Search results for: Artificial roughness
1020 Surface Topography Measurement by Confocal Spectral Interferometry
Authors: A. Manallah, C. Meier
Abstract:
Confocal spectral interferometry (CSI) is an innovative optical method for determining microtopography of surfaces and thickness of transparent layers, based on the combination of two optical principles: confocal imaging, and spectral interferometry. Confocal optical system images at each instant a single point of the sample. The whole surface is reconstructed by plan scanning. The interference signal generated by mixing two white-light beams is analyzed using a spectrometer. In this work, five ‘rugotests’ of known standard roughnesses are investigated. The topography is then measured and illustrated, and the equivalent roughness is determined and compared with the standard values.
Keywords: Confocal spectral interferometry, Nondestructive testing, Optical metrology, Surface topography, Roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9741019 Effects of Milling Process Parameters on Cutting Forces and Surface Roughness When Finishing Ti6al4v Produced by Electron Beam Melting
Authors: Abdulmajeed Dabwan, Saqib Anwar, Ali Al-Samhan
Abstract:
Electron Beam Melting (EBM) is a metal powder bed-based Additive Manufacturing (AM) technology, which uses computer-controlled electron beams to create fully dense three-dimensional near-net-shaped parts from metal powder. It gives the ability to produce any complex parts directly from a computer-aided design (CAD) model without tools and dies, and with a variety of materials. However, the quality of the surface finish in EBM process has limitations to meeting the performance requirements of additively manufactured components. The aim of this study is to investigate the cutting forces induced during milling Ti6Al4V produced by EBM as well as the surface quality of the milled surfaces. The effects of cutting speed and radial depth of cut on the cutting forces, surface roughness, and surface morphology were investigated. The results indicated that the cutting speed was found to be proportional to the resultant cutting force at any cutting conditions while the surface roughness improved significantly with the increase in cutting speed and radial depth of cut.
Keywords: Electron beam melting, additive manufacturing, Ti6Al4V, surface morphology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7171018 Using Information Theory to Observe Natural Intelligence and Artificial Intelligence
Authors: Lipeng Zhang, Limei Li, Yanming Pearl Zhang
Abstract:
This paper takes a philosophical view as axiom, and reveals the relationship between information theory and Natural Intelligence and Artificial Intelligence under real world conditions. This paper also derives the relationship between natural intelligence and nature. According to communication principle of information theory, Natural Intelligence can be divided into real part and virtual part. Based on information theory principle that Information does not increase, the restriction mechanism of Natural Intelligence creativity is conducted. The restriction mechanism of creativity reveals the limit of natural intelligence and artificial intelligence. The paper provides a new angle to observe natural intelligence and artificial intelligence.Keywords: Natural intelligence, artificial intelligence, creativity, information theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19731017 Communicative and Artistic Machines: A Survey of Models and Experiments on Artificial Agents
Authors: Artur Matuck, Guilherme F. Nobre
Abstract:
Machines can be either tool, media, or social agents. Advances in technology have been delivering machines capable of autonomous expression, both through communication and art. This paper deals with models (theoretical approach) and experiments (applied approach) related to artificial agents. On one hand it traces how social sciences' scholars have worked with topics such as text automatization, man-machine writing cooperation, and communication. On the other hand it covers how computer sciences' scholars have built communicative and artistic machines, including the programming of creativity. The aim is to present a brief survey on artificially intelligent communicators and artificially creative writers, and provide the basis to understand the meta-authorship and also to new and further man-machine co-authorship.
Keywords: Artificial communication, artificial creativity, artificial writers, meta-authorship, robotic art.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13121016 Kinematic Analysis of 2-DOF Planer Robot Using Artificial Neural Network
Authors: Jolly Shah, S.S.Rattan, B.C.Nakra
Abstract:
Automatic control of the robotic manipulator involves study of kinematics and dynamics as a major issue. This paper involves the forward and inverse kinematics of 2-DOF robotic manipulator with revolute joints. In this study the Denavit- Hartenberg (D-H) model is used to model robot links and joints. Also forward and inverse kinematics solution has been achieved using Artificial Neural Networks for 2-DOF robotic manipulator. It shows that by using artificial neural network the solution we get is faster, acceptable and has zero error.Keywords: Artificial Neural Network, Forward Kinematics, Inverse Kinematics, Robotic Manipulator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43641015 A Novel Method for Areal Surface Roughness Measurement
Authors: Romuald Synak, Wlodzimierz Lipinski, Marcin Pawelczak
Abstract:
An area-integrating method that uses the technique of total integrated light scatter for evaluating the root mean square height of the surface Sq has been presented in the paper. It is based on the measurement of the scatter power using a flat photodiode integrator rather than an optical sphere or a hemisphere. By this means, one can obtain much less expensive and smaller instruments than traditional ones. Thanks to this, they could find their application for surface control purposes, particularly in small and medium size enterprises. A description of the functioning of the measuring unit as well as the impact caused by different factors on its properties is presented first. Next, results of measurements of the Sq values performed for optical, silicon and metal samples have been shown. It has been also proven that they are in a good agreement with the results obtained using the Ulbricht sphere instrument.
