Search results for: Modified Cubic B-Spline Differential Quadrature Method
9121 Flexible Follower Response of a Translating Cam with Four Different Profiles for Rise-Dwell-Fall-Dwell motion
Authors: Jer-Rong Chang
Abstract:
The flexible follower response of a translating cam with four different profiles for rise-dwell-fall-dwell (RDFD) motion is investigated. The cycloidal displacement motion, the modified sinusoidal acceleration motion, the modified trapezoidal acceleration motion, and the 3-4-5 polynomial motion are employed to describe the rise and the fall motions of the follower and the associated four kinds of cam profiles are studied. Since the follower flexibility is considered, the contact point of the roller and the cam is an unknown. Two geometric constraints formulated to restrain the unknown position are substituted into Hamilton-s principle with Lagrange multipliers. Applying the assumed mode method, one can obtain the governing equations of motion as non-linear differential-algebraic equations. The equations are solved using Runge-Kutta method. Then, the responses of the flexible follower undergoing the four different motions are investigated in time domain and in frequency domain.Keywords: translating cam, flexible follower, rise-dwell-falldwell, response
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21249120 The Estimation Method of Stress Distribution for Beam Structures Using the Terrestrial Laser Scanning
Authors: Sang Wook Park, Jun Su Park, Byung Kwan Oh, Yousok Kim, Hyo Seon Park
Abstract:
This study suggests the estimation method of stress distribution for the beam structures based on TLS (Terrestrial Laser Scanning). The main components of method are the creation of the lattices of raw data from TLS to satisfy the suitable condition and application of CSSI (Cubic Smoothing Spline Interpolation) for estimating stress distribution. Estimation of stress distribution for the structural member or the whole structure is one of the important factors for safety evaluation of the structure. Existing sensors which include ESG (Electric strain gauge) and LVDT (Linear Variable Differential Transformer) can be categorized as contact type sensor which should be installed on the structural members and also there are various limitations such as the need of separate space where the network cables are installed and the difficulty of access for sensor installation in real buildings. To overcome these problems inherent in the contact type sensors, TLS system of LiDAR (light detection and ranging), which can measure the displacement of a target in a long range without the influence of surrounding environment and also get the whole shape of the structure, has been applied to the field of structural health monitoring. The important characteristic of TLS measuring is a formation of point clouds which has many points including the local coordinate. Point clouds are not linear distribution but dispersed shape. Thus, to analyze point clouds, the interpolation is needed vitally. Through formation of averaged lattices and CSSI for the raw data, the method which can estimate the displacement of simple beam was developed. Also, the developed method can be extended to calculate the strain and finally applicable to estimate a stress distribution of a structural member. To verify the validity of the method, the loading test on a simple beam was conducted and TLS measured it. Through a comparison of the estimated stress and reference stress, the validity of the method is confirmed.Keywords: Structural health monitoring, terrestrial laser scanning, estimation of stress distribution, coordinate transformation, cubic smoothing spline interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27439119 Predicting Radiative Heat Transfer in Arbitrary Two and Three-Dimensional Participating Media
Authors: Mohammad Hadi Bordbar, Timo Hyppänen
Abstract:
The radiative exchange method is introduced as a numerical method for the simulation of radiative heat transfer in an absorbing, emitting and isotropically scattering media. In this method, the integro-differential radiative balance equation is solved by using a new introduced concept for the exchange factor. Even though the radiative source term is calculated in a mesh structure that is coarser than the structure used in computational fluid dynamics, calculating the exchange factor between different coarse elements by using differential integration elements makes the result of the method close to that of integro-differential radiative equation. A set of equations for calculating exchange factors in two and threedimensional Cartesian coordinate system is presented, and the method is used in the simulation of radiative heat transfer in twodimensional rectangular case and a three-dimensional simple cube. The result of using this method in simulating different cases is verified by comparing them with those of using other numerical radiative models.Keywords: Exchange factor, Numerical simulation, Thermal radiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20239118 Implementation of Second Order Current- Mode Quadrature Sinusoidal Oscillator with Current Controllability
