Search results for: coarse and fine aggregate.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 500

Search results for: coarse and fine aggregate.

380 Effect of Temperature of Exposure on Properties of Cement Mortar with MSWI Bottom Ash

Authors: Z. Pavlík, M. Keppert, J. Žumár, M. Pavlíková, A. Trník, R. Černý

Abstract:

Effect of high temperature exposure on properties of cement mortar containing municipal solid waste incineration (MSWI) bottom ash as partial natural aggregate replacement is analyzed in the paper. The measurements of mechanical properties, bulk density, matrix density, total open porosity, sorption and desorption isotherms are done on samples exposed to the temperatures of 20°C to 1000°C. TGA analysis is performed as well. Finally, the studied samples are analyzed by IR spectroscopy in order to evaluate TGA data.

Keywords: Cement mortar, high temperature exposure, MSWI bottom ash, natural aggregate replacement, mechanical properties

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1858
379 Properties of Fly Ash Brick Prepared in Local Environment of Bangladesh

Authors: Robiul Islam, Monjurul Hasan, Rezaul Karim, M. F. M. Zain

Abstract:

Coal fly ash, an industrial by product of coal combustion thermal power plants is considered as a hazardous material and its improper disposal has become an environmental issue. On the other hand, manufacturing conventional clay bricks involves on consumption of large amount of clay and leads substantial depletion of topsoil. This paper unveils the possibility of using fly ash as a partial replacement of clay for brick manufacturing considering the local technology practiced in Bangladesh. The effect of fly ash with different replacing ratio (0%, 20%, 30%, 40%, and 50% by volume) of clay on properties of bricks was studied. Bricks were made in the field parallel to ordinary bricks marked with specific number for different percentage to identify them at time of testing. No physical distortion is observed in fly ash brick after burning in the kiln. Results from laboratory test show that compressive strength of brick is decreased with the increase of fly ash and maximum compressive strength is found to be 19.6 MPa at 20% of fly ash. In addition, water absorption of fly ash brick is increased with the increase of fly ash. The abrasion value and Specific gravity of coarse aggregate prepared from brick with fly ash also studied and the results of this study suggests that 20% fly ash can be considered as the optimum fly ash content for producing good quality bricks utilizing present practiced technology.

Keywords: Bangladesh brick, fly ash, clay brick, physical properties, compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2486
378 Detailed Mapping of Pyroclastic Flow Deposits by SAR Data Processing for an Active Volcano in the Torrid Zone

Authors: Asep Saepuloh, Katsuaki Koike

Abstract:

Field mapping activity for an active volcano mainly in the Torrid Zone is usually hampered by several problems such as steep terrain and bad atmosphere conditions. In this paper we present a simple solution for such problem by a combination Synthetic Aperture Radar (SAR) and geostatistical methods. By this combination, we could reduce the speckle effect from the SAR data and then estimate roughness distribution of the pyroclastic flow deposits. The main purpose of this study is to detect spatial distribution of new pyroclastic flow deposits termed as P-zone accurately using the β°data from two RADARSAT-1 SAR level-0 data. Single scene of Hyperion data and field observation were used for cross-validation of the SAR results. Mt. Merapi in central Java, Indonesia, was chosen as a study site and the eruptions in May-June 2006 were examined. The P-zones were found in the western and southern flanks. The area size and the longest flow distance were calculated as 2.3 km2 and 6.8 km, respectively. The grain size variation of the P-zone was mapped in detail from fine to coarse deposits regarding the C-band wavelength of 5.6 cm.

Keywords: Geostatistical Method, Mt. Merapi, Pyroclastic, RADARSAT-1.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1307
377 Fuzzy Multi-Component DEA with Shared and Undesirable Fuzzy Resources

Authors: Jolly Puri, Shiv Prasad Yadav

Abstract:

Multi-component data envelopment analysis (MC-DEA) is a popular technique for measuring aggregate performance of the decision making units (DMUs) along with their components. However, the conventional MC-DEA is limited to crisp input and output data which may not always be available in exact form. In real life problems, data may be imprecise or fuzzy. Therefore, in this paper, we propose (i) a fuzzy MC-DEA (FMC-DEA) model in which shared and undesirable fuzzy resources are incorporated, (ii) the proposed FMC-DEA model is transformed into a pair of crisp models using α cut approach, (iii) fuzzy aggregate performance of a DMU and fuzzy efficiencies of components are defined to be fuzzy numbers, and (iv) a numerical example is illustrated to validate the proposed approach.

Keywords: Multi-component DEA, fuzzy multi-component DEA, fuzzy resources.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2073
376 Freeze-Thaw Resistance of Concretes with BFSA

Authors: Alena Sicakova

Abstract:

Air-cooled Blast Furnace Slag Aggregate (BFSA) is usually referred to as a material providing for unique properties of concrete. On the other hand, negative influences are also presented in many aspects. The freeze-thaw resistance of concrete is dependent on many factors, including regional specifics and when a concrete mix is specified it is still difficult to tell its exact freeze-thaw resistance due to the different components affecting it. An important consideration in working with BFSA is the granularity and whether slag is sorted or not. The experimental part of the article represents a comparative testing of concrete using both the sorted and unsorted BFSA through the freeze-thaw resistance as an indicator of durability. Unsorted BFSA is able to be successfully used for concretes as they are specified for exposure class XF4 with providing that the type of cement is precisely selected.

