observed, data follow a normal distribution, and there is a low correlation between factors, so we do not have the problem of multicollinearity. Machine learning methods, such as Random Forest (RF), are used to predict cereal yield responses to climacteric and other variables. RF showed high accuracy compared to the other statistical models in the prediction of cereal yield. We found that changes in average temperature negatively affect cereal yield. The coefficients of fertilizer consumption, arable land, and land under cereal production are positively affecting production. Our results show that the RF method is an effective and versatile machine-learning method for cereal yield prediction compared to the other two methods: multiple linear regression and lasso regression method.

Keywords: Cereal yield, climate change, machine learning, multiple regression model, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 249
1608 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments

Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea

Abstract:

The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.

Keywords: Deep learning, data mining, gender predication, MOOCs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1363
1607 Neuro-Fuzzy Networks for Identification of Mathematical Model Parameters of Geofield

Authors: A. Pashayev, R. Sadiqov, C. Ardil, F. Ildiz , H. Karabork

Abstract:

The new technology of fuzzy neural networks for identification of parameters for mathematical models of geofields is proposed and checked. The effectiveness of that soft computing technology is demonstrated, especially in the early stage of modeling, when the information is uncertain and limited.

Keywords: Identification, interpolation methods, neuro-fuzzy networks, geofield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332
1606 Hybrid Rocket Motor Performance Parameters: Theoretical and Experimental Evaluation

Authors: A. El-S. Makled, M. K. Al-Tamimi

Abstract:

A mathematical model to predict the performance parameters (thrusts, chamber pressures, fuel mass flow rates, mixture ratios, and regression rates during firing time) of hybrid rocket motor (HRM) is evaluated. The internal ballistic (IB) hybrid combustion model assumes that the solid fuel surface regression rate is controlled only by heat transfer (convective and radiative) from flame zone to solid fuel burning surface. A laboratory HRM is designed, manufactured, and tested for low thrust profile space missions (10-15 N) and for validating the mathematical model (computer program). The polymer material and gaseous oxidizer which are selected for this experimental work are polymethyle-methacrylate (PMMA) and polyethylene (PE) as solid fuel grain and gaseous oxygen (GO2) as oxidizer. The variation of various operational parameters with time is determined systematically and experimentally in firing of up to 20 seconds, and an average combustion efficiency of 95% of theory is achieved, which was the goal of these experiments. The comparison between recording fire data and predicting analytical parameters shows good agreement with the error that does not exceed 4.5% during all firing time. The current mathematical (computer) code can be used as a powerful tool for HRM analytical design parameters.

Keywords: Hybrid combustion, internal ballistics, hybrid rocket motor, performance parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1770
1605 A Structural and Magnetic Investigation of the Inversion Degree in Spinel NiFe2O4, ZnFe2O4 and Ni0.5Zn0.5Fe2O4 Ferrites Prepared by Soft Mechanochemical Synthesis

Authors: Z. Ž. Lazarević, D. L. Sekulić, V. N. Ivanovski, N. Ž. Romčević

Abstract:

NiFe2O4 (nickel ferrite), ZnFe2O4 (zinc ferrite) and Ni0.5Zn0.5Fe2O4 (nickel-zinc ferrite) were prepared by mechanochemical route in a planetary ball mill starting from mixture of the appropriate quantities of the Ni(OH)2/Fe(OH)3, Zn(OH)2/Fe(OH)3 and Ni(OH)2/Zn(OH)2/Fe(OH)3 hydroxide powders. In order to monitor the progress of chemical reaction and confirm phase formation, powder samples obtained after 25 h, 18 h and 10 h of milling were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), IR, Raman and Mössbauer spectroscopy. It is shown that the soft mechanochemical method, i.e. mechanochemical activation of hydroxides, produces high quality single phase ferrite samples in much more efficient way. From the IR spectroscopy of single phase samples it is obvious that energy of modes depends on the ratio of cations. It is obvious that all samples have more than 5 Raman active modes predicted by group theory in the normal spinel structure. Deconvolution of measured spectra allows one to conclude that all complex bands in the spectra are made of individual peaks with the intensities that vary from spectrum to spectrum. The deconvolution of Raman spectra allows to separate contributions of different cations to a particular type of vibration and to estimate the degree of inversion.

Keywords: Ferrites, Raman spectroscopy, IR spectroscopy, Mössbauer measurements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2991
1604 Attribution Theory and Perceived Reliability of Cellphones for Teaching and Learning

Authors: Mayowa A. Sofowora, Seraphim D. Eyono Obono

Abstract:

The use of information and communication technologies such as computers, mobile phones and the Internet is becoming prevalent in today’s world; and it is facilitating access to a vast amount of data, services and applications for the improvement of people’s lives. However, this prevalence of ICTs is hampered by the problem of low income levels in developing countries to the point where people cannot timeously replace or repair their ICT devices when damaged or lost; and this problem serves as a motivation for this study whose aim is to examine the perceptions of teachers on the reliability of cellphones when used for teaching and learning purposes. The research objectives unfolding this aim are of two types: Objectives on the selection and design of theories and models, and objectives on the empirical testing of these theories and models. The first type of objectives is achieved using content analysis in an extensive literature survey: and the second type of objectives is achieved through a survey of high school teachers from the ILembe and UMgungundlovu districts in the KwaZulu-Natal province of South Africa. Data collected from this questionnaire based survey is analysed in SPSS using descriptive statistics and Pearson correlations after checking the reliability and validity of the questionnaires. The main hypothesis driving this study is that there is a relationship between the demographics and the attribution identity of teachers on one hand, and their perceptions on the reliability of cellphones on the other hand, as suggested by existing literature; except that attribution identities are considered in this study under three angles: intention, knowledge and ability, and action. The results of this study confirm that the perceptions of teachers on the reliability of cellphones for teaching and learning are affected by the school location of these teachers, and by their perceptions on learners’ cellphones usage intentions and actual use.

Keywords: Attribution, Cellphones, E-learning, Reliability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1804
1603 Precision Grinding of Titanium (Ti-6Al-4V) Alloy Using Nanolubrication

Authors: Ahmed A. D. Sarhan, Hong Wan Ping, M. Sayuti

Abstract:

In this current era of competitive machinery productions, the industries are designed to place more emphasis on the product quality and reduction of cost whilst abiding by the pollution-preventing policy. In attempting to delve into the concerns, the industries are aware that the effectiveness of existing lubrication systems must be improved to achieve power-efficient and pollution-preventing machining processes. As such, this research is targeted to study on a plausible solution to the issue in grinding titanium alloy (Ti-6Al-4V) by using nanolubrication, as an alternative to flood grinding. The aim of this research is to evaluate the optimum condition of grinding force and surface roughness using MQL lubricating system to deliver nano-oil at different level of weight concentration of Silicon Dioxide (SiO2) mixed normal mineral oil. Taguchi Design of Experiment (DoE) method is carried out using a standard Taguchi orthogonal array of L16(43) to find the optimized combination of weight concentration mixture of SiO2, nozzle orientation and pressure of MQL. Surface roughness and grinding force are also analyzed using signal-to-noise(S/N) ratio to determine the best level of each factor that are tested. Consequently, the best combination of parameters is tested for a period of time and the results are compared with conventional grinding method of dry and flood condition. The results show a positive performance of MQL nanolubrication.  

Keywords: Grinding, MQL, precision grinding, Taguchi optimization, titanium alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884
1602 Accurate And Efficient Global Approximation using Adaptive Polynomial RSM for Complex Mechanical and Vehicular Performance Models

Authors: Y. Z. Wu, Z. Dong, S. K. You

Abstract:

Global approximation using metamodel for complex mathematical function or computer model over a large variable domain is often needed in sensibility analysis, computer simulation, optimal control, and global design optimization of complex, multiphysics systems. To overcome the limitations of the existing response surface (RS), surrogate or metamodel modeling methods for complex models over large variable domain, a new adaptive and regressive RS modeling method using quadratic functions and local area model improvement schemes is introduced. The method applies an iterative and Latin hypercube sampling based RS update process, divides the entire domain of design variables into multiple cells, identifies rougher cells with large modeling error, and further divides these cells along the roughest dimension direction. A small number of additional sampling points from the original, expensive model are added over the small and isolated rough cells to improve the RS model locally until the model accuracy criteria are satisfied. The method then combines local RS cells to regenerate the global RS model with satisfactory accuracy. An effective RS cells sorting algorithm is also introduced to improve the efficiency of model evaluation. Benchmark tests are presented and use of the new metamodeling method to replace complex hybrid electrical vehicle powertrain performance model in vehicle design optimization and optimal control are discussed.

Keywords: Global approximation, polynomial response surface, domain decomposition, domain combination, multiphysics modeling, hybrid powertrain optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1908
1601 On the Perceived Awareness of Physical Education Teachers on Adoptable ICTs for PE

Authors: Tholokuhle T. Ntshakala, Seraphin D. Eyono Obono

Abstract:

Nations are still finding it quite difficult to win mega sport competitions despite the major contribution of sport to society in terms of social and economic development, personal health, and in education. Even though the world of sports has been transformed into a huge global economy, it is important to note that the first step of sport is usually its introduction to children at school through physical education or PE. In other words, nations who do not win mega sport competitions also suffer from a weak and neglected PE system. This problem of the neglect of PE systems is the main motivation of this research aimed at examining the factors affecting the perceived awareness of physical education teachers on the ICTs that are adoptable for the teaching and learning of physical education. Two types of research objectives will materialize this aim: relevant theories will be identified in relation to the analysis of the perceived ICT awareness of PE teachers and subsequent models will be compiled and designed from existing literature; the empirical testing of such theories and models will also be achieved through the survey of PE teachers from the Camperdown magisterial district of the KwaZulu-Natal province of South Africa. The main hypothesis at the heart of this study is the relationship between the demographics of PE teachers, their behavior both as individuals and as social entities, and their perceived awareness of the ICTs that are adoptable for PE, as postulated by existing literature; except that this study categorizes human behavior under performance expectancy, computer attitude, and social influence. This hypothesis was partially confirmed by the survey conducted by this research in the sense that performance expectancy and teachers’ age, gender, computer usage, and class size were found to be the only factors affecting their awareness of ICTs for physical education.

Keywords: Human Behavior, ICT Awareness, Physical Education, Teachers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
1600 Structural Behavior of Precast Foamed Concrete Sandwich Panel Subjected to Vertical In-Plane Shear Loading

Authors: Y. H. Mugahed Amran, Raizal S. M. Rashid, Farzad Hejazi, Nor Azizi Safiee, A. A. Abang Ali

Abstract:

Experimental and analytical studies were accomplished to examine the structural behavior of precast foamed concrete sandwich panel (PFCSP) under vertical in-plane shear load. PFCSP full-scale specimens with total number of six were developed with varying heights to study an important parameter slenderness ratio (H/t). The production technique of PFCSP and the procedure of test setup were described. The results obtained from the experimental tests were analysed in the context of in-plane shear strength capacity, load-deflection profile, load-strain relationship, slenderness ratio, shear cracking patterns and mode of failure. Analytical study of finite element analysis was implemented and the theoretical calculations of the ultimate in-plane shear strengths using the adopted ACI318 equation for reinforced concrete wall were determined aimed at predicting the in-plane shear strength of PFCSP. The decrease in slenderness ratio from 24 to 14 showed an increase of 26.51% and 21.91% on the ultimate in-plane shear strength capacity as obtained experimentally and in FEA models, respectively. The experimental test results, FEA models data and theoretical calculation values were compared and provided a significant agreement with high degree of accuracy. Therefore, on the basis of the results obtained, PFCSP wall has the potential use as an alternative to the conventional load-bearing wall system.

Keywords: Deflection profiles, foamed concrete, load-strain relationships, precast foamed concrete sandwich panel, slenderness ratio, vertical in-plane shear strength capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2648
1599 Application of an Analytical Model to Obtain Daily Flow Duration Curves for Different Hydrological Regimes in Switzerland

Authors: Ana Clara Santos, Maria Manuela Portela, Bettina Schaefli

Abstract:

This work assesses the performance of an analytical model framework to generate daily flow duration curves, FDCs, based on climatic characteristics of the catchments and on their streamflow recession coefficients. According to the analytical model framework, precipitation is considered to be a stochastic process, modeled as a marked Poisson process, and recession is considered to be deterministic, with parameters that can be computed based on different models. The analytical model framework was tested for three case studies with different hydrological regimes located in Switzerland: pluvial, snow-dominated and glacier. For that purpose, five time intervals were analyzed (the four meteorological seasons and the civil year) and two developments of the model were tested: one considering a linear recession model and the other adopting a nonlinear recession model. Those developments were combined with recession coefficients obtained from two different approaches: forward and inverse estimation. The performance of the analytical framework when considering forward parameter estimation is poor in comparison with the inverse estimation for both, linear and nonlinear models. For the pluvial catchment, the inverse estimation shows exceptional good results, especially for the nonlinear model, clearing suggesting that the model has the ability to describe FDCs. For the snow-dominated and glacier catchments the seasonal results are better than the annual ones suggesting that the model can describe streamflows in those conditions and that future efforts should focus on improving and combining seasonal curves instead of considering single annual ones.

Keywords: Analytical streamflow distribution, stochastic process, linear and non-linear recession, hydrological modelling, daily discharges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 646
1598 Rainfall and Flood Forecast Models for Better Flood Relief Plan of the Mae Sot Municipality

Authors: S. Chuenchooklin, S. Taweepong, U. Pangnakorn

Abstract:

This research was conducted in the Mae Sot Watershed where located in the Moei River Basin at the Upper Salween River Basin in Tak Province, Thailand. The Mae Sot Municipality is the largest urban area in Tak Province and situated in the midstream of the Mae Sot Watershed. It usually faces flash flood problem after heavy rain due to poor flood management has been reported since economic rapidly bloom up in recent years. Its catchment can be classified as ungauged basin with lack of rainfall data and no any stream gaging station was reported. It was attached by most severely flood events in 2013 as the worst studied case for all those communities in this municipality. Moreover, other problems are also faced in this watershed, such shortage water supply for domestic consumption and agriculture utilizations including a deterioration of water quality and landslide as well. The research aimed to increase capability building and strengthening the participation of those local community leaders and related agencies to conduct better water management in urban area was started by mean of the data collection and illustration of the appropriated application of some short period rainfall forecasting model as they aim for better flood relief plan and management through the hydrologic model system and river analysis system programs. The authors intended to apply the global rainfall data via the integrated data viewer (IDV) program from the Unidata with the aim for rainfall forecasting in a short period of 7-10 days in advance during rainy season instead of real time record. The IDV product can be present in an advance period of rainfall with time step of 3-6 hours was introduced to the communities. The result can be used as input data to the hydrologic modeling system model (HEC-HMS) for synthesizing flood hydrographs and use for flood forecasting as well. The authors applied the river analysis system model (HEC-RAS) to present flood flow behaviors in the reach of the Mae Sot stream via the downtown of the Mae Sot City as flood extents as the water surface level at every cross-sectional profiles of the stream. Both models of HMS and RAS were tested in 2013 with observed rainfall and inflow-outflow data from the Mae Sot Dam. The result of HMS showed fit to the observed data at the dam and applied at upstream boundary discharge to RAS in order to simulate flood extents and tested in the field, and the result found satisfying. The product of rainfall from IDV was fair while compared with observed data. However, it is an appropriate tool to use in the ungauged catchment to use with flood hydrograph and river analysis models for future efficient flood relief plan and management.

Keywords: Global rainfall, flood forecasting, hydrologic modeling system, river analysis system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2415
1597 Dynamic High-Rise Moment Resisting Frame Dissipation Performances Adopting Glazed Curtain Walls with Superelastic Shape Memory Alloy Joints

Authors: Lorenzo Casagrande, Antonio Bonati, Ferdinando Auricchio, Antonio Occhiuzzi

Abstract:

This paper summarizes the results of a survey on smart non-structural element dynamic dissipation when installed in modern high-rise mega-frame prototypes. An innovative glazed curtain wall was designed using Shape Memory Alloy (SMA) joints in order to increase the energy dissipation and enhance the seismic/wind response of the structures. The studied buildings consisted of thirty- and sixty-storey planar frames, extracted from reference three-dimensional steel Moment Resisting Frame (MRF) with outriggers and belt trusses. The internal core was composed of a CBF system, whilst outriggers were placed every fifteen stories to limit second order effects and inter-storey drifts. These structural systems were designed in accordance with European rules and numerical FE models were developed with an open-source code, able to account for geometric and material nonlinearities. With regard to the characterization of non-structural building components, full-scale crescendo tests were performed on aluminium/glass curtain wall units at the laboratory of the Construction Technologies Institute (ITC) of the Italian National Research Council (CNR), deriving force-displacement curves. Three-dimensional brick-based inelastic FE models were calibrated according to experimental results, simulating the fac¸ade response. Since recent seismic events and extreme dynamic wind loads have generated the large occurrence of non-structural components failure, which causes sensitive economic losses and represents a hazard for pedestrians safety, a more dissipative glazed curtain wall was studied. Taking advantage of the mechanical properties of SMA, advanced smart joints were designed with the aim to enhance both the dynamic performance of the single non-structural unit and the global behavior. Thus, three-dimensional brick-based plastic FE models were produced, based on the innovated non-structural system, simulating the evolution of mechanical degradation in aluminium-to-glass and SMA-to-glass connections when high deformations occurred. Consequently, equivalent nonlinear links were calibrated to reproduce the behavior of both tested and smart designed units, and implemented on the thirty- and sixty-storey structural planar frame FE models. Nonlinear time history analyses (NLTHAs) were performed to quantify the potential of the new system, when considered in the lateral resisting frame system (LRFS) of modern high-rise MRFs. Sensitivity to the structure height was explored comparing the responses of the two prototypes. Trends in global and local performance were discussed to show that, if accurately designed, advanced materials in non-structural elements provide new sources of energy dissipation.

Keywords: Advanced technologies, glazed curtain walls, non-structural elements, seismic-action reduction, shape memory alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396
1596 Effects of Different Fiber Orientations on the Shear Strength Performance of Composite Adhesive Joints

Authors: Ferhat Kadioglu, Hasan Puskul

Abstract:

A composite material with carbon fiber and polymer matrix has been used as adherent for manufacturing adhesive joints. In order to evaluate different fiber orientations on joint performance, the adherents with the 0°, ±15°, ±30°, ±45° fiber orientations were used in the single lap joint configuration. The joints with an overlap length of 25 mm were prepared according to the ASTM 1002 specifications and subjected to tensile loadings. The structural adhesive used was a two-part epoxy to be cured at 70°C for an hour. First, mechanical behaviors of the adherents were measured using three point bending test. In the test, considerations were given to stress to failure and elastic modulus. The results were compared with theoretical ones using rule of mixture. Then, the joints were manufactured in a specially prepared jig, after a proper surface preparation. Experimental results showed that the fiber orientations of the adherents affected the joint performance considerably; the joints with ±45° adherents experienced the worst shear strength, half of those with 0° adherents, and in general, there was a great relationship between the fiber orientations and failure mechanisms. Delamination problems were observed for many joints, which were thought to be due to peel effects at the ends of the overlap. It was proved that the surface preparation applied to the adherent surface was adequate. For further explanation of the results, a numerical work should be carried out using a possible non-linear analysis.

Keywords: Composite materials, adhesive bonding, bonding strength, lap joint, tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2449
1595 Modeling and Simulation of Delaminations in FML Using Step Pulsed Active Thermography

Authors: S. Sundaravalli, M. C. Majumder, G. K. Vijayaraghavan

Abstract:

The study focuses to investigate the thermal response of delaminations and develop mathematical models using numerical results to obtain the optimum heat requirement and time to identify delaminations in GLARE type of Fibre Metal Laminates (FML) in both reflection mode and through-transmission (TT) mode of step pulsed active thermography (SPAT) method in the type of nondestructive testing and evaluation (NDTE) technique. The influence of applied heat flux and time on various sizes and depth of delaminations in FML is analyzed to investigate the thermal response through numerical simulations. A finite element method (FEM) is applied to simulate SPAT through ANSYS software based on 3D transient heat transfer principle with the assumption of reflection mode and TT mode of observation individually.

The results conclude that the numerical approach based on SPAT in reflection mode is more suitable for analysing smaller size of near-surface delaminations located at the thermal stimulator side and TT mode is more suitable for analysing smaller size of deeper delaminations located far from thermal stimulator side or near thermal detector/Infrared camera side. The mathematical models provide the optimum q and T at the required MRTD to identify unidentified delamination 7 with 25015.0022W/m2 at 2.531sec and delamination 8 with 16663.3356 W/m2 at 1.37857sec in reflection mode. In TT mode, the delamination 1 with 34954W/m2 at 13.0399sec, delamination 2 with 20002.67W/m2 at 1.998sec and delamination 7 with 20010.87 W/m2 at 0.6171sec could be identified.

Keywords: Step pulsed active thermography (SPAT), NDTE, FML, Delaminations, Finite element method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2551
1594 Nuclear Fuel Safety Threshold Determined by Logistic Regression Plus Uncertainty

Authors: D. S. Gomes, A. T. Silva

Abstract:

Analysis of the uncertainty quantification related to nuclear safety margins applied to the nuclear reactor is an important concept to prevent future radioactive accidents. The nuclear fuel performance code may involve the tolerance level determined by traditional deterministic models producing acceptable results at burn cycles under 62 GWd/MTU. The behavior of nuclear fuel can simulate applying a series of material properties under irradiation and physics models to calculate the safety limits. In this study, theoretical predictions of nuclear fuel failure under transient conditions investigate extended radiation cycles at 75 GWd/MTU, considering the behavior of fuel rods in light-water reactors under reactivity accident conditions. The fuel pellet can melt due to the quick increase of reactivity during a transient. Large power excursions in the reactor are the subject of interest bringing to a treatment that is known as the Fuchs-Hansen model. The point kinetic neutron equations show similar characteristics of non-linear differential equations. In this investigation, the multivariate logistic regression is employed to a probabilistic forecast of fuel failure. A comparison of computational simulation and experimental results was acceptable. The experiments carried out use the pre-irradiated fuels rods subjected to a rapid energy pulse which exhibits the same behavior during a nuclear accident. The propagation of uncertainty utilizes the Wilk's formulation. The variables chosen as essential to failure prediction were the fuel burnup, the applied peak power, the pulse width, the oxidation layer thickness, and the cladding type.

Keywords: Logistic regression, reactivity-initiated accident, safety margins, uncertainty propagation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1019
1593 A Mathematical Framework for Expanding a Railway’s Theoretical Capacity

Authors: Robert L. Burdett, Bayan Bevrani

Abstract:

Analytical techniques for measuring and planning railway capacity expansion activities have been considered in this article. A preliminary mathematical framework involving track duplication and section sub divisions is proposed for this task. In railways, these features have a great effect on network performance and for this reason they have been considered. Additional motivations have also arisen from the limitations of prior models that have not included them.

Keywords: Capacity analysis, capacity expansion, railways.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2249
1592 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia

Authors: Carol Anne Hargreaves

Abstract:

A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.

Keywords: Machine learning, stock market trading, logistic principal component analysis, automated stock investment system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1099
1591 The Effects and Interactions of Synthesis Parameters on Properties of Mg Substituted Hydroxyapatite

Authors: S. Sharma, U. Batra, S. Kapoor, A. Dua

Abstract:

In this study, the effects and interactions of reaction time and capping agent assistance during sol-gel synthesis of magnesium substituted hydroxyapatite nanopowder (MgHA) on hydroxyapatite (HA) to β-tricalcium phosphate (β-TCP) ratio, Ca/P ratio and mean crystallite size was examined experimentally as well as through statistical analysis. MgHA nanopowders were synthesized by sol-gel technique at room temperature using aqueous solution of calcium nitrate tetrahydrate, magnesium nitrate hexahydrate and potassium dihydrogen phosphate as starting materials. The reaction time for sol-gel synthesis was varied between 15 to 60 minutes. Two process routes were followed with and without addition of triethanolamine (TEA) in the solutions. The elemental compositions of as-synthesized powders were determined using X-ray fluorescence (XRF) spectroscopy. The functional groups present in the assynthesized MgHA nanopowders were established through Fourier Transform Infrared Spectroscopy (FTIR). The amounts of phases present, Ca/P ratio and mean crystallite sizes of MgHA nanopowders were determined using X-ray diffraction (XRD). The HA content in biphasic mixture of HA and β-TCP and Ca/P ratio in as-synthesized MgHA nanopowders increased effectively with reaction time of sols (p<0.0001, two way ANOVA), however, these were independent of TEA addition (p>0.15, two way ANOVA). The MgHA nanopowders synthesized with TEA assistance exhibited 14 nm lower crystallite size (p<0.018, 2 sample t-test) compared to the powder synthesized without TEA assistance.

Keywords: Capping agent, hydroxyapatite, regression analysis, sol-gel, 2- sample t-test, two-way ANOVA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1619
1590 Performance Evaluation and Economic Analysis of Minimum Quantity Lubrication with Pressurized/Non-Pressurized Air and Nanofluid Mixture

Authors: M. Amrita, R. R. Srikant, A. V. Sita Rama Raju

Abstract:

Water miscible cutting fluids are conventionally used to lubricate and cool the machining zone. But issues related to health hazards, maintenance and disposal costs have limited their usage, leading to application of Minimum Quantity Lubrication (MQL). To increase the effectiveness of MQL, nanocutting fluids are proposed. In the present work, water miscible nanographite cutting fluids of varying concentration are applied at cutting zone by two systems A and B. System A utilizes high pressure air and supplies cutting fluid at a flow rate of 1ml/min. System B uses low pressure air and supplies cutting fluid at a flow rate of 5ml/min. Their performance in machining is evaluated by measuring cutting temperatures, tool wear, cutting forces and surface roughness and compared with dry machining and flood machining. Application of nanocutting fluid using both systems showed better performance than dry machining. Cutting temperatures and cutting forces obtained by both techniques are more than flood machining. But tool wear and surface roughness showed improvement compared to flood machining. Economic analysis has been carried out in all the cases to decide the applicability of the techniques.

Keywords: Economic analysis, Machining, Minimum Quantity lubrication, nanofluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279
1589 Investigation of Cytotoxic Compounds in Ethyl Acetate and Chloroform Extracts of Nigella sativa by Sulforhodamine-B Assay-Guided Fractionation

Authors: Harshani Uggallage, Kapila D. Dissanayaka

Abstract:

A Sulforhodamine-B assay-guided fractionation on Nigella sativa seeds was conducted to determine the presence of cytotoxic compounds against human hepatoma (HepG2) cells. Initially, a freeze-dried sample of Nigella sativa seeds was sequentially extracted into solvents of increasing polarities. Crude extracts from the sequential extraction of Nigella sativa seeds in chloroform and ethyl acetate showed the highest cytotoxicity. The combined mixture of these two extracts was subjected to bioassay guided fractionation using a modified Kupchan method of partitioning, followed by Sephadex® LH-20 chromatography. This chromatographic separation process resulted in a column fraction with a convincing IC50 (half-maximal inhibitory concentration) value of 13.07 µg/ml, which is considerable for developing therapeutic drug leads against human hepatoma. Reversed phase High-Performance Liquid Chromatography (HPLC) was finally conducted for the same column fraction and the result indicates the presence of one or several main cytotoxic compounds against human HepG2 cells.

Keywords: Cytotoxic compounds, half-maximal inhibitory concentration, high-performance liquid chromatography, human HepG2 cells, Nigella sativa seeds, Sulforhodamine-B assay-guided fractionation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 446