Authors: Koson Pitaksuttayaprot, Winai Jaikla
Abstract:
The realization of current-mode quadrature oscillators using current controlled current conveyor transconductance amplifiers (CCCCTAs) and grounded capacitors is presented. The proposed oscillators can provide 2 sinusoidal output currents with 90º phase difference. It is enabled non-interactive dual-current control for both the condition of oscillation and the frequency of oscillation. High output impedances of the configurations enable the circuit to be cascaded without additional current buffers. The use of only grounded capacitors is ideal for integration. The circuit performances are depicted through PSpice simulations, they show good agreement to theoretical anticipation.Keywords: Current-mode, Oscillator, Integrated circuit, CCCCTA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19069117 Simulink Approach to Solve Fuzzy Differential Equation under Generalized Differentiability
Authors: N. Kumaresan , J. Kavikumar, Kuru Ratnavelu
Abstract:
In this paper, solution of fuzzy differential equation under general differentiability is obtained by simulink. The simulink solution is equivalent or very close to the exact solution of the problem. Accuracy of the simulink solution to this problem is qualitatively better. An illustrative numerical example is presented for the proposed method.Keywords: Fuzzy differential equation, Generalized differentiability, H-difference and Simulink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24349116 Modified Fast and Exact Algorithm for Fast Haar Transform
Authors: Phang Chang, Phang Piau
Abstract:
Wavelet transform or wavelet analysis is a recently developed mathematical tool in applied mathematics. In numerical analysis, wavelets also serve as a Galerkin basis to solve partial differential equations. Haar transform or Haar wavelet transform has been used as a simplest and earliest example for orthonormal wavelet transform. Since its popularity in wavelet analysis, there are several definitions and various generalizations or algorithms for calculating Haar transform. Fast Haar transform, FHT, is one of the algorithms which can reduce the tedious calculation works in Haar transform. In this paper, we present a modified fast and exact algorithm for FHT, namely Modified Fast Haar Transform, MFHT. The algorithm or procedure proposed allows certain calculation in the process decomposition be ignored without affecting the results.Keywords: Fast Haar Transform, Haar transform, Wavelet analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31399115 A Modified Laplace Decomposition Algorithm Solution for Blasius’ Boundary Layer Equation of the Flat Plate in a Uniform Stream
Authors: M. A. Koroma, Z. Chuangyi, A. F., Kamara, A. M. H. Conteh
Abstract:
In this work, we apply the Modified Laplace decomposition algorithm in finding a numerical solution of Blasius’ boundary layer equation for the flat plate in a uniform stream. The series solution is found by first applying the Laplace transform to the differential equation and then decomposing the nonlinear term by the use of Adomian polynomials. The resulting series, which is exactly the same as that obtained by Weyl 1942a, was expressed as a rational function by the use of diagonal padé approximant.
Keywords: Modified Laplace decomposition algorithm, Boundary layer equation, Padé approximant, Numerical solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23749114 An Analytical Method to Analysis of Foam Drainage Problem
Authors: A. Nikkar, M. Mighani
Abstract:
In this study, a new reliable technique use to handle the foam drainage equation. This new method is resulted from VIM by a simple modification that is Reconstruction of Variational Iteration Method (RVIM). The drainage of liquid foams involves the interplay of gravity, surface tension, and viscous forces. Foaming occurs in many distillation and absorption processes. Results are compared with those of Adomian’s decomposition method (ADM).The comparisons show that the Reconstruction of Variational Iteration Method is very effective and overcome the difficulty of traditional methods and quite accurate to systems of non-linear partial differential equations.