Keywords: Blast furnace slag aggregate, concrete, freeze-thaw resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2337
375 Detailed Sensitive Detection of Impurities in Waste Engine Oils Using Laser Induced Breakdown Spectroscopy, Rotating Disk Electrode Optical Emission Spectroscopy and Surface Plasmon Resonance

Authors: Cherry Dhiman, Ayushi Paliwal, Mohd. Shahid Khan, M. N. Reddy, Vinay Gupta, Monika Tomar

Abstract:

The laser based high resolution spectroscopic experimental techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Rotating Disk Electrode Optical Emission spectroscopy (RDE-OES) and Surface Plasmon Resonance (SPR) have been used for the study of composition and degradation analysis of used engine oils. Engine oils are mainly composed of aliphatic and aromatics compounds and its soot contains hazardous components in the form of fine, coarse and ultrafine particles consisting of wear metal elements. Such coarse particulates matter (PM) and toxic elements are extremely dangerous for human health that can cause respiratory and genetic disorder in humans. The combustible soot from thermal power plants, industry, aircrafts, ships and vehicles can lead to the environmental and climate destabilization. It contributes towards global pollution for land, water, air and global warming for environment. The detection of such toxicants in the form of elemental analysis is a very serious issue for the waste material management of various organic, inorganic hydrocarbons and radioactive waste elements. In view of such important points, the current study on used engine oils was performed. The fundamental characterization of engine oils was conducted by measuring water content and kinematic viscosity test that proves the crude analysis of the degradation of used engine oils samples. The microscopic quantitative and qualitative analysis was presented by RDE-OES technique which confirms the presence of elemental impurities of Pb, Al, Cu, Si, Fe, Cr, Na and Ba lines for used waste engine oil samples in few ppm. The presence of such elemental impurities was confirmed by LIBS spectral analysis at various transition levels of atomic line. The recorded transition line of Pb confirms the maximum degradation which was found in used engine oil sample no. 3 and 4. Apart from the basic tests, the calculations for dielectric constants and refractive index of the engine oils were performed via SPR analysis.

Keywords: Laser induced breakdown spectroscopy, rotating disk electrode optical emission spectroscopy, surface plasmon resonance, ICCD spectrometer, Nd:YAG laser, engine oil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 752
374 Limestone Briquette Production and Characterization

Authors: André C. Silva, Mariana R. Barros, Elenice M. S. Silva, Douglas. Y. Marinho, Diego F. Lopes, Débora N. Sousa, Raphael S. Tomáz

Abstract:

Modern agriculture requires productivity, efficiency and quality. Therefore, there is need for agricultural limestone implementation that provides adequate amounts of calcium and magnesium carbonates in order to correct soil acidity. During the limestone process, fine particles (with average size under 400#) are generated. These particles do not have economic value in agricultural and metallurgical sectors due their size. When limestone is used for agriculture purposes, these fine particles can be easily transported by wind generated air pollution. Therefore, briquetting, a mineral processing technique, was used to mitigate this problem resulting in an agglomerated product suitable for agriculture use. Briquetting uses compressive pressure to agglomerate fine particles. It can be aided by agglutination agents, allowing adjustments in shape, size and mechanical parameters of the mass. Briquettes can generate extra profits for mineral industry, presenting as a distinct product for agriculture, and can reduce the environmental liabilities of the fine particles storage or disposition. The produced limestone briquettes were subjected to shatter and water action resistance tests. The results show that after six minutes completely submerged in water, the briquettes where fully diluted, a highly favorable result considering its use for soil acidity correction.

Keywords: Agglomeration, briquetting, limestone, agriculture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1598
373 Artificial Intelligence Applications in Aggregate Quarries: A Reality

Authors: J. E. Ortiz, P. Plaza, J. Herrero, I. Cabria, J. L. Blanco, J. Gavilanes, J. I. Escavy, I. López-Cilla, V. Yagüe, C. Pérez, S. Rodríguez, J. Rico, C. Serrano, J. Bernat

Abstract:

The development of Artificial Intelligence services in mining processes, specifically in aggregate quarries, is facilitating automation and improving numerous aspects of operations. Ultimately, AI is transforming the mining industry by improving efficiency, safety and sustainability. With the ability to analyze large amounts of data and make autonomous decisions, AI offers great opportunities to optimize mining operations and maximize the economic and social benefits of this vital industry. Within the framework of the European DIGIECOQUARRY project, various services were developed for the identification of material quality, production estimation, detection of anomalies and prediction of consumption and production automatically with good results.

