Search results for: CFD models for solar chimney.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2964

Search results for: CFD models for solar chimney.

1434 Extended Least Squares LS–SVM

Authors: József Valyon, Gábor Horváth

Abstract:

Among neural models the Support Vector Machine (SVM) solutions are attracting increasing attention, mostly because they eliminate certain crucial questions involved by neural network construction. The main drawback of standard SVM is its high computational complexity, therefore recently a new technique, the Least Squares SVM (LS–SVM) has been introduced. In this paper we present an extended view of the Least Squares Support Vector Regression (LS–SVR), which enables us to develop new formulations and algorithms to this regression technique. Based on manipulating the linear equation set -which embodies all information about the regression in the learning process- some new methods are introduced to simplify the formulations, speed up the calculations and/or provide better results.

Keywords: Function estimation, Least–Squares Support VectorMachines, Regression, System Modeling

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
1433 The Sign in the Communication Process

Authors: S. Pesina, T. Solonchak

Abstract:

In the process of information transmission (concept verbalization) we deal mostly with the substance (contents), and then pay attention to the form. Recalling events from the remote past, often we cannot exactly reproduce specific heard or pronounced words, as well as the syntactic structures. We remember events, feelings, images; we recall the general contents of the discourse. The thought gets a specific language form only during the concept verbalization phase. With minimum time for pondering, depending on the language competence level, the grammar and syntactic shaping often occurs automatically with the use of famous models and stereotypes. This means that the language form adapts itself to the consciousness, and not vice versa.

Keywords: Lexical eidos, phenomenology, noema, polysemantic word, semantic core.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
1432 Quantification of Peptides based on Isotope Dilution Surface Enhanced Raman Scattering

Authors: F. Yaghobian, R. Stosch, B. Güttler

Abstract:

This study aims to demonstrate the quantification of peptides based on isotope dilution surface enhanced Raman scattering (IDSERS). SERS spectra of phenylalanine (Phe), leucine (Leu) and two peptide sequences TGQIFK (T13) and YSFLQNPQTSLCFSESIPTPSNR (T6) as part of the 22-kDa human growth hormone (hGH) were obtained on Ag-nanoparticle covered substrates. On the basis of the dominant Phe and Leu vibrational modes, precise partial least squares (PLS) prediction models were built enabling the determination of unknown T13 and T6 concentrations. Detection of hGH in its physiological concentration in order to investigate the possibility of protein quantification has been achieved.

Keywords: Surface Enhanced Raman Scattering, Quantification, Peptides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
1431 A Contribution to 3D Modeling of Manufacturing Tolerance Optimization

Authors: F. Sebaa, A. Cheikh, M. Rahou

Abstract:

The study of the generated defects on manufactured parts shows the difficulty to maintain parts in their positions during the machining process and to estimate them during the pre-process plan. This work presents a contribution to the development of 3D models for the optimization of the manufacturing tolerances. An experimental study allows the measurement of the defects of part positioning for the determination of ε and the choice of an optimal setup of the part. An approach of 3D tolerance based on the small displacements method permits the determination of the manufacturing errors upstream. A developed tool, allows an automatic generation of the tolerance intervals along the three axes.

Keywords: Manufacturing tolerances, 3D modeling, optimization, errors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
1430 A New Time Dependent, High Temperature Analytical Model for the Single-electron Box in Digital Applications

Authors: M.J. Sharifi

Abstract:

Several models have been introduced so far for single electron box, SEB, which all of them were restricted to DC response and or low temperature limit. In this paper we introduce a new time dependent, high temperature analytical model for SEB for the first time. DC behavior of the introduced model will be verified against SIMON software and its time behavior will be verified against a newly published paper regarding step response of SEB.