Keywords: Reconstruction of Variational Iteration Method (RVIM), Foam drainage, nonlinear partial differential equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18129113 A Sandwich-type Theorem with Applications to Univalent Functions
Authors: Sukhwinder Singh Billing, Sushma Gupta, Sukhjit Singh Dhaliwal
Abstract:
In the present paper, we obtain a sandwich-type theorem. As applications of our main result, we discuss the univalence and starlikeness of analytic functions in terms of certain differential subordinations and differential inequalities.Keywords: Univalent function, Starlike function, Differential subordination, Differential superordination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13249112 Optimal Design of Two-Channel Recursive Parallelogram Quadrature Mirror Filter Banks
Authors: Ju-Hong Lee, Yi-Lin Shieh
Abstract:
This paper deals with the optimal design of two-channel recursive parallelogram quadrature mirror filter (PQMF) banks. The analysis and synthesis filters of the PQMF bank are composed of two-dimensional (2-D) recursive digital all-pass filters (DAFs) with nonsymmetric half-plane (NSHP) support region. The design problem can be facilitated by using the 2-D doubly complementary half-band (DC-HB) property possessed by the analysis and synthesis filters. For finding the coefficients of the 2-D recursive NSHP DAFs, we appropriately formulate the design problem to result in an optimization problem that can be solved by using a weighted least-squares (WLS) algorithm in the minimax (L∞) optimal sense. The designed 2-D recursive PQMF bank achieves perfect magnitude response and possesses satisfactory phase response without requiring extra phase equalizer. Simulation results are also provided for illustration and comparison.
Keywords: Parallelogram Quadrature Mirror Filter Bank, Doubly Complementary Filter, Nonsymmetric Half-Plane Filter, Weighted Least Squares Algorithm, Digital All-Pass Filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15439111 Identifying an Unknown Source in the Poisson Equation by a Modified Tikhonov Regularization Method
Authors: Ou Xie, Zhenyu Zhao
Abstract:
In this paper, we consider the problem for identifying the unknown source in the Poisson equation. A modified Tikhonov regularization method is presented to deal with illposedness of the problem and error estimates are obtained with an a priori strategy and an a posteriori choice rule to find the regularization parameter. Numerical examples show that the proposed method is effective and stable.
Keywords: Ill-posed problem, Unknown source, Poisson equation, Tikhonov regularization method, Discrepancy principle
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14509110 Seven step Adams Type Block Method With Continuous Coefficient For Periodic Ordinary Differential Equation
Authors: Olusheye Akinfenwa
Abstract:
We consider the development of an eight order Adam-s type method, with A-stability property discussed by expressing them as a one-step method in higher dimension. This makes it suitable for solving variety of initial-value problems. The main method and additional methods are obtained from the same continuous scheme derived via interpolation and collocation procedures. The methods are then applied in block form as simultaneous numerical integrators over non-overlapping intervals. Numerical results obtained using the proposed block form reveals that it is highly competitive with existing methods in the literature.Keywords: Block Adam's type Method; Periodic Ordinary Differential Equation; Stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15849109 An Optimization of Orbital Transfer for Spacecrafts with Finite-thrust Based on Legendre Pseudospectral Method
Authors: Yanan Yang, Zhigang Wang, Xiang Chen
Abstract:
This paper presents the use of Legendre pseudospectral method for the optimization of finite-thrust orbital transfer for spacecrafts. In order to get an accurate solution, the System-s dynamics equations were normalized through a dimensionless method. The Legendre pseudospectral method is based on interpolating functions on Legendre-Gauss-Lobatto (LGL) quadrature nodes. This is used to transform the optimal control problem into a constrained parameter optimization problem. The developed novel optimization algorithm can be used to solve similar optimization problems of spacecraft finite-thrust orbital transfer. The results of a numerical simulation verified the validity of the proposed optimization method. The simulation results reveal that pseudospectral optimization method is a promising method for real-time trajectory optimization and provides good accuracy and fast convergence.Keywords: Finite-thrust, Orbital transfer, Legendre pseudospectral method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18019108 Frequency-Domain Design of Fractional-Order FIR Differentiators