Keywords: Aggregates, artificial intelligence, automatization, mining operations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26
372 Performance Improvements of DSP Applications on a Generic Reconfigurable Platform

Authors: Michalis D. Galanis, Gregory Dimitroulakos, Costas E. Goutis

Abstract:

Speedups from mapping four real-life DSP applications on an embedded system-on-chip that couples coarsegrained reconfigurable logic with an instruction-set processor are presented. The reconfigurable logic is realized by a 2-Dimensional Array of Processing Elements. A design flow for improving application-s performance is proposed. Critical software parts, called kernels, are accelerated on the Coarse-Grained Reconfigurable Array. The kernels are detected by profiling the source code. For mapping the detected kernels on the reconfigurable logic a prioritybased mapping algorithm has been developed. Two 4x4 array architectures, which differ in their interconnection structure among the Processing Elements, are considered. The experiments for eight different instances of a generic system show that important overall application speedups have been reported for the four applications. The performance improvements range from 1.86 to 3.67, with an average value of 2.53, compared with an all-software execution. These speedups are quite close to the maximum theoretical speedups imposed by Amdahl-s law.

Keywords: Reconfigurable computing, Coarse-grained reconfigurable array, Embedded systems, DSP, Performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
371 Relationship between Gully Development and Characteristics of Drainage Area in Semi-Arid Region, NW Iran

Authors: Ali Reza Vaezi, Ouldouz Bakhshi Rad

Abstract:

Gully erosion is a widespread and often dramatic form of soil erosion caused by water during and immediately after heavy rainfall. It occurs when flowing surface water is channelled across unprotected land and washes away the soil along the drainage lines. The formation of gully is influenced by various factors, including climate, drainage surface area, slope gradient, vegetation cover, land use, and soil properties. It is a very important problem in semi-arid regions, where soils have lower organic matter and are weakly aggregated. Intensive agriculture and tillage along the slope can accelerate soil erosion by water in the region. There is little information on the development of gully erosion in agricultural rainfed areas. Therefore, this study was carried out to investigate the relationship between gully erosion and morphometric characteristics of the drainage area and the effects of soil properties and soil management factors (land use and tillage method) on gully development. A field study was done in a 900 km2 agricultural area in Hshtroud township located in the south of East Azerbaijan province, NW Iran. Toward this, 222 gullies created in rainfed lands were found in the area. Some properties of gullies, consisting of length, width, depth, height difference, cross section area, and volume, were determined. Drainage areas for each or some gullies were determined, and their boundaries were drawn. Additionally, the surface area of each drainage, land use, tillage direction, and soil properties that may affect gully formation were determined. The soil erodibility factor (K) defined in the Universal Soil Loss Equation (USLE) was estimated based on five soil properties (silt and very fine sand, coarse sand, organic matter, soil structure code, and soil permeability). Gully development in each drainage area was quantified using its volume and soil loss. The dependency of gully development on drainage area characteristics (surface area, land use, tillage direction, and soil properties) was determined using correlation matrix analysis. Based on the results, gully length was the most important morphometric characteristic indicating the development of gully erosion in the lands. Gully development in the area was related to slope gradient (r = -0.26), surface area (r = 0.71), the area of rainfed lands (r = 0.23), and the area of rainfed tilled along the slope (r = 0.24). Nevertheless, its correlation with the area of pasture and soil erodibility factor (K) was not significant. Among the characteristics of drainage area, surface area is the major factor controlling gully volume in the agricultural land. No significant correlation was found between gully erosion and soil erodibility factor (K) estimated by the USLE. It seems the estimated soil erodibility cannot describe the susceptibility of the study soils to the gully erosion process. In these soils, aggregate stability and soil permeability are the two soil physical properties that affect the actual soil erodibility and in consequence, these soil properties can control gully erosion in the rainfed lands. 

Keywords: Agricultural area, gully properties, soil structure, USLE, Universal Soil Loss Equation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 98
370 Calibration of the Discrete Element Method Using a Large Shear Box

Authors: Corné J. Coetzee, Etienne Horn

Abstract:

One of the main challenges in using the Discrete Element Method (DEM) is to specify the correct input parameter values. In general, the models are sensitive to the input parameter values and accurate results can only be achieved if the correct values are specified. For the linear contact model, micro-parameters such as the particle density, stiffness, coefficient of friction, as well as the particle size and shape distributions are required. There is a need for a procedure to accurately calibrate these parameters before any attempt can be made to accurately model a complete bulk materials handling system. Since DEM is often used to model applications in the mining and quarrying industries, a calibration procedure was developed for materials that consist of relatively large (up to 40 mm in size) particles. A coarse crushed aggregate was used as the test material. Using a specially designed large shear box with a diameter of 590 mm, the confined Young’s modulus (bulk stiffness) and internal friction angle of the material were measured by means of the confined compression test and the direct shear test respectively. DEM models of the experimental setup were developed and the input parameter values were varied iteratively until a close correlation between the experimental and numerical results was achieved. The calibration process was validated by modelling the pull-out of an anchor from a bed of material. The model results compared well with experimental measurement.