Keywords: Single electron box, SPICE, SIMON, Timedependent, Circuit model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1236
1429 Removal of Basic Blue 3 from Aqueous Solution by Adsorption Onto Durio Ziberthinus

Authors: Siew-Teng

Abstract:

Durian husk (DH), a fruit waste, was studied for its ability to remove Basic blue 3 (BB3) from aqueous solutions. Batch kinetic studies were carried out to study the sorption characteristics under various experimental conditions. The optimum pH for the dye removal occurred in the pH range of 3-10. Sorption was found to be concentration and agitation dependent. The kinetics of dye sorption fitted a pseudo-second order rate expression. Both Langmuir and Freundlich models appeared to provide reasonable fittings for the sorption data of BB3 on durian husk. Maximum sorption capacity calculated from the Langmuir model is 49.50 mg g-1.

Keywords: Durian husk, Batch study, Sorption, Basic Blue 3

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1279
1428 Retrieval Augmented Generation against the Machine: Merging Human Cyber Security Expertise with Generative AI

Authors: Brennan Lodge

Abstract:

Amidst a complex regulatory landscape, Retrieval Augmented Generation (RAG) emerges as a transformative tool for Governance Risk and Compliance (GRC) officers. This paper details the application of RAG in synthesizing Large Language Models (LLMs) with external knowledge bases, offering GRC professionals an advanced means to adapt to rapid changes in compliance requirements. While the development for standalone LLMs is exciting, such models do have their downsides. LLMs cannot easily expand or revise their memory, and they cannot straightforwardly provide insight into their predictions, and may produce “hallucinations.” Leveraging a pre-trained seq2seq transformer and a dense vector index of domain-specific data, this approach integrates real-time data retrieval into the generative process, enabling gap analysis and the dynamic generation of compliance and risk management content. We delve into the mechanics of RAG, focusing on its dual structure that pairs parametric knowledge contained within the transformer model with non-parametric data extracted from an updatable corpus. This hybrid model enhances decision-making through context-rich insights, drawing from the most current and relevant information, thereby enabling GRC officers to maintain a proactive compliance stance. Our methodology aligns with the latest advances in neural network fine-tuning, providing a granular, token-level application of retrieved information to inform and generate compliance narratives. By employing RAG, we exhibit a scalable solution that can adapt to novel regulatory challenges and cybersecurity threats, offering GRC officers a robust, predictive tool that augments their expertise. The granular application of RAG’s dual structure not only improves compliance and risk management protocols but also informs the development of compliance narratives with pinpoint accuracy. It underscores AI’s emerging role in strategic risk mitigation and proactive policy formation, positioning GRC officers to anticipate and navigate the complexities of regulatory evolution confidently.

Keywords: Retrieval Augmented Generation, Governance Risk and Compliance, Cybersecurity, AI-driven Compliance, Risk Management, Generative AI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 124
1427 Decomposition Method for Neural Multiclass Classification Problem

Authors: H. El Ayech, A. Trabelsi

Abstract:

In this article we are going to discuss the improvement of the multi classes- classification problem using multi layer Perceptron. The considered approach consists in breaking down the n-class problem into two-classes- subproblems. The training of each two-class subproblem is made independently; as for the phase of test, we are going to confront a vector that we want to classify to all two classes- models, the elected class will be the strongest one that won-t lose any competition with the other classes. Rates of recognition gotten with the multi class-s approach by two-class-s decomposition are clearly better that those gotten by the simple multi class-s approach.

Keywords: Artificial neural network, letter-recognition, Multi class Classification, Multi Layer Perceptron.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1572
1426 Forecasting the Istanbul Stock Exchange National 100 Index Using an Artificial Neural Network

Authors: Birol Yildiz, Abdullah Yalama, Metin Coskun

Abstract:

Many studies have shown that Artificial Neural Networks (ANN) have been widely used for forecasting financial markets, because of many financial and economic variables are nonlinear, and an ANN can model flexible linear or non-linear relationship among variables. The purpose of the study was to employ an ANN models to predict the direction of the Istanbul Stock Exchange National 100 Indices (ISE National-100). As a result of this study, the model forecast the direction of the ISE National-100 to an accuracy of 74, 51%.