Authors: Wei-Der Chang, Dai-Ming Chang, Eri-Wei Chiang, Chia-Hung Lin, Jian-Liung Chen
Abstract:
In this paper, a fractional-order FIR differentiator design method using the differential evolution (DE) algorithm is presented. In the proposed method, the FIR digital filter is designed to meet the frequency response of a desired fractal-order differentiator, which is evaluated in the frequency domain. To verify the design performance, another design method considered in the time-domain is also provided. Simulation results reveal the efficiency of the proposed method.Keywords: Fractional-order differentiator, FIR digital filter, Differential evolution algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22509107 Autonomous Vehicle Navigation Using Harmonic Functions via Modified Arithmetic Mean Iterative Method
Authors: Azali Saudi, Jumat Sulaiman
Abstract:
Harmonic functions are solutions to Laplace’s equation that are known to have an advantage as a global approach in providing the potential values for autonomous vehicle navigation. However, the computation for obtaining harmonic functions is often too slow particularly when it involves very large environment. This paper presents a two-stage iterative method namely Modified Arithmetic Mean (MAM) method for solving 2D Laplace’s equation. Once the harmonic functions are obtained, the standard Gradient Descent Search (GDS) is performed for path finding of an autonomous vehicle from arbitrary initial position to the specified goal position. Details of the MAM method are discussed. Several simulations of vehicle navigation with path planning in a static known indoor environment were conducted to verify the efficiency of the MAM method. The generated paths obtained from the simulations are presented. The performance of the MAM method in computing harmonic functions in 2D environment to solve path planning problem for an autonomous vehicle navigation is also provided.Keywords: Modified Arithmetic Mean method, Harmonic functions, Laplace’s equation, path planning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8619106 Mathematical Approach for Large Deformation Analysis of the Stiffened Coupled Shear Walls
Authors: M. J. Fadaee, H. Saffari, H. Khosravi
Abstract:
Shear walls are used in most of the tall buildings for carrying the lateral load. When openings for doors or windows are necessary to be existed in the shear walls, a special type of the shear walls is used called "coupled shear walls" which in some cases is stiffened by specific beams and so, called "stiffened coupled shear walls". In this paper, a mathematical method for geometrically nonlinear analysis of the stiffened coupled shear walls has been presented. Then, a suitable formulation for determining the critical load of the stiffened coupled shear walls under gravity force has been proposed. The governing differential equations for equilibrium and deformation of the stiffened coupled shear walls have been obtained by setting up the equilibrium equations and the moment-curvature relationships for each wall. Because of the complexity of the differential equation, the energy method has been adopted for approximate solution of the equations.Keywords: Buckling load, differential equation, energy method, geometrically nonlinear analysis, mathematical method, Stiffened coupled shear walls.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16409105 Biaxial Buckling of Single Layer Graphene Sheet Based on Nonlocal Plate Model and Molecular Dynamics Simulation
Authors: R. Pilafkan, M. Kaffash Irzarahimi, S. F. Asbaghian Namin
Abstract:
The biaxial buckling behavior of single-layered graphene sheets (SLGSs) is studied in the present work. To consider the size-effects in the analysis, Eringen’s nonlocal elasticity equations are incorporated into classical plate theory (CLPT). A Generalized Differential Quadrature Method (GDQM) approach is utilized and numerical solutions for the critical buckling loads are obtained. Then, molecular dynamics (MD) simulations are performed for a series of zigzag SLGSs with different side-lengths and with various boundary conditions, the results of which are matched with those obtained by the nonlocal plate model to numerical the appropriate values of nonlocal parameter relevant to each type of boundary conditions.