Keywords: Discrete Element Method (DEM), calibration, shear box, anchor pull-out.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2672
369 Effect of Blast Furnace Iron Slag on the Mechanical Performance of Hot Mix Asphalt (HMA)

Authors: Ayman M. Othman, Hassan Y. Ahmed

Abstract:

This paper discusses the effect of using blast furnace iron slag as a part of fine aggregate on the mechanical performance of hot mix asphalt (HMA). The mechanical performance was evaluated based on various mechanical properties that include; Marshall/stiffness, indirect tensile strength and unconfined compressive strength. The effect of iron slag content on the mechanical properties of the mixtures was also investigated. Four HMA with various iron slag contents, namely; 0%, 5%, 10% and 15% by weight of total mixture were studied. Laboratory testing has revealed an enhancement in the compressive strength of HMA when iron slag was used. Within the tested range of iron slag content, a considerable increase in the compressive strength of the mixtures was observed with the increase of slag content. No significant improvement on Marshall/stiffness and indirect tensile strength of the mixtures was observed when slag was used. Even so, blast furnace iron slag can still be used in asphalt paving for environmental advantages.

Keywords: Blast furnace iron slag, HMA, Marshall/stiffness, indirect tensile strength, compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
368 Statistical Modeling of Constituents in Ash Evolved From Pulverized Coal Combustion

Authors: Esam Jassim

Abstract:

Industries using conventional fossil fuels have an  interest in better understanding the mechanism of particulate  formation during combustion since such is responsible for emission  of undesired inorganic elements that directly impact the atmospheric  pollution level. Fine and ultrafine particulates have tendency to  escape the flue gas cleaning devices to the atmosphere. They also  preferentially collect on surfaces in power systems resulting in  ascending in corrosion inclination, descending in the heat transfer  thermal unit, and severe impact on human health. This adverseness  manifests particularly in the regions of world where coal is the  dominated source of energy for consumption.  This study highlights the behavior of calcium transformation as  mineral grains verses organically associated inorganic components  during pulverized coal combustion. The influence of existing type of  calcium on the coarse, fine and ultrafine mode formation mechanisms  is also presented. The impact of two sub-bituminous coals on particle  size and calcium composition evolution during combustion is to be  assessed. Three mixed blends named Blends 1, 2, and 3 are selected  according to the ration of coal A to coal B by weight. Calcium  percentage in original coal increases as going from Blend 1 to 3.  A mathematical model and a new approach of describing  constituent distribution are proposed. Analysis of experiments of  calcium distribution in ash is also modeled using Poisson distribution.  A novel parameter, called elemental index λ, is introduced as a  measuring factor of element distribution.  Results show that calcium in ash that originally in coal as mineral  grains has index of 17, whereas organically associated calcium  transformed to fly ash shown to be best described when elemental  index λ is 7.  As an alkaline-earth element, calcium is considered the  fundamental element responsible for boiler deficiency since it is the  major player in the mechanism of ash slagging process. The  mechanism of particle size distribution and mineral species of ash  particles are presented using CCSEM and size-segregated ash  characteristics. Conclusions are drawn from the analysis of  pulverized coal ash generated from a utility-scale boiler.

 

Keywords: Calcium transformation, Coal Combustion, Inorganic Element, Poisson distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
367 Study on the Particle Removal Efficiency of Multi Inner Stage Cyclone by CFD Simulation

Authors: Sang Won Han, Won Joo Lee, Sang Jun Lee

Abstract:

A new multi inner stage (MIS) cyclone was designed to remove the acidic gas and fine particles produced from electronic industry. To characterize gas flow in MIS cyclone, pressure and velocity distribution were calculated by means of CFD program. Also, the flow locus of fine particles and particle removal efficiency were analyzed by Lagrangian method. When outlet pressure condition was –100mmAq, the efficiency was the best in this study.

Keywords: Cyclone, SiO2 particle, Particle removal efficiency, CFD simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1786
366 Removal of Aggregates of Monoclonal Antibodies by Ion Exchange Chromatography

Authors: Ishan Arora, Anurag S. Rathore

Abstract:

The primary objective of this work was to study the effect of resin chemistry, pH and molarity of binding and elution buffer on aggregate removal using Cation Exchange Chromatography and find the optimum conditions which can give efficient aggregate removal with minimum loss of yield. Four different resins were used for carrying out the experiments: Fractogel EMD SO3 -(S), Fractogel EMD COO-(M), Capto SP ImpRes and S Ceramic HyperD. Runs were carried out on the AKTA Avant system. Design of Experiments (DOE) was used for analysis using the JMP software. The dependence of the yield obtained using different resins on the operating conditions was studied. Success has been achieved in obtaining yield greater than 90% using Capto SP ImpRes and Fractogel EMD COO-(M) resins. It has also been found that a change in the operating conditions generally has different effects on the yields obtained using different resins.