Keywords: ISO 25178 Standard, scatterometry, surface metrology, surface roughness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17311014 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks
Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian
Abstract:
Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.
Keywords: Lateral bearing capacity, short pile, clayey soil, artificial neural network, Imperialist competition algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9421013 Advances in Artificial Intelligence Using Speech Recognition
Authors: Khaled M. Alhawiti
Abstract:
This research study aims to present a retrospective study about speech recognition systems and artificial intelligence. Speech recognition has become one of the widely used technologies, as it offers great opportunity to interact and communicate with automated machines. Precisely, it can be affirmed that speech recognition facilitates its users and helps them to perform their daily routine tasks, in a more convenient and effective manner. This research intends to present the illustration of recent technological advancements, which are associated with artificial intelligence. Recent researches have revealed the fact that speech recognition is found to be the utmost issue, which affects the decoding of speech. In order to overcome these issues, different statistical models were developed by the researchers. Some of the most prominent statistical models include acoustic model (AM), language model (LM), lexicon model, and hidden Markov models (HMM). The research will help in understanding all of these statistical models of speech recognition. Researchers have also formulated different decoding methods, which are being utilized for realistic decoding tasks and constrained artificial languages. These decoding methods include pattern recognition, acoustic phonetic, and artificial intelligence. It has been recognized that artificial intelligence is the most efficient and reliable methods, which are being used in speech recognition.Keywords: Speech recognition, acoustic phonetic, artificial intelligence, Hidden Markov Models (HMM), statistical models of speech recognition, human machine performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 79781012 Development of Fuzzy Logic and Neuro-Fuzzy Surface Roughness Prediction Systems Coupled with Cutting Current in Milling Operation
Authors: Joseph C. Chen, Venkata Mohan Kudapa
Abstract:
Development of two real-time surface roughness (Ra) prediction systems for milling operations was attempted. The systems used not only cutting parameters, such as feed rate and spindle speed, but also the cutting current generated and corrected by a clamp type energy sensor. Two different approaches were developed. First, a fuzzy inference system (FIS), in which the fuzzy logic rules are generated by experts in the milling processes, was used to conduct prediction modeling using current cutting data. Second, a neuro-fuzzy system (ANFIS) was explored. Neuro-fuzzy systems are adaptive techniques in which data are collected on the network, processed, and rules are generated by the system. The inference system then uses these rules to predict Ra as the output. Experimental results showed that the parameters of spindle speed, feed rate, depth of cut, and input current variation could predict Ra. These two systems enable the prediction of Ra during the milling operation with an average of 91.83% and 94.48% accuracy by FIS and ANFIS systems, respectively. Statistically, the ANFIS system provided better prediction accuracy than that of the FIS system.Keywords: Surface roughness, input current, fuzzy logic, neuro-fuzzy, milling operations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4931011 Using Artificial Neural Networks for Optical Imaging of Fluorescent Biomarkers
Authors: K. A. Laptinskiy, S. A. Burikov, A. M. Vervald, S. A. Dolenko, T. A. Dolenko
Abstract:
The article presents the results of the application of artificial neural networks to separate the fluorescent contribution of nanodiamonds used as biomarkers, adsorbents and carriers of drugs in biomedicine, from a fluorescent background of own biological fluorophores. The principal possibility of solving this problem is shown. Use of neural network architecture let to detect fluorescence of nanodiamonds against the background autofluorescence of egg white with high accuracy - better than 3 ug/ml.
Keywords: Artificial neural networks, fluorescence, data aggregation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21091010 Study on the Self-Location Estimate by the Evolutional Triangle Similarity Matching Using Artificial Bee Colony Algorithm
Authors: Yuji Kageyama, Shin Nagata, Tatsuya Takino, Izuru Nomura, Hiroyuki Kamata
Abstract:
In previous study, technique to estimate a self-location by using a lunar image is proposed.We consider the improvement of the conventional method in consideration of FPGA implementationin this paper. Specifically, we introduce Artificial Bee Colony algorithm for reduction of search time.In addition, we use fixed point arithmetic to enable high-speed operation on FPGA.
Keywords: SLIM, Artificial Bee Colony Algorithm, Location Estimate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19801009 The Design of Self-evolving Artificial Immune System II for Permutation Flow-shop Problem
Authors: Meng-Hui Chen, Pei-Chann Chang, Wei-Hsiu Huang
Abstract:
Artificial Immune System is adopted as a Heuristic Algorithm to solve the combinatorial problems for decades. Nevertheless, many of these applications took advantage of the benefit for applications but seldom proposed approaches for enhancing the efficiency. In this paper, we continue the previous research to develop a Self-evolving Artificial Immune System II via coordinating the T and B cell in Immune System and built a block-based artificial chromosome for speeding up the computation time and better performance for different complexities of problems. Through the design of Plasma cell and clonal selection which are relative the function of the Immune Response. The Immune Response will help the AIS have the global