Keywords: Artificial Neural Networks, Istanbul StockExchange, Non-linear Modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2239
1425 Identification of an Unstable Nonlinear System: Quadrotor

Authors: Mauricio Pe˜na, Adriana Luna, Carol Rodr´ıguez

Abstract:

In the following article we begin from a multi-parameter unstable nonlinear model of a Quadrotor. We design a control to stabilize and assure the attitude of the device, starting off a linearized system at the equilibrium point of the null angles of Euler (hover), which provides us a control with limited capacities at small angles of rotation of the vehicle in three dimensions. In order to clear this obstacle, we propose the identification of models in different angles by means of simulations and the design of a controller specifically implemented for the identification task, that in future works will allow the development of controllers according to fast and agile angles of Euler for Quadrotor.

Keywords: Quadrotor, model, control, identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2737
1424 Calculation of Wave Function at the Origin (WFO) for Heavy Mesons by Numerical Solving of the Schrodinger Equation

Authors: M. Momeni Feyli

Abstract:

Many recent high energy physics calculations involving charm and beauty invoke wave function at the origin (WFO) for the meson bound state. Uncertainties of charm and beauty quark masses and different models for potentials governing these bound states require a simple numerical algorithm for evaluation of the WFO's for these bound states. We present a simple algorithm for this propose which provides WFO's with high precision compared with similar ones already obtained in the literature.

Keywords: Mesons, Bound states, Schrodinger equation, Nonrelativistic quark model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1502
1423 A Strategy to Optimize the SPC Scheme for Mass Production of HDD Arm with ClusteringTechnique and Three-Way Control Chart

Authors: W. Chattinnawat

Abstract:

Consider a mass production of HDD arms where hundreds of CNC machines are used to manufacturer the HDD arms. According to an overwhelming number of machines and models of arm, construction of separate control chart for monitoring each HDD arm model by each machine is not feasible. This research proposed a strategy to optimize the SPC management on shop floor. The procedure started from identifying the clusters of the machine with similar manufacturing performance using clustering technique. The three way control chart ( I - MR - R ) is then applied to each clustered group of machine. This proposed research has advantageous to the manufacturer in terms of not only better performance of the SPC but also the quality management paradigm.

Keywords: Three way control chart. I - MR - R , between/within variation, HDD arm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1635
1422 Probability of Globality

Authors: Eva Eggeling, Dieter W. Fellner, Torsten Ullrich

Abstract:

The objective of global optimization is to find the globally best solution of a model. Nonlinear models are ubiquitous in many applications and their solution often requires a global search approach; i.e. for a function f from a set A ⊂ Rn to the real numbers, an element x0 ∈ A is sought-after, such that ∀ x ∈ A : f(x0) ≤ f(x). Depending on the field of application, the question whether a found solution x0 is not only a local minimum but a global one is very important. This article presents a probabilistic approach to determine the probability of a solution being a global minimum. The approach is independent of the used global search method and only requires a limited, convex parameter domain A as well as a Lipschitz continuous function f whose Lipschitz constant is not needed to be known.

Keywords: global optimization, probability theory, probability of globality

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
1421 Matrix Completion with Heterogeneous Observation Cost Using Sparsity-Number of Column-Space

Authors: Ilqar Ramazanli

Abstract:

The matrix completion problem has been studied broadly under many underlying conditions. In many real-life scenarios, we could expect elements from distinct columns or distinct positions to have a different cost. In this paper, we explore this generalization under adaptive conditions. We approach the problem under two different cost models. The first one is that entries from different columns have different observation costs, but, within the same column, each entry has a uniform cost. The second one is any two entry has different observation cost, despite being the same or different columns. We provide complexity analysis of our algorithms and provide tightness guarantees.

Keywords: Matrix completion, adaptive learning, heterogeneous cost, Matroid optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 495
1420 Investigating the Capacity of Ultimate Torsion of Concrete Prismatic Beams with Transverse Spiral Bars

Authors: Hadi Barghlame, M. A. Lotfollahi-Yaghin

Abstract:

In this paper, the torsion capacity of ultimate point on rectangular beams with spiral reinforcements in the torsion direction and its anti-direction are investigated. Therefore, models of above-mentioned beams have been numerically analyzed under various loads using ANSYS software. It was observed that, spirallyreinforced prismatic beam and beam with spiral links, show lower torsion capacity than beam with normal links also in anti-direction. The result is that the concrete regulations are violated in this case.