Keywords: Aggregates, cation exchange chromatography, design of experiments, monoclonal antibodies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2934
365 Plants Cover Effects on Overland Flow and on Soil Erosion under Simulated Rainfall Intensity

Authors: H. Madi, L. Mouzai, M. Bouhadef

Abstract:

The purpose of this article is to study the effects of plants cover on overland flow and, therefore, its influences on the amount of eroded and transported soil. In this investigation, all the experiments were conducted in the LEGHYD laboratory using a rainfall simulator and a soil tray. The experiments were conducted using an experimental plot (soil tray) which is 2m long, 0.5 m wide and 0.15 m deep. The soil used is an agricultural sandy soil (62,08% coarse sand, 19,14% fine sand, 11,57% silt and 7,21% clay). Plastic rods (4 mm in diameter) were used to simulate the plants at different densities: 0 stem/m2 (bared soil), 126 stems/m², 203 stems/m², 461 stems/m² and 2500 stems/m²). The used rainfall intensity is 73mm/h and the soil tray slope is fixed to 3°. The results have shown that the overland flow velocities decreased with increasing stems density, and the density cover has a great effect on sediment concentration. Darcy–Weisbach and Manning friction coefficients of overland flow increased when the stems density increased. Froude and Reynolds numbers decreased with increasing stems density and, consequently, the flow regime of all treatments was laminar and subcritical. From these findings, we conclude that increasing the plants cover can efficiently reduce soil loss and avoid denuding the roots plants.

Keywords: Soil erosion, vegetation, stems density, overland flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3126
364 Substitution of Natural Aggregates by Crushed Concrete Waste in Concrete Products Manufacturing

Authors: Jozef Junak, Nadezda Stevulova

Abstract:

This paper is aimed to the use of different types of industrial wastes in concrete production. From examined waste (crushed concrete waste) our tested concrete samples with dimension 150 mm were prepared. In these samples, fractions 4/8 mm and 8/16 mm by recycled concrete aggregate with a range of variation from 0 to 100% were replaced. Experiment samples were tested for compressive strength after 2, 7, 14 and 28 days of hardening. From obtained results it is evident that all samples prepared with washed recycled concrete aggregates met the requirement of standard for compressive strength of 20 MPa already after 14 days of hardening. Sample prepared with recycled concrete aggregates (4/8 mm: 100% and 8/16 mm: 60%) reached 101% of compressive strength value (34.7 MPa) after 28 days of hardening in comparison with the reference sample (34.4 MPa). The lowest strength after 28 days of hardening (27.42 MPa) was obtained for sample consisting of recycled concrete in proportion of 40% for 4/8 fraction and 100% for 8/16 fraction of recycled concrete.

Keywords: Recycled concrete aggregate, re-use, workability, compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
363 Characterization of Cement Mortar Based on Fine Quartz

Authors: K. Arroudj, M. Lanez, M. N. Oudjit

Abstract:

The introduction of siliceous mineral additions in cement production allows, in addition to the ecological and economic gain, improvement of concrete performance. This improvement is mainly due to the fixing of Portlandite, released during the hydration of cement, by fine siliceous, forming denser calcium silicate hydrates and therefore a more compact cementitious matrix. This research is part of the valuation of the Dune Sand (DS) in the cement industry in Algeria. The high silica content of DS motivated us to study its effect, at ground state, on the properties of mortars in fresh and hardened state. For this purpose, cement pastes and mortars based on ground dune sand (fine quartz) has been analyzed with a replacement to cement of 15%, 20% and 25%. This substitution has reduced the amount of heat of hydration and avoids any risk of initial cracking. In addition, the grinding of the dune sand provides amorphous thin populations adsorbed at the surface of the crystal particles of quartz. Which gives to ground quartz pozzolanic character. This character results an improvement of mechanical strength of mortar (66 MPa in the presence of 25% of ground quartz).

Keywords: Mineralogical structure, Pozzolanic reactivity, quartz, mechanical strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1016
362 An Improved Method on Static Binary Analysis to Enhance the Context-Sensitive CFI

Authors: Qintao Shen, Lei Luo, Jun Ma, Jie Yu, Qingbo Wu, Yongqi Ma, Zhengji Liu

Abstract:

Control Flow Integrity (CFI) is one of the most promising technique to defend Code-Reuse Attacks (CRAs). Traditional CFI Systems and recent Context-Sensitive CFI use coarse control flow graphs (CFGs) to analyze whether the control flow hijack occurs, left vast space for attackers at indirect call-sites. Coarse CFGs make it difficult to decide which target to execute at indirect control-flow transfers, and weaken the existing CFI systems actually. It is an unsolved problem to extract CFGs precisely and perfectly from binaries now. In this paper, we present an algorithm to get a more precise CFG from binaries. Parameters are analyzed at indirect call-sites and functions firstly. By comparing counts of parameters prepared before call-sites and consumed by functions, targets of indirect calls are reduced. Then the control flow would be more constrained at indirect call-sites in runtime. Combined with CCFI, we implement our policy. Experimental results on some popular programs show that our approach is efficient. Further analysis show that it can mitigate COOP and other advanced attacks.

