Search results for: biological diagnosis
762 Analysis of a Population of Diabetic Patients Databases with Classifiers
Authors: Murat Koklu, Yavuz Unal
Abstract:
Data mining can be called as a technique to extract information from data. It is the process of obtaining hidden information and then turning it into qualified knowledge by statistical and artificial intelligence technique. One of its application areas is medical area to form decision support systems for diagnosis just by inventing meaningful information from given medical data. In this study a decision support system for diagnosis of illness that make use of data mining and three different artificial intelligence classifier algorithms namely Multilayer Perceptron, Naive Bayes Classifier and J.48. Pima Indian dataset of UCI Machine Learning Repository was used. This dataset includes urinary and blood test results of 768 patients. These test results consist of 8 different feature vectors. Obtained classifying results were compared with the previous studies. The suggestions for future studies were presented.
Keywords: Artificial Intelligence, Classifiers, Data Mining, Diabetic Patients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5431761 Application of Whole Genome Amplification Technique for Genotype Analysis of Bovine Embryos
Authors: S. Moghaddaszadeh-Ahrabi, S. Farajnia, Gh. Rahimi-Mianji, A. Nejati-Javaremi
Abstract:
In recent years, there has been an increasing interest toward the use of bovine genotyped embryos for commercial embryo transfer programs. Biopsy of a few cells in morulla stage is essential for preimplantation genetic diagnosis (PGD). Low amount of DNA have limited performing the several molecular analyses within PGD analyses. Whole genome amplification (WGA) promises to eliminate this problem. We evaluated the possibility and performance of an improved primer extension preamplification (I-PEP) method with a range of starting bovine genomic DNA from 1-8 cells into the WGA reaction. We optimized a short and simple I-PEP (ssI-PEP) procedure (~3h). This optimized WGA method was assessed by 6 loci specific polymerase chain reactions (PCRs), included restriction fragments length polymorphism (RFLP). Optimized WGA procedure possesses enough sensitivity for molecular genetic analyses through the few input cells. This is a new era for generating characterized bovine embryos in preimplantation stage.Keywords: Whole genome amplification (WGA), Genotyping, Bovine, Preimplantation genetic diagnosis (PGD)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1669760 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis
Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen
Abstract:
The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluates the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.
Keywords: lexical semantics, feature representation, semantic decision, convolutional neural network, electronic medical record
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594759 A Formative Assessment Model within the Competency-Based-Approach for an Individualized E-learning Path
Authors: El Falaki Brahim, Khalidi Idrissi Mohammed, Bennani Samir
Abstract:
E-learning is not restricted to the use of new technologies for the online content, but also induces the adoption of new approaches to improve the quality of education. This quality depends on the ability of these approaches (technical and pedagogical) to provide an adaptive learning environment. Thus, the environment should include features that convey intentions and meeting the educational needs of learners by providing a customized learning path to acquiring a competency concerned In our proposal, we believe that an individualized learning path requires knowledge of the learner. Therefore, it must pass through a personalization of diagnosis to identify precisely the competency gaps to fill, and reduce the cognitive load To personalize the diagnosis and pertinently measure the competency gap, we suggest implementing the formative assessment in the e-learning environment and we propose the introduction of a pre-regulation process in the area of formative assessment, involving its individualization and implementation in e-learning.
Keywords: Competency-Based-Approach, E-learning, Formative assessment, learner model, Modeling, pre-regulation process
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122758 Family Functionality in Mexican Children with Congenital and Non-Congenital Deafness
Authors: D. Estrella, A. Silva, R. Zapata, H. Rubio
Abstract:
A total of 100 primary caregivers (mothers, fathers, grandparents) with at least one child or grandchild with a diagnosis of congenital bilateral profound deafness were assessed in order to evaluate the functionality of families with a deaf member, who was evaluated by specialists in audiology, molecular biology, genetics and psychology. After confirmation of the clinical diagnosis, DNA from the patients and parents were analyzed in search of the 35delG deletion of the GJB2 gene to determine who possessed the mutation. All primary caregivers were provided psychological support, regardless of whether or not they had the mutation, and prior and subsequent, the family APGAR test was applied. All parents, grandparents were informed of the results of the genetic analysis during the psychological intervention. The family APGAR, after psychological and genetic counseling, showed that 14% perceived their families as functional, 62% moderately functional and 24% dysfunctional. This shows the importance of psychological support in family functionality that has a direct impact on the quality of life of these families.