Keywords: Biaxial buckling, single-layered graphene sheets, nonlocal elasticity, molecular dynamics simulation, classical plate theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11059104 Some Solitary Wave Solutions of Generalized Pochhammer-Chree Equation via Exp-function Method
Authors: Kourosh Parand, Jamal Amani Rad
Abstract:
In this paper, Exp-function method is used for some exact solitary solutions of the generalized Pochhammer-Chree equation. It has been shown that the Exp-function method, with the help of symbolic computation, provides a very effective and powerful mathematical tool for solving nonlinear partial differential equations. As a result, some exact solitary solutions are obtained. It is shown that the Exp-function method is direct, effective, succinct and can be used for many other nonlinear partial differential equations.
Keywords: Exp-function method, generalized Pochhammer- Chree equation, solitary wave solution, ODE's.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15909103 Improvement of Gas Turbine Performance Test in Combine Cycle
Authors: M. Khosravy-el-Hossani, Q. Dorosti
Abstract:
One of the important applications of gas turbines is their utilization for heat recovery steam generator in combine-cycle technology. Exhaust flow and energy are two key parameters for determining heat recovery steam generator performance which are mainly determined by the main gas turbine components performance data. For this reason a method was developed for determining the exhaust energy in the new edition of ASME PTC22. The result of this investigation shows that the method of standard has considerable error. Therefore in this paper a new method is presented for modifying of the performance calculation. The modified method is based on exhaust gas constituent analysis and combustion calculations. The case study presented here by two kind of General Electric gas turbine design data for validation of methodologies. The result shows that the modified method is more precise than the ASME PTC22 method. The exhaust flow calculation deviation from design data is 1.5-2 % by ASME PTC22 method so that the deviation regarding with modified method is 0.3-0.5%. Based on precision of analyzer instruments, the method can be suitable alternative for gas turbine standard performance test. In advance two methods are proposed based on known and unknown fuel in modified method procedure. The result of this paper shows that the difference between the two methods is below than %0.02. In according to reasonable esult of the second procedure (unknown fuel composition), the method can be applied to performance evaluation of gas turbine, so that the measuring cost and data gathering should be reduced.Keywords: Gas turbine, Performance test code, Combined cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29889102 Optimization of Bit Error Rate and Power of Ad-hoc Networks Using Genetic Algorithm
Authors: Anjana Choudhary
Abstract:
The ad hoc networks are the future of wireless technology as everyone wants fast and accurate error free information so keeping this in mind Bit Error Rate (BER) and power is optimized in this research paper by using the Genetic Algorithm (GA). The digital modulation techniques used for this paper are Binary Phase Shift Keying (BPSK), M-ary Phase Shift Keying (M-ary PSK), and Quadrature Amplitude Modulation (QAM). This work is implemented on Wireless Ad Hoc Networks (WLAN). Then it is analyze which modulation technique is performing well to optimize the BER and power of WLAN.
Keywords: Bit Error Rate, Genetic Algorithm, Power, Phase Shift Keying, Quadrature Amplitude Modulation, Signal to Noise Ratio, Wireless Ad Hoc Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31179101 An Analytical Method for Solving General Riccati Equation
Authors: Y. Pala, M. O. Ertas
Abstract:
In this paper, the general Riccati equation is analytically solved by a new transformation. By the method developed, looking at the transformed equation, whether or not an explicit solution can be obtained is readily determined. Since the present method does not require a proper solution for the general solution, it is especially suitable for equations whose proper solutions cannot be seen at first glance. Since the transformed second order linear equation obtained by the present transformation has the simplest form that it can have, it is immediately seen whether or not the original equation can be solved analytically. The present method is exemplified by several examples.
Keywords: Riccati Equation, ordinary differential equation, nonlinear differential equation, analytical solution, proper solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20239100 Constructing Distinct Kinds of Solutions for the Time-Dependent Coefficients Coupled Klein-Gordon-Schrödinger Equation
Authors: Anupma Bansal
Abstract:
We seek exact solutions of the coupled Klein-Gordon-Schrödinger equation with variable coefficients with the aid of Lie classical approach. By using the Lie classical method, we are able to derive symmetries that are used for reducing the coupled system of partial differential equations into ordinary differential equations. From reduced differential equations we have derived some new exact solutions of coupled Klein-Gordon-Schrödinger equations involving some special functions such as Airy wave functions, Bessel functions, Mathieu functions etc.
Keywords: Klein-Gordon-Schödinger Equation, Lie Classical Method, Exact Solutions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45309099 Quasilinearization–Barycentric Approach for Numerical Investigation of the Boundary Value Fin Problem
Authors: Alireza Rezaei, Fatemeh Baharifard, Kourosh Parand
Abstract:
In this paper we improve the quasilinearization method by barycentric Lagrange interpolation because of its numerical stability and computation speed to achieve a stable semi analytical solution. Then we applied the improved method for solving the Fin problem which is a nonlinear equation that occurs in the heat transferring. In the quasilinearization approach the nonlinear differential equation is treated by approximating the nonlinear terms by a sequence of linear expressions. The modified QLM is iterative but not perturbative and gives stable semi analytical solutions to nonlinear problems without depending on the existence of a smallness parameter. Comparison with some numerical solutions shows that the present solution is applicable.
Keywords: Quasilinearization method, Barycentric lagrange interpolation, nonlinear ODE, fin problem, heat transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18749098 Optimization of Quantization in Higher Order Modulations for LDPC-Coded Systems
Authors: M.Sushanth Babu, P.Krishna, U.Venu, M.Ranjith
Abstract:
In this paper, we evaluate the choice of suitable quantization characteristics for both the decoder messages and the received samples in Low Density Parity Check (LDPC) coded systems using M-QAM (Quadrature Amplitude Modulation) schemes. The analysis involves the demapper block that provides initial likelihood values for the decoder, by relating its quantization strategy of the decoder. A mapping strategy refers to the grouping of bits within a codeword, where each m-bit group is used to select a 2m-ary signal in accordance with the signal labels. Further we evaluate the system with mapping strategies like Consecutive-Bit (CB) and Bit-Reliability (BR). A new demapper version, based on approximate expressions, is also presented to yield a low complexity hardware implementation.Keywords: Low Density parity Check, Mapping, Demapping, Quantization, Quadrature Amplitude Modulation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17359097 Rational Chebyshev Tau Method for Solving Natural Convection of Darcian Fluid About a Vertical Full Cone Embedded in Porous Media Whit a Prescribed Wall Temperature
Authors: Kourosh Parand, Zahra Delafkar, Fatemeh Baharifard
Abstract:
The problem of natural convection about a cone embedded in a porous medium at local Rayleigh numbers based on the boundary layer approximation and the Darcy-s law have been studied before. Similarity solutions for a full cone with the prescribed wall temperature or surface heat flux boundary conditions which is the power function of distance from the vertex of the inverted cone give us a third-order nonlinear differential equation. In this paper, an approximate method for solving higher-order ordinary differential equations is proposed. The approach is based on a rational Chebyshev Tau (RCT) method. The operational matrices of the derivative and product of rational Chebyshev (RC) functions are presented. These matrices together with the Tau method are utilized to reduce the solution of the higher-order ordinary differential equations to the solution of a system of algebraic equations. We also present the comparison of this work with others and show that the present method is applicable.
Keywords: Tau method, semi-infinite, nonlinear ODE, rational Chebyshev, porous media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19339096 Parallel Direct Integration Variable Step Block Method for Solving Large System of Higher Order Ordinary Differential Equations
Authors: Zanariah Abdul Majid, Mohamed Suleiman
Abstract:
The aim of this paper is to investigate the performance of the developed two point block method designed for two processors for solving directly non stiff large systems of higher order ordinary differential equations (ODEs). The method calculates the numerical solution at two points simultaneously and produces two new equally spaced solution values within a block and it is possible to assign the computational tasks at each time step to a single processor. The algorithm of the method was developed in C language and the parallel computation was done on a parallel shared memory environment. Numerical results are given to compare the efficiency of the developed method to the sequential timing. For large problems, the parallel implementation produced 1.95 speed-up and 98% efficiency for the two processors.Keywords: Numerical methods, parallel method, block method, higher order ODEs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13829095 Synthesis of Mg/B Containing Compound in a Modified Microwave Oven
Authors: Gülşah Çelik Gül, Figen Kurtuluş
Abstract:
Magnesium containing boron compounds with hexagonal structure have been drawn much attention due to their superconductive nature. The main target of this work is new modified microwave oven by on our own has an ability about passing through a gas in the oven medium for attainment of oxygen-free compounds such as c-BN. Mg containing boride was synthesized by modified-microwave method under nitrogen atmosphere using amorphous boron and magnesium source in appropriate molar ratio. Microwave oven with oxygen free environment has been modified to aimed to obtain magnesium boride without oxygen. Characterizations were done by powder X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Mg containing boride, generally named magnesium boride, with amorphous character without oxygen is obtained via designed microwave oven system.
Keywords: Magnesium containing boron compounds, modified microwave synthesis, powder X-ray diffraction, FTIR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10929094 Cryptography over Sextic Extension with Cubic Subfield
Authors: A. Chillali, M. Sahmoudi
Abstract:
In this paper, we will give a cryptographic application over the integral closure O_Lof sextic extension L, namely L is an extension of Q of degree 6 in the form Q(a,b), which is a rational quadratic and monogenic extension over a pure monogenic cubic subfield K generated by a who is a root of monic irreducible polynomial of degree 2 andb is a root of irreducible polynomial of degree 3.
Keywords: Integral bases, Cryptography, Discrete logarithm problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22419093 A Meshfree Solution of Tow-Dimensional Potential Flow Problems
Authors: I. V. Singh, A. Singh
Abstract:
In this paper, mesh-free element free Galerkin (EFG) method is extended to solve two-dimensional potential flow problems. Two ideal fluid flow problems (i.e. flow over a rigid cylinder and flow over a sphere) have been formulated using variational approach. Penalty and Lagrange multiplier techniques have been utilized for the enforcement of essential boundary conditions. Four point Gauss quadrature have been used for the integration on two-dimensional domain (Ω) and nodal integration scheme has been used to enforce the essential boundary conditions on the edges (┌). The results obtained by EFG method are compared with those obtained by finite element method. The effects of scaling and penalty parameters on EFG results have also been discussed in detail.
Keywords: Meshless, EFG method, potential flow, Lagrange multiplier method, penalty method, penalty parameter and scaling parameter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15049092 Large Strain Compression-Tension Behavior of AZ31B Rolled Sheet in the Rolling Direction
Authors: A. Yazdanmehr, H. Jahed
Abstract:
Being made with the lightest commercially available industrial metal, Magnesium (Mg) alloys are of interest for light-weighting. Expanding their application to different material processing methods requires Mg properties at large strains. Several room-temperature processes such as shot and laser peening and hole cold expansion need compressive large strain data. Two methods have been proposed in the literature to obtain the stress-strain curve at high strains: 1) anti-buckling guides and 2) small cubic samples. In this paper, an anti-buckling fixture is used with the help of digital image correlation (DIC) to obtain the compression-tension (C-T) of AZ31B-H24 rolled sheet at large strain values of up to 10.5%. The effect of the anti-bucking fixture on stress-strain curves is evaluated experimentally by comparing the results with those of the compression tests of cubic samples. For testing cubic samples, a new fixture has been designed to increase the accuracy of testing cubic samples with DIC strain measurements. Results show a negligible effect of anti-buckling on stress-strain curves, specifically at high strain values.
Keywords: Large strain, compression-tension, loading-unloading, Mg alloys.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 783