Keywords: Contex-sensitive, CFI, binary analysis, code reuse attack.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 943
361 Integrated Approaches to Enhance Aggregate Production Planning with Inventory Uncertainty Based On Improved Harmony Search Algorithm

Authors: P. Luangpaiboon, P. Aungkulanon

Abstract:

This work presents a multiple objective linear programming (MOLP) model based on the desirability function approach for solving the aggregate production planning (APP) decision problem upon Masud and Hwang-s model. The proposed model minimises total production costs, carrying or backordering costs and rates of change in labor levels. An industrial case demonstrates the feasibility of applying the proposed model to the APP problems with three scenarios of inventory levels. The proposed model yields an efficient compromise solution and the overall levels of DM satisfaction with the multiple combined response levels. There has been a trend to solve complex planning problems using various metaheuristics. Therefore, in this paper, the multi-objective APP problem is solved by hybrid metaheuristics of the hunting search (HuSIHSA) and firefly (FAIHSA) mechanisms on the improved harmony search algorithm. Results obtained from the solution of are then compared. It is observed that the FAIHSA can be used as a successful alternative solution mechanism for solving APP problems over three scenarios. Furthermore, the FAIHSA provides a systematic framework for facilitating the decision-making process, enabling a decision maker interactively to modify the desirability function approach and related model parameters until a good optimal solution is obtained with proper selection of control parameters when compared.

Keywords: Aggregate Production Planning, Desirability Function Approach, Improved Harmony Search Algorithm, Hunting Search Algorithm and Firefly Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
360 The Effect of Randomly Distributed Polypropylene Fibers Borogypsum Fly Ash and Cement on Freezing-Thawing Durability of a Fine-Grained Soil

Authors: Ahmet Şahin Zaimoğlu

Abstract:

A number of studies have been conducted recently to investigate the influence of randomly oriented fibers on some engineering properties of cohesive and cohesionless soils. However, few studies have been carried out on freezing-thawing behavior of fine-grained soils modified with discrete fiber inclusions and additive materials. This experimental study was performed to investigate the effect of randomly distributed polypropylene fibers (PP) and some additive materials [e.g.., borogypsum (BG), fly ash (FA) and cement (C)] on freezing-thawing durability (mass losses) of a fine-grained soil for 6, 12, and 18 cycles. The Taguchi method was applied to the experiments and a standard L9 orthogonal array (OA) with four factors and three levels were chosen. A series of freezing-thawing tests were conducted on each specimen. 0-20% BG, 0-20% FA, 0- 0.25% PP and 0-3% of C by total dry weight of mixture were used in the preparation of specimens. Experimental results showed that the most effective materials for the freezing-thawing durability (mass losses) of the samples were borogypsum and fly ash. The values of mass losses for 6, 12 and 18 cycles in optimum conditions were 16.1%, 5.1% and 3.6%, respectively.

Keywords: Additive materials, Freezing-thawing, Optimization, Reinforced soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1735
359 Investigation of Compressive Strength of Slag-Based Geopolymer Concrete Incorporated with Rice Husk Ash Using 12M Alkaline Activator

Authors: Festus A. Olutoge, Ahmed A. Akintunde, Anuoluwapo S. Kolade, Aaron A. Chadee, Jovanca Smith

Abstract:

Geopolymer concrete's (GPC) compressive strength was investigated. The GPC was incorporated with rice husk ash (RHA) and ground granulated blast furnace slag (GGBFS), which may have potential in the construction industry to replace Portland limestone cement (PLC) concrete. The sustainable construction binders used were GGBFS and RHA, and a solution of sodium hydroxide (NaOH) and sodium silicate gel (Na2SiO3) was used as the 12-molar alkaline activator. Five GPC mixes comprising fine aggregates, coarse aggregates, GGBS, and RHA, and the alkaline solution in the ratio 2: 2.5: 1: 0.5, respectively, were prepared to achieve grade 40 concrete, and PLC was substituted with GGBFS and RHA in the ratios of 0:100, 25:75, 50:50, 75:25, and 100:0. A control mix was also prepared which comprised of 100% water and 100% PLC as the cementitious material. The GPC mixes were thermally cured at 60-80 ºC in an oven for approximately 24 h. After curing for 7 and 28 days, the compressive strength test results of the hardened GPC samples showed that GPC-Mix #3, comprising 50% GGBFS and 50% RHA, was the most efficient geopolymer mix. The mix had compressive strengths of 35.71 MPa and 47.26 MPa, 19.87% and 8.69% higher than the PLC concrete samples, which had 29.79 MPa and 43.48 MPa after 7 and 28 days, respectively. Therefore, GPC containing GGBFS incorporated with RHA is an efficient method of decreasing the use of PLC in conventional concrete production and reducing the high amounts of CO2 emitted into the atmosphere in the construction industry.