Keywords: RC beam, ultimate torsion, finite element, prismatic beams, spirally tie.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
1419 Air Handling Units Power Consumption Using Generalized Additive Model for Anomaly Detection: A Case Study in a Singapore Campus

Authors: Ju Peng Poh, Jun Yu Charles Lee, Jonathan Chew Hoe Khoo

Abstract:

The emergence of digital twin technology, a digital replica of physical world, has improved the real-time access to data from sensors about the performance of buildings. This digital transformation has opened up many opportunities to improve the management of the building by using the data collected to help monitor consumption patterns and energy leakages. One example is the integration of predictive models for anomaly detection. In this paper, we use the GAM (Generalised Additive Model) for the anomaly detection of Air Handling Units (AHU) power consumption pattern. There is ample research work on the use of GAM for the prediction of power consumption at the office building and nation-wide level. However, there is limited illustration of its anomaly detection capabilities, prescriptive analytics case study, and its integration with the latest development of digital twin technology. In this paper, we applied the general GAM modelling framework on the historical data of the AHU power consumption and cooling load of the building between Jan 2018 to Aug 2019 from an education campus in Singapore to train prediction models that, in turn, yield predicted values and ranges. The historical data are seamlessly extracted from the digital twin for modelling purposes. We enhanced the utility of the GAM model by using it to power a real-time anomaly detection system based on the forward predicted ranges. The magnitude of deviation from the upper and lower bounds of the uncertainty intervals is used to inform and identify anomalous data points, all based on historical data, without explicit intervention from domain experts. Notwithstanding, the domain expert fits in through an optional feedback loop through which iterative data cleansing is performed. After an anomalously high or low level of power consumption detected, a set of rule-based conditions are evaluated in real-time to help determine the next course of action for the facilities manager. The performance of GAM is then compared with other approaches to evaluate its effectiveness. Lastly, we discuss the successfully deployment of this approach for the detection of anomalous power consumption pattern and illustrated with real-world use cases.

Keywords: Anomaly detection, digital twin, Generalised Additive Model, Power Consumption Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 501
1418 Modelling Extreme Temperature in Malaysia Using Generalized Extreme Value Distribution

Authors: Husna Hasan, Norfatin Salam, Mohd Bakri Adam

Abstract:

Extreme temperature of several stations in Malaysia is modelled by fitting the monthly maximum to the Generalized Extreme Value (GEV) distribution. The Mann-Kendall (MK) test suggests a non-stationary model. Two models are considered for stations with trend and the Likelihood Ratio test is used to determine the best-fitting model. Results show that half of the stations favour a model which is linear for the location parameters. The return level is the level of events (maximum temperature) which is expected to be exceeded once, on average, in a given number of years, is obtained.

Keywords: Extreme temperature, extreme value, return level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2835
1417 The Future of Blended Learning

Authors: Reem A. Alebaikan

Abstract:

The emergence of blended learning has been influenced by the rapid changes in Higher Education within the last few years. However, there is a lack of studies that look into the future of blended learning in the Saudi context. The most likely explanation is that blended learning is relatively new and, with respect to learning in general, under-researched. This study addresses this gap and explores the views of lecturers and students towards the future of blended learning in Saudi Arabia. This study was informed by the interpretive paradigm that appears to be most appropriate to understand and interpret the perceptions of students and instructors towards a new learning environment. While globally there has been considerable research on the perceptions of e-learning and blended learning with its different models, there is plenty of space for further research specifically in the Arab region, and in Saudi Arabia where blended learning is now being introduced.

Keywords: blended learning, higher education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2417
1416 A Proposed Framework for Visualization to Teach Computer Science

Authors: Muhammed Yousoof, Mohd Sapiyan, Khaja Kamaluddin

Abstract:

Computer programming is considered a very difficult course by many computer science students. The reasons for the difficulties include cognitive load involved in programming, different learning styles of students, instructional methodology and the choice of the programming languages. To reduce the difficulties the following have been tried: pair programming, program visualization, different learning styles etc. However, these efforts have produced limited success. This paper reviews the problem and proposes a framework to help students overcome the difficulties involved.