Keywords: Deafness, psychological support, family, adaptation to disability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 976757 Pulse Oximeter Concept for Vascular Occlusion Test
Authors: Fatanah M. Suhaimi, J. Geoffrey Chase, Christopher G. Pretty, Rodney Elliott, Geoffrey M. Shaw
Abstract:
Microcirculatory dysfunction is very common in sepsis and may results in organ failure and increased risk of death. Analyzing oxygen utilization can potentially assess microcirculation function of an individual. In this study, a modified pulse oximeter is used to extract information signals due to absorption of red (R) and infrared (IR) light. IR and R signal are related to the overall blood volume and reduced hemoglobin, respectively. Differences between these two signals thus represent the amount of oxygenated hemoglobin. Avascular occlusion test has been conducted on healthy individuals to validate the pulse oximeter concept. In this test, both R and IR signals rapidly changed according to the occlusion process. The pulse oximeter concept presented is capable of extracting valuable information to assess microcirculation condition. Implementing this concept on ICU patients has the potential to aid sepsis diagnosis and provide more accurate tracking of patient state and sepsis status.
Keywords: Microcirculation, sepsis, sepsis diagnosis, oxygen extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032756 Municipal Solid Waste: Pre-Treatment Options and Benefits on Landfill Emissions
Authors: Bakare Babatunde Femi
Abstract:
Municipal solid waste (MSW) comprises of a wide range of heterogeneous materials generated by individual, household or organization and may include food waste, garden wastes, papers, textiles, rubbers, plastics, glass, ceramics, metals, wood wastes, construction wastes but it is not limited to the above mentioned fractions. The most common Municipal Solid Waste pretreatment method in use is thermal pretreatment (incineration) and Mechanical Biological pretreatment. This paper presents an overview of these two pretreatment methods describing their benefits and laboratory scale reactors that simulate landfill conditions were constructed in order to compare emissions in terms of biogas production and leachate contamination between untreated Municipal Solid Waste and Mechanical Biological Pretreated waste. The findings of this study showed that Mechanical Biological pretreatment of waste reduces the emission level of waste and the benefit over the landfilling of untreated waste is significant.Keywords: emissions, mechanical biological pretreatment, MSW, thermal pretreatment
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2914755 Annotations of Gene Pathways Images in Biomedical Publications Using Siamese Network
Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu
Abstract:
As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Manually annotating pathway diagrams is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.
Keywords: Biological pathway, gene identification, object detection, Siamese network, ResNet.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 247754 Relationship between Trauma and Acute Scrotum: Test Torsion and Epididymal Appendix Torsion
Authors: Saimir Heta, Kastriot Haxhirexha, Virtut Velmishi, Nevila Alliu, Ilma Robo
Abstract:
Background: Testicular rotation can occur at any age. The possibility to save the testicle is the fastest possible surgical intervention which is indicated by the presence of acute pain even at rest. The time element is more important to diagnose and proceed further with surgical intervention. Testicular damage is a consequence which mainly depends on the moment of onset of symptoms, at the time when the symptoms are diagnosed, the earliest action to be performed is surgical intervention. Sometimes medical tests are needed to confirm a diagnosis, or to help identify another cause for symptoms; for example, the urine test, that is used to check for infection, associated with the scrotal ultrasound test. Control of blood flow to the longitudinal supply vessels of the testicles is indicated. The sign that indicates testicular rotation is a reduction in blood flow. This is the element which is distinguished from ultrasound examination. Surgery may be needed to determine if the patient’s symptoms are caused by the rotation of the testis or any other condition. Discussion: As a surgical intervention of the emergency, the torsion of the test depends very much on the duration of the torsion, as the success in the life of the testicle depends on the fastest surgical intervention. From the previous clinic, it is noted that in any case presented to the pediatric patient diagnosed with testicular rotation, there is always a link with personal history that the patient refers to the presence of a previous episode of testicular trauma. Literature supports this fact very logically. Conclusions: Salvation without testicular atrophy depends closely on establishing the diagnosis of testicular rotation as soon as possible. Following the logic above, it can be said that the diagnosis for rotation should be performed as soon as possible, to avoid consequences that will not be favorable for the patient.
Keywords: Acute scrotum, testicular torsion, newborns, infants, clinical presentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 509753 The Integrated Management of Health Care Strategies and Differential Diagnosis by Expert System Technology: A Single-Dimensional Approach
Authors: A. B. Adehor, P. R. Burrell
Abstract:
The Integrated Management of Child illnesses (IMCI) and the surveillance Health Information Systems (HIS) are related strategies that are designed to manage child illnesses and community practices of diseases. However, both strategies do not function well together because of classification incompatibilities and, as such, are difficult to use by health care personnel in rural areas where a majority of people lack the basic knowledge of interpreting disease classification from these methods. This paper discusses a single approach on how a stand-alone expert system can be used as a prompt diagnostic tool for all cases of illnesses presented. The system combines the action-oriented IMCI and the disease-oriented HIS approaches to diagnose malaria and typhoid fever in the rural areas of the Niger-delta region.
Keywords: Differential diagnosis, Health Information System(HIS), Integrated Management of Child Illnesses (IMCI), Malaria andTyphoid fever.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1868752 Quality Classification and Monitoring Using Adaptive Metric Distance and Neural Networks: Application in Pickling Process
Authors: S. Bouhouche, M. Lahreche, S. Ziani, J. Bast
Abstract:
Modern manufacturing facilities are large scale, highly complex, and operate with large number of variables under closed loop control. Early and accurate fault detection and diagnosis for these plants can minimise down time, increase the safety of plant operations, and reduce manufacturing costs. Fault detection and isolation is more complex particularly in the case of the faulty analog control systems. Analog control systems are not equipped with monitoring function where the process parameters are continually visualised. In this situation, It is very difficult to find the relationship between the fault importance and its consequences on the product failure. We consider in this paper an approach to fault detection and analysis of its effect on the production quality using an adaptive centring and scaling in the pickling process in cold rolling. The fault appeared on one of the power unit driving a rotary machine, this machine can not track a reference speed given by another machine. The length of metal loop is then in continuous oscillation, this affects the product quality. Using a computerised data acquisition system, the main machine parameters have been monitored. The fault has been detected and isolated on basis of analysis of monitored data. Normal and faulty situation have been obtained by an artificial neural network (ANN) model which is implemented to simulate the normal and faulty status of rotary machine. Correlation between the product quality defined by an index and the residual is used to quality classification.Keywords: Modeling, fault detection and diagnosis, parameters estimation, neural networks, Fault Detection and Diagnosis (FDD), pickling process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577751 GPU Based High Speed Error Protection for Watermarked Medical Image Transmission
Authors: Md Shohidul Islam, Jongmyon Kim, Ui-pil Chong
Abstract:
Medical image is an integral part of e-health care and e-diagnosis system. Medical image watermarking is widely used to protect patients’ information from malicious alteration and manipulation. The watermarked medical images are transmitted over the internet among patients, primary and referred physicians. The images are highly prone to corruption in the wireless transmission medium due to various noises, deflection, and refractions. Distortion in the received images leads to faulty watermark detection and inappropriate disease diagnosis. To address the issue, this paper utilizes error correction code (ECC) with (8, 4) Hamming code in an existing watermarking system. In addition, we implement the high complex ECC on a graphics processing units (GPU) to accelerate and support real-time requirement. Experimental results show that GPU achieves considerable speedup over the sequential CPU implementation, while maintaining 100% ECC efficiency.
Keywords: Medical Image Watermarking (MIW), e-health system, error correction, Hamming code, GPU.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1743750 A Machine Learning-based Analysis of Autism Prevalence Rates across US States against Multiple Potential Explanatory Variables
Authors: Ronit Chakraborty, Sugata Banerji
Abstract:
There has been a marked increase in the reported prevalence of Autism Spectrum Disorder (ASD) among children in the US over the past two decades. This research has analyzed the growth in state-level ASD prevalence against 45 different potentially explanatory factors including socio-economic, demographic, healthcare, public policy and political factors. The goal was to understand if these factors have adequate predictive power in modeling the differential growth in ASD prevalence across various states, and, if they do, which factors are the most influential. The key findings of this study include (1) there is a confirmation that the chosen feature set has considerable power in predicting the growth in ASD prevalence, (2) the most influential predictive factors are identified, (3) given the nature of the most influential predictive variables, an indication that a considerable portion of the reported ASD prevalence differentials across states could be attributable to over and under diagnosis, and (4) Florida is identified as a key outlier state pointing to a potential under-diagnosis of ASD.
Keywords: Autism Spectrum Disorder, ASD, clustering, Machine Learning, predictive modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 672749 A Survey of Semantic Integration Approaches in Bioinformatics
Authors: Chaimaa Messaoudi, Rachida Fissoune, Hassan Badir
Abstract:
Technological advances of computer science and data analysis are helping to provide continuously huge volumes of biological data, which are available on the web. Such advances involve and require powerful techniques for data integration to extract pertinent knowledge and information for a specific question. Biomedical exploration of these big data often requires the use of complex queries across multiple autonomous, heterogeneous and distributed data sources. Semantic integration is an active area of research in several disciplines, such as databases, information-integration, and ontology. We provide a survey of some approaches and techniques for integrating biological data, we focus on those developed in the ontology community.Keywords: Semantic data integration, biological ontology, linked data, semantic web, OWL, RDF.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1819748 A 3-Year Evaluation Study on Fine Needle Aspiration Cytology and Corresponding Histology
Authors: Amjad Al Shammari, Ashraf Ibrahim, Laila Seada
Abstract:
Background and Objectives: Incidence of thyroid carcinoma has been increasing world-wide. In the present study, we evaluated diagnostic accuracy of Fine needle aspiration (FNA) and its efficiency in early detecting neoplastic lesions of thyroid gland over a 3-year period. Methods: Data have been retrieved from pathology files in King Khalid Hospital. For each patient, age, gender, FNA, site & size of nodule and final histopathologic diagnosis were recorded. Results: Study included 490 cases where 419 of them were female and 71 male. Male to female ratio was 1:6. Mean age was 43 years for males and 38 for females. Cases with confirmed histopathology were 131. In 101/131 (77.1%), concordance was found between FNA and histology. In 30/131 (22.9%), there was discrepancy in diagnosis. Total malignant cases were 43, out of which 14 (32.5%) were true positive and 29 (67.44%) were false negative. No false positive cases could be found in our series. Conclusion: FNA could diagnose benign nodules in all cases, however, in malignant cases, ultrasound findings have to be taken into consideration to avoid missing of a microcarcinoma in the contralateral lobe.
Keywords: FNA, hail, histopathology, thyroid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1176747 GeNS: a Biological Data Integration Platform
Authors: Joel Arrais, João E. Pereira, João Fernandes, José Luís Oliveira
Abstract:
The scientific achievements coming from molecular biology depend greatly on the capability of computational applications to analyze the laboratorial results. A comprehensive analysis of an experiment requires typically the simultaneous study of the obtained dataset with data that is available in several distinct public databases. Nevertheless, developing a centralized access to these distributed databases rises up a set of challenges such as: what is the best integration strategy, how to solve nomenclature clashes, how to solve database overlapping data and how to deal with huge datasets. In this paper we present GeNS, a system that uses a simple and yet innovative approach to address several biological data integration issues. Compared with existing systems, the main advantages of GeNS are related to its maintenance simplicity and to its coverage and scalability, in terms of number of supported databases and data types. To support our claims we present the current use of GeNS in two concrete applications. GeNS currently contains more than 140 million of biological relations and it can be publicly downloaded or remotely access through SOAP web services.Keywords: Data integration, biological databases
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1632746 Neuro-fuzzy Classification System for Wireless-Capsule Endoscopic Images
Authors: Vassilis S. Kodogiannis, John N. Lygouras
Abstract:
In this research study, an intelligent detection system to support medical diagnosis and detection of abnormal lesions by processing endoscopic images is presented. The images used in this study have been obtained using the M2A Swallowable Imaging Capsule - a patented, video color-imaging disposable capsule. Schemes have been developed to extract texture features from the fuzzy texture spectra in the chromatic and achromatic domains for a selected region of interest from each color component histogram of endoscopic images. The implementation of an advanced fuzzy inference neural network which combines fuzzy systems and artificial neural networks and the concept of fusion of multiple classifiers dedicated to specific feature parameters have been also adopted in this paper. The achieved high detection accuracy of the proposed system has provided thus an indication that such intelligent schemes could be used as a supplementary diagnostic tool in endoscopy.Keywords: Medical imaging, Computer aided diagnosis, Endoscopy, Neuro-fuzzy networks, Fuzzy integral.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752745 Biological Control of Tomato Wilt Fungi Using Leaf Extracts of Bitter Leaf (Vernonia amygdalina)
Authors: Terna T. Paul, Agbara D. Onwoke
Abstract:
The antifungal potential of ethanolic leaf extracts of Vernonia amygdalina in the biological control of some common tomato wilt fungi was investigated. The experiment was set up in Completely Randomized Design (CRD) with eight treatments and three replicates. 5 mm diameter agar discs of 7 days old cultures of Fusarium oxysporum and Sclerotium rolfsii were obtained using a sterile 5 mm diameter cork borer and cultured on Potato Dextrose Agar (PDA) inoculated with 5 ml of various concentrations of V. amygdalina ethanolic leaf extracts in petri dishes, and incubated for 10 days at 28 0C. The highest radial growth inhibitions of F. oxysporum (34.98%) and S. rolfsii (31.05%) were recorded 48 hours post-inoculation, both at 75% extract concentration. The leaf extracts of V. amygdalina used in the study exhibited significant inhibition of radial growth of the test organisms (P ≤ 0.05) and could be applied in the biological control of fungal wilt pathogens of tomato as a means of enhancing tomato yield and productivity.
Keywords: Biological control, fungi, leaf extracts, tomato wilt, V. amygdalina.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1223744 Elman Neural Network for Diagnosis of Unbalance in a Rotor-Bearing System
Authors: S. Sendhilkumar, N. Mohanasundaram, M. Senthilkumar, S. N. Sivanandam
Abstract:
The operational life of rotating machines has to be extended using a predictive condition maintenance tool. Among various condition monitoring techniques, vibration analysis is most widely used technique in industry. Signals are extracted for evaluating the condition of machine; further diagnostics is carried out with detected signals to extend the life of machine. With help of detected signals, further interpretations are done to predict the occurrence of defects. To study the problem of defects, a test rig with various possibilities of defects is constructed and experiments are performed considering the unbalanced condition. Further, this paper presents an approach for fault diagnosis of unbalance condition using Elman neural network and frequency-domain vibration analysis. Amplitudes with variation in acceleration are fed to Elman neural network to classify fault or no-fault condition. The Elman network is trained, validated and tested with experimental readings. Results illustrate the effectiveness of Elman network in rotor-bearing system.Keywords: Elman neural network, fault detection, rotating machines, unbalance, vibration analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470743 Thermalytix: An Advanced Artificial Intelligence Based Solution for Non-Contact Breast Screening
Authors: S. Sudhakar, Geetha Manjunath, Siva Teja Kakileti, Himanshu Madhu
Abstract:
Diagnosis of breast cancer at early stages has seen better clinical and survival outcomes. Survival rates in developing countries like India are very low due to accessibility and affordability issues of screening tests such as Mammography. In addition, Mammography is not much effective in younger women with dense breasts. This leaves a gap in current screening methods. Thermalytix is a new technique for detecting breast abnormality in a non-contact, non-invasive way. It is an AI-enabled computer-aided diagnosis solution that automates interpretation of high resolution thermal images and identifies potential malignant lesions. The solution is low cost, easy to use, portable and is effective in all age groups. This paper presents the results of a retrospective comparative analysis of Thermalytix over Mammography and Clinical Breast Examination for breast cancer screening. Thermalytix was found to have better sensitivity than both the tests, with good specificity as well. In addition, Thermalytix identified all malignant patients without palpable lumps.
Keywords: Breast Cancer Screening, Radiology, Thermalytix, Artificial Intelligence, Thermography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2829742 Bridging Quantitative and Qualitative of Glaucoma Detection
Authors: Noor Elaiza Abdul Khalid, Noorhayati Mohamed Noor, Zamalia Mahmud, Saadiah Yahya, and Norharyati Md Ariff
Abstract:
Glaucoma diagnosis involves extracting three features of the fundus image; optic cup, optic disc and vernacular. Present manual diagnosis is expensive, tedious and time consuming. A number of researches have been conducted to automate this process. However, the variability between the diagnostic capability of an automated system and ophthalmologist has yet to be established. This paper discusses the efficiency and variability between ophthalmologist opinion and digital technique; threshold. The efficiency and variability measures are based on image quality grading; poor, satisfactory or good. The images are separated into four channels; gray, red, green and blue. A scientific investigation was conducted on three ophthalmologists who graded the images based on the image quality. The images are threshold using multithresholding and graded as done by the ophthalmologist. A comparison of grade from the ophthalmologist and threshold is made. The results show there is a small variability between result of ophthalmologists and digital threshold.Keywords: Digital Fundus Image, Glaucoma Detection, Multithresholding, Segmentation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2043741 Comparison of Diagnostic Performance of Soluble Transferrin Receptor and Soluble Transferrin Receptor-Ferritin Index Tests in the Diagnosis of Iron Deficiency Anemia
Authors: Hafiz Muhammad Obaid, Bilal Wajid, Nauman Haider, Muhammad Zafrullah
Abstract:
In this research article, a comprehensive analysis is performed to compare the diagnostic performance of soluble transferrin receptor (sTfR) and sTfR/log ferritin index tests in the differential diagnosis of iron deficiency anemia (IDA) and anemia of chronic disease (ACD). The analysis is performed for both sTfR and sTfR/log ferritin index using a set of 11 studies. The overall odds ratios for sTfR and sTfR/log ferritin index were 36.79 and 119.32 respectively, using 95% confidence interval. The relative sensitivity, specificity. positive likelihood ratio (LR) and negative LR values for sTfR in relation to sTfR/log ferritin index were 81% vs 85%, 84% vs 93%, 6.31 vs 13.95 and 0.18 vs 0.14 respectively. The summary receiver operating characteristic (SROC) curves are also plotted for both sTfR and sTfR/log ferritin index. The area under SROC curves for sTfR and sTfR/log ferritin index was found to be 0.9296 and 0.9825 respectively. Although both tests are useful, the sTfR/log ferritin index seems to be more effective when compared with sTfR.
Keywords: Anemia, sTfR, iron deficiency, ferritin, odds ratio, sensitivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 965740 Content Based Image Retrieval of Brain MR Images across Different Classes
Authors: Abraham Varghese, Kannan Balakrishnan, Reji R. Varghese, Joseph S. Paul
Abstract:
Magnetic Resonance Imaging play a vital role in the decision-diagnosis process of brain MR images. For an accurate diagnosis of brain related problems, the experts mostly compares both T1 and T2 weighted images as the information presented in these two images are complementary. In this paper, rotational and translational invariant form of Local binary Pattern (LBP) with additional gray scale information is used to retrieve similar slices of T1 weighted images from T2 weighted images or vice versa. The incorporation of additional gray scale information on LBP can extract more local texture information. The accuracy of retrieval can be improved by extracting moment features of LBP and reweighting the features based on users feedback. Here retrieval is done in a single subject scenario where similar images of a particular subject at a particular level are retrieved, and multiple subjects scenario where relevant images at a particular level across the subjects are retrieved.
Keywords: Local Binary pattern (LBP), Modified Local Binary pattern (MOD-LBP), T1 and T2 weighted images, Moment features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2381739 Age–Related Changes of the Sella Turcica Morphometry in Adults Older Than 20-25 Years
Authors: Yu. I. Pigolkin, M. A. Garcia Corro
Abstract:
Age determination of unknown dead bodies in forensic personal identification is a complicated process which involves the application of numerous methods and techniques. Skeletal remains are less exposed to influences of environmental factors. In order to enhance the accuracy of forensic age estimation additional properties of bones correlating with age are required to be revealed. Material and Methods: Dimensional examination of the sella turcica was carried out on cadavers with the cranium opened by a circular vibrating saw. The sample consisted of a total of 90 Russian subjects, ranging in age from two months and 87 years. Results: The tendency of dimensional variations throughout life was detected. There were no observed gender differences in the morphometry of the sella turcica. The shared use of the sella turcica depth and length values revealed the possibility to categorize an examined sample in a certain age period. Conclusions: Based on the results of existing methods of age determination, the morphometry of the sella turcica can be an additional characteristic, amplifying the received values, and accordingly, increasing the accuracy of forensic biological age diagnosis.Keywords: Age–related changes in bone structures, forensic personal identification, Sella turcica morphometry, body identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1372738 Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings
Authors: Houda Najeh, Stéphane Ploix, Mahendra Pratap Singh, Karim Chabir, Mohamed Naceur Abdelkrim
Abstract:
Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors.Keywords: Building system, time series, diagnosis, outliers, delay, data gap.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 903737 Ultrasonic Assessment of Corpora Lutea and Plasma Progesterone Levels in Early Pregnant and Non Pregnant Cows
Authors: Abdurraouf Gaja, Salah Al-Dahash, Guru Solmon Raju, Chikara Kubota
Abstract:
Corpus luteum cross sectional (by ultrasonography) and plasma progesterone (by DELFIA) were estimated in early pregnant and non pregnant cows on days 14th and 20th to 23rd post insemination. On day 14th, corpus luteum sectional area was 348.43 mm2 in pregnant and 387.84mm2 in non pregnant cows. Within days 20th to 23rd, corpus luteum sectional area ranged between 342.06 and 367.90 mm2 in pregnant and between 193.85 and 270.69 mm2 in non pregnant cows. Plasma progesterone level was 2.43 ng/ml in pregnant and 2.46 ng/ml in non pregnant cows on day 14th, while during days 20th to 23rd the level ranged between 2.47 and 2.84 ng/ml in pregnant and between 0.53 and 1.17 ng/ml in non pregnant cows. Results of both luteal tissue areas as well as plasma progesterone levels were highly significantly deferent (P<0.01) between pregnant and non pregnant cows during days 20th to 23rd, but there were no significant differences on day 14th. The correlation between CL cross sectional area and plasma progesterone level was 0.4 in pregnant cows and 0.99 in non pregnant cow. It is clear, from this study, that ultrasonic assessment of corpora lutea is a viable alternative to determine plasma progesterone levels for early pregnancy diagnosis in cows.
Keywords: Progesterone, ultrasonography, corpus luteum, pregnancy diagnosis, cow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835736 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features
Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan
Abstract:
Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.Keywords: Pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282735 Multi-agent On-line Monitor for the Safety of Critical Systems
Authors: Amer A. Dheedan
Abstract:
Operational safety of critical systems, such as nuclear power plants, industrial chemical processes and means of transportation, is a major concern for system engineers and operators. A means to assure that is on-line safety monitors that deliver three safety tasks; fault detection and diagnosis, alarm annunciation and fault controlling. While current monitors deliver these tasks, benefits and limitations in their approaches have at the same time been highlighted. Drawing from those benefits, this paper develops a distributed monitor based on semi-independent agents, i.e. a multiagent system, and monitoring knowledge derived from a safety assessment model of the monitored system. Agents are deployed hierarchically and provided with knowledge portions and collaboration protocols to reason and integrate over the operational conditions of the components of the monitored system. The monitor aims to address limitations arising from the large-scale, complicated behaviour and distributed nature of monitored systems and deliver the aforementioned three monitoring tasks effectively.
Keywords: Alarm annunciation, fault controlling, fault detection and diagnosis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1604734 An Improved k Nearest Neighbor Classifier Using Interestingness Measures for Medical Image Mining
Authors: J. Alamelu Mangai, Satej Wagle, V. Santhosh Kumar
Abstract:
The exponential increase in the volume of medical image database has imposed new challenges to clinical routine in maintaining patient history, diagnosis, treatment and monitoring. With the advent of data mining and machine learning techniques it is possible to automate and/or assist physicians in clinical diagnosis. In this research a medical image classification framework using data mining techniques is proposed. It involves feature extraction, feature selection, feature discretization and classification. In the classification phase, the performance of the traditional kNN k nearest neighbor classifier is improved using a feature weighting scheme and a distance weighted voting instead of simple majority voting. Feature weights are calculated using the interestingness measures used in association rule mining. Experiments on the retinal fundus images show that the proposed framework improves the classification accuracy of traditional kNN from 78.57 % to 92.85 %.
Keywords: Medical Image Mining, Data Mining, Feature Weighting, Association Rule Mining, k nearest neighbor classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3308733 Method of Intelligent Fault Diagnosis of Preload Loss for Single Nut Ball Screws through the Sensed Vibration Signals
Authors: Yi-Cheng Huang, Yan-Chen Shin
Abstract:
This paper proposes method of diagnosing ball screw preload loss through the Hilbert-Huang Transform (HHT) and Multiscale entropy (MSE) process. The proposed method can diagnose ball screw preload loss through vibration signals when the machine tool is in operation. Maximum dynamic preload of 2 %, 4 %, and 6 % ball screws were predesigned, manufactured, and tested experimentally. Signal patterns are discussed and revealed using Empirical Mode Decomposition(EMD)with the Hilbert Spectrum. Different preload features are extracted and discriminated using HHT. The irregularity development of a ball screw with preload loss is determined and abstracted using MSE based on complexity perception. Experiment results show that the proposed method can predict the status of ball screw preload loss. Smart sensing for the health of the ball screw is also possible based on a comparative evaluation of MSE by the signal processing and pattern matching of EMD/HHT. This diagnosis method realizes the purposes of prognostic effectiveness on knowing the preload loss and utilizing convenience.Keywords: Empirical Mode Decomposition, Hilbert-Huang Transform, Multi-scale Entropy, Preload Loss, Single-nut Ball Screw
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2842