Keywords: Alkaline solution, cementitious material, geopolymer concrete, ground granulated blast furnace slag, rice husk ash.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 189
358 Air Classification of Dust from Steel Converter Secondary De-dusting for Zinc Enrichment

Authors: C. Lanzerstorfer

Abstract:

The off-gas from the basic oxygen furnace (BOF), where pig iron is converted into steel, is treated in the primary ventilation system. This system is in full operation only during oxygen-blowing when the BOF converter vessel is in a vertical position. When pig iron and scrap are charged into the BOF and when slag or steel are tapped, the vessel is tilted. The generated emissions during charging and tapping cannot be captured by the primary off-gas system. To capture these emissions, a secondary ventilation system is usually installed. The emissions are captured by a canopy hood installed just above the converter mouth in tilted position. The aim of this study was to investigate the dependence of Zn and other components on the particle size of BOF secondary ventilation dust. Because of the high temperature of the BOF process it can be expected that Zn will be enriched in the fine dust fractions. If Zn is enriched in the fine fractions, classification could be applied to split the dust into two size fractions with a different content of Zn. For this air classification experiments with dust from the secondary ventilation system of a BOF were performed. The results show that Zn and Pb are highly enriched in the finest dust fraction. For Cd, Cu and Sb the enrichment is less. In contrast, the non-volatile metals Al, Fe, Mn and Ti were depleted in the fine fractions. Thus, air classification could be considered for the treatment of dust from secondary BOF off-gas cleaning.

Keywords: Air classification, converter dust, recycling, zinc.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1219
357 Influence of Nanozeolite Particles on Improvement of Clayey Soil

Authors: A. Goodarzian, A. Ghasemipanah, R. Ziaie Moayed, H. Niroumand

Abstract:

The problem of soil stabilization has been one of the important issues in geotechnical engineering. Nowadays, nanomaterials have revolutionized many industries. In this research, improvement of the Kerman fine-grained soil by nanozeolite and nanobentonite additives separately has been investigated using Atterberg Limits and unconfined compression test. In unconfined compression test, the samples were prepared with 3, 5 and 7% nano additives, with 1, 7 and 28 days curing time with strain control method. Finally, the effect of different percentages of nanozeolite and nanobentonite on the geotechnical behavior and characteristics of Kerman fine-grained soil was investigated. The results showed that with increasing the amount of nanozeolite and also nanobentonite to fine-grained soil, the soil exhibits more compression strength. So that by adding 7% nanozeolite and nanobentonite with 1 day curing, the unconfined compression strength is 1.18 and 2.1 times higher than the unstabilized soil. In addition, the failure strain decreases in samples containing nanozeolite, whereas it increases in the presence of nanobentonite. Increasing the percentage of nanozeolite and nanobentonite also increased the elasticity modulus of soil.

Keywords: Nanozeolite particles, nanobentonite particles, clayey soil, unconfined compression stress, specific surface area, cation exchange capacity, Atterberg limits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 873
356 Polishing Machine Based on High-Pressure Water Jet

Authors: Mohammad A. Khasawneh

Abstract:

The design of high pressure water jet based polishing equipment and its fabrication conducted in this study is reported herein, together with some preliminary test results for assessing its applicability for HMA surface polishing. This study also provides preliminary findings concerning the test variables, such as the rotational speed, the water jet pressure, the abrasive agent used, and the impact angel that were experimentally investigated in this study. The preliminary findings based on four trial tests (two on large slab specimens and two on small size gyratory compacted specimens), however, indicate that both friction and texture values tend to increase with the polishing durations for two combinations of pressure and rotation speed of the rotary deck. It seems that the more polishing action the specimen is subjected to; the aggregate edges are created such that the surface texture values are increased with the accompanied increase in friction values. It may be of interest (but which is outside the scope of this study) to investigate if the similar trend exist for HMA prepared with aggregate source that is sand and gravel.

Keywords: High-pressure, water jet, Friction, Texture, Polishing, Statistical Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052
355 Variation of Quality of Roller-Compacted Concrete Based on Consistency

Authors: C. Chhorn, S. H. Han, S. W. Lee

Abstract:

Roller-compacted concrete (RCC) has been used for decades in many pavement applications due to its economic cost and high construction speed. However, due to the lack of deep researches and experiences, this material has not been widely employed. An RCC mixture with appropriate consistency can induce high compacted density, while high density can induce good aggregate interlock and high strength. Consistency of RCC is mainly known to define its constructability. However, it was not well specified how this property may affect other properties of a constructed RCC pavement (RCCP). This study suggested the possibility of an ideal range of consistency that may provide adequate quality of RCCP. In this research, five sections of RCCP consisted of both 13 mm and 19 mm aggregate sections were investigated. The effects of consistency on compacted depth, strength, international roughness index (IRI), skid resistance are examined. From this study, a new range of consistency is suggested for RCCP application.