Keywords: Cognitive Load, Instructional Models, LearningStyles, Program Visualization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1455
1415 Virtual Scene based on VRML and Java

Authors: Hui-jun Ren, Da-kun ZHang

Abstract:

VRML( The virtual reality modeling language) is a standard language used to build up 3D virtualized models. The quick development of internet technology and computer manipulation has promoted the commercialization of reality virtualization. VRML, thereof, is expected to be the most effective framework of building up virtual reality. This article has studied plans to build virtualized scenes based on the technology of virtual reality and Java programe, and introduced how to execute real-time data transactions of VRML file and Java programe by applying Script Node, in doing so we have the VRML interactivity being strengthened.

Keywords: VRML, Java, Virtual scene, Script.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1507
1414 Classification of Germinatable Mung Bean by Near Infrared Hyperspectral Imaging

Authors: Kaewkarn Phuangsombat, Arthit Phuangsombat, Anupun Terdwongworakul

Abstract:

Hard seeds will not grow and can cause mold in sprouting process. Thus, the hard seeds need to be separated from the normal seeds. Near infrared hyperspectral imaging in a range of 900 to 1700 nm was implemented to develop a model by partial least squares discriminant analysis to discriminate the hard seeds from the normal seeds. The orientation of the seeds was also studied to compare the performance of the models. The model based on hilum-up orientation achieved the best result giving the coefficient of determination of 0.98, and root mean square error of prediction of 0.07 with classification accuracy was equal to 100%.

Keywords: Mung bean, near infrared, germinatability, hard seed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
1413 Adaptive Design of Large Prefabricated Concrete Panels Collective Housing

Authors: Daniel M. Muntean, Viorel Ungureanu

Abstract:

More than half of the urban population in Romania lives today in residential buildings made out of large prefabricated reinforced concrete panels. Since their initial design was made in the 1960’s, these housing units are now being technically and morally outdated, consuming large amounts of energy for heating, cooling, ventilation and lighting, while failing to meet the needs of the contemporary life-style. Due to their widespread use, the design of a system that improves their energy efficiency would have a real impact, not only on the energy consumption of the residential sector, but also on the quality of life that it offers. Furthermore, with the transition of today’s existing power grid to a “smart grid”, buildings could become an active element for future electricity networks by contributing in micro-generation and energy storage. One of the most addressed issues today is to find locally adapted strategies that can be applied considering the 20-20-20 EU policy criteria and to offer sustainable and innovative solutions for the cost-optimal energy performance of buildings adapted on the existing local market. This paper presents a possible adaptive design scenario towards sustainable retrofitting of these housing units. The apartments are transformed in order to meet the current living requirements and additional extensions are placed on top of the building, replacing the unused roof space, acting not only as housing units, but as active solar energy collection systems. An adaptive building envelope is ensured in order to achieve overall air-tightness and an elevator system is introduced to facilitate access to the upper levels.

Keywords: Adaptive building, energy efficiency, retrofitting, residential buildings, smart grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035
1412 Thermodynamic Analyses of Information Dissipation along the Passive Dendritic Trees and Active Action Potential

Authors: Bahar Hazal Yalçınkaya, Bayram Yılmaz, Mustafa Özilgen

Abstract:

Brain information transmission in the neuronal network occurs in the form of electrical signals. Neural work transmits information between the neurons or neurons and target cells by moving charged particles in a voltage field; a fraction of the energy utilized in this process is dissipated via entropy generation. Exergy loss and entropy generation models demonstrate the inefficiencies of the communication along the dendritic trees. In this study, neurons of 4 different animals were analyzed with one dimensional cable model with N=6 identical dendritic trees and M=3 order of symmetrical branching. Each branch symmetrically bifurcates in accordance with the 3/2 power law in an infinitely long cylinder with the usual core conductor assumptions, where membrane potential is conserved in the core conductor at all branching points. In the model, exergy loss and entropy generation rates are calculated for each branch of equivalent cylinders of electrotonic length (L) ranging from 0.1 to 1.5 for four different dendritic branches, input branch (BI), and sister branch (BS) and two cousin branches (BC-1 & BC-2). Thermodynamic analysis with the data coming from two different cat motoneuron studies show that in both experiments nearly the same amount of exergy is lost while generating nearly the same amount of entropy. Guinea pig vagal motoneuron loses twofold more exergy compared to the cat models and the squid exergy loss and entropy generation were nearly tenfold compared to the guinea pig vagal motoneuron model. Thermodynamic analysis show that the dissipated energy in the dendritic tress is directly proportional with the electrotonic length, exergy loss and entropy generation. Entropy generation and exergy loss show variability not only between the vertebrate and invertebrates but also within the same class. Concurrently, single action potential Na+ ion load, metabolic energy utilization and its thermodynamic aspect contributed for squid giant axon and mammalian motoneuron model. Energy demand is supplied to the neurons in the form of Adenosine triphosphate (ATP). Exergy destruction and entropy generation upon ATP hydrolysis are calculated. ATP utilization, exergy destruction and entropy generation showed differences in each model depending on the variations in the ion transport along the channels.

Keywords: ATP utilization, entropy generation, exergy loss, neuronal information transmittance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1014
1411 Water and Soil Environment Pollution Reduction by Filter Strips

Authors: Roy R. Gu, Mahesh Sahu, Xianggui Zhao

Abstract:

Contour filter strips planted with perennial vegetation can be used to improve surface and ground water quality by reducing pollutant, such as NO3-N, and sediment outflow from cropland to a river or lake. Meanwhile, the filter strips of perennial grass with biofuel potentials also have economic benefits of producing ethanol. In this study, The Soil and Water Assessment Tool (SWAT) model was applied to the Walnut Creek Watershed to examine the effectiveness of contour strips in reducing NO3-N outflows from crop fields to the river or lake. Required input data include watershed topography, slope, soil type, land-use, management practices in the watershed and climate parameters (precipitation, maximum/minimum air temperature, solar radiation, wind speed and relative humidity). Numerical experiments were conducted to identify potential subbasins in the watershed that have high water quality impact, and to examine the effects of strip size and location on NO3-N reduction in the subbasins under various meteorological conditions (dry, average and wet). Variable sizes of contour strips (10%, 20%, 30% and 50%, respectively, of a subbasin area) planted with perennial switchgrass were selected for simulating the effects of strip size and location on stream water quality. Simulation results showed that a filter strip having 10%-50% of the subbasin area could lead to 55%- 90% NO3-N reduction in the subbasin during an average rainfall year. Strips occupying 10-20% of the subbasin area were found to be more efficient in reducing NO3-N when placed along the contour than that when placed along the river. The results of this study can assist in cost-benefit analysis and decision-making in best water resources management practices for environmental protection.

Keywords: modeling, SWAT, water quality, NO3-N, watershed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
1410 Application of Simulation and Response Surface to Optimize Hospital Resources

Authors: Shamsuddin Ahmed, Francis Amagoh

Abstract:

This paper presents a case study that uses processoriented simulation to identify bottlenecks in the service delivery system in an emergency department of a hospital in the United Arab Emirates. Using results of the simulation, response surface models were developed to explain patient waiting time and the total time patients spend in the hospital system. Results of the study could be used as a service improvement tool to help hospital management in improving patient throughput and service quality in the hospital system.

Keywords: Simulation, Hospital Service, Resource Utilization, United Arab Emirates.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
1409 Sociological Impact on Education An Analytical Approach Through Artificial Neural network

Authors: P. R. Jayathilaka, K.L. Jayaratne, H.L. Premaratne

Abstract:

This research presented in this paper is an on-going project of an application of neural network and fuzzy models to evaluate the sociological factors which affect the educational performance of the students in Sri Lanka. One of its major goals is to prepare the grounds to device a counseling tool which helps these students for a better performance at their examinations, especially at their G.C.E O/L (General Certificate of Education-Ordinary Level) examination. Closely related sociological factors are collected as raw data and the noise of these data are filtered through the fuzzy interface and the supervised neural network is being utilized to recognize the performance patterns against the chosen social factors.

Keywords: Education, Fuzzy, neural network, prediction, Sociology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1639
1408 Predictive Model of Sensor Readings for a Mobile Robot

Authors: Krzysztof Fujarewicz

Abstract:

This paper presents a predictive model of sensor readings for mobile robot. The model predicts sensor readings for given time horizon based on current sensor readings and velocities of wheels assumed for this horizon. Similar models for such anticipation have been proposed in the literature. The novelty of the model presented in the paper comes from the fact that its structure takes into account physical phenomena and is not just a black box, for example a neural network. From this point of view it may be regarded as a semi-phenomenological model. The model is developed for the Khepera robot, but after certain modifications, it may be applied for any robot with distance sensors such as infrared or ultrasonic sensors.

Keywords: Mobile robot, sensors, prediction, anticipation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
1407 Elucidating the Influence of Demographics and Psychological Traits on Investment Biases

Authors: Huei-Wen Lin

Abstract:

This study explored the relationship between psychological traits, demographics and financial behavioral biases for individual investors in Taiwan stock market. By using questionnaire survey method conducted in 2010, there are 554 valid convenient samples collected to examine the determinants of three types of behavioral biases. Based on literature review, two hypothesized models are constructed and further used to evaluate the effects of big five personality traits and demographic variables on investment biases through Structural Equation Model (SEM) analysis. The results showed that investment biases of individual investors are significantly related to four personality traits as well as some demographics.

Keywords: Behavioral finance, Big Five, Disposition effect, Herding, Overconfidence, Personality traits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3958
1406 Numerical Investigation of the Optimal Spatial Domain Discretization for the 2-D Analysis of a Darrieus Vertical-Axis Water Turbine

Authors: M. Raciti Castelli, S. De Betta, E. Benini

Abstract:

The optimal grid spacing and turbulence model for the 2D numerical analysis of a vertical-axis water turbine (VAWaterT) operating in a 2 m/s freestream current has been investigated. The results of five different spatial domain discretizations and two turbulence models (k-ω SST and k-ε RNG) have been compared, in order to gain the optimal y+ parameter distribution along the blade walls during a full rotor revolution. The resulting optimal mesh has appeared to be quite similar to that obtained for the numerical analysis of a vertical-axis wind turbine.

Keywords: CFD, vertical axis water turbine, NACA 0025, blade y+.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
1405 Nonlinear Dynamic Analysis of Base-Isolated Structures Using a Partitioned Solution Approach and an Exponential Model

Authors: Nicolò Vaiana, Filip C. Filippou, Giorgio Serino

Abstract:

The solution of the nonlinear dynamic equilibrium equations of base-isolated structures adopting a conventional monolithic solution approach, i.e. an implicit single-step time integration method employed with an iteration procedure, and the use of existing nonlinear analytical models, such as differential equation models, to simulate the dynamic behavior of seismic isolators can require a significant computational effort. In order to reduce numerical computations, a partitioned solution method and a one dimensional nonlinear analytical model are presented in this paper. A partitioned solution approach can be easily applied to base-isolated structures in which the base isolation system is much more flexible than the superstructure. Thus, in this work, the explicit conditionally stable central difference method is used to evaluate the base isolation system nonlinear response and the implicit unconditionally stable Newmark’s constant average acceleration method is adopted to predict the superstructure linear response with the benefit in avoiding iterations in each time step of a nonlinear dynamic analysis. The proposed mathematical model is able to simulate the dynamic behavior of seismic isolators without requiring the solution of a nonlinear differential equation, as in the case of widely used differential equation model. The proposed mixed explicit-implicit time integration method and nonlinear exponential model are adopted to analyze a three dimensional seismically isolated structure with a lead rubber bearing system subjected to earthquake excitation. The numerical results show the good accuracy and the significant computational efficiency of the proposed solution approach and analytical model compared to the conventional solution method and mathematical model adopted in this work. Furthermore, the low stiffness value of the base isolation system with lead rubber bearings allows to have a critical time step considerably larger than the imposed ground acceleration time step, thus avoiding stability problems in the proposed mixed method.

Keywords: Base-isolated structures, earthquake engineering, mixed time integration, nonlinear exponential model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582