Keywords: Compacted depth, consistency, international roughness index, pavement, roller-compacted concrete, skid resistance, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1124
354 Experimental Study on Mechanical Properties of Commercially Pure Copper Processed by Severe Plastic Deformation Technique-Equal Channel Angular Extrusion

Authors: Krishnaiah Arkanti, Ramulu Malothu

Abstract:

The experiments have been conducted to study the mechanical properties of commercially pure copper processing at room temperature by severe plastic deformation using equal channel angular extrusion (ECAE) through a die of 90oangle up to 3 passes by route BC i.e. rotating the sample in the same direction by 90o after each pass. ECAE is used to produce from existing coarse grains to ultra-fine, equiaxed grains structure with high angle grain boundaries in submicron level by introducing a large amount of shear strain in the presence of hydrostatic pressure into the material without changing billet shape or dimension. Mechanical testing plays an important role in evaluating fundamental properties of engineering materials as well as in developing new materials and in controlling the quality of materials for use in design and construction. Yield stress, ultimate tensile stress and ductility are structure sensitive properties and vary with the structure of the material. Microhardness and tensile tests were carried out to evaluate the hardness, strength and ductility of the ECAE processed materials. The results reveal that the strength and hardness of commercially pure copper samples improved significantly without losing much ductility after each pass.

Keywords: Equal Channel Angular Extrusion, Severe Plastic Deformation, Copper, Mechanical Properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1667
353 Effect of Rubber Tyre and Plastic Wastes Use in Asphalt Concrete Pavement

Authors: F. Onyango, Salim R. Wanjala, M. Ndege, L. Masu

Abstract:

Asphalt concrete pavements have a short life cycle, failing mainly due to temperature changes, traffic loading and ageing. Modified asphalt mixtures provide the technology to produce a bituminous binder with improved viscoelastic properties, which remain in balance over a wider temperature range and loading conditions. In this research, 60/70 penetration grade asphalt binder was modified by adding 2, 4, 6, 8 and 10 percent by weight of asphalt binder following the wet process and the mineral aggregate was modified by adding 1, 2, 3, 4 and 5 percent crumb rubber by volume of the mineral aggregate following the dry process. The LDPE modified asphalt binder rheological properties were evaluated. The laboratory results showed an increase in viscosity, softening point and stiffness of the binder. The modified asphalt was then used in preparing asphalt mixtures by Marshall Mix design procedure. The Marshall Stability values for mixes containing 2% crumb rubber and 4% LDPE were found to be 30% higher than the conventional asphalt concrete mix.

Keywords: Crumb rubber, dry process, low-density polyethylene, hot mix asphalt, wet process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4704
352 New Device for Enhancement of Liposomal Magnetofection Efficiency of Cancer Cells

Authors: M. Baryshev, D.Vainauska, S. Kozireva, A.Karpovs

Abstract:

Liposomal magnetofection is the most powerful nonviral method for the nucleic acid delivery into the cultured cancer cells and widely used for in vitro applications. Use of the static magnetic field condition may result in non-uniform distribution of aggregate complexes on the surface of cultured cells. To prevent this, we developed the new device which allows to concentrate aggregate complexes under dynamic magnetic field, assisting more contact of these complexes with cellular membrane and, possibly, stimulating endocytosis. Newly developed device for magnetofection under dynamic gradient magnetic field, “DynaFECTOR", was used to compare transfection efficiency of human liver hepatocellular carcinoma cell line HepG2 with that obtained by lipofection and magnetofection. The effect of two parameters on transfection efficiency, incubation time under dynamic magnetic field and rotation frequency of magnet, was estimated. Liposomal magnetofection under dynamic gradient magnetic field showed the highest transfection efficiency for HepG2 cells.

Keywords: Dynamic magnetic field, Lipofection, Magnetofection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1762
351 Behaviour of Lightweight Expanded Clay Aggregate Concrete Exposed to High Temperatures

Authors: Lenka Bodnárová, Rudolf Hela, Michala Hubertová, Iveta Nováková

Abstract:

This paper is concerning the issues of behaviour of lightweight expanded clay aggregates concrete exposed to high temperature. Lightweight aggregates from expanded clay are produced by firing of row material up to temperature 1050°C. Lightweight aggregates have suitable properties in terms of volume stability, when exposed to temperatures up to 1050°C, which could indicate their suitability for construction applications with higher risk of fire. The test samples were exposed to heat by using the standard temperature-time curve ISO 834. Negative changes in resulting mechanical properties, such as compressive strength, tensile strength, and flexural strength were evaluated. Also visual evaluation of the specimen was performed. On specimen exposed to excessive heat, an explosive spalling could be observed, due to evaporation of considerable amount of unbounded water from the inner structure of the concrete.

Keywords: Expanded clay aggregate, explosive spalling, high temperature, lightweight concrete, temperature-time curve ISO 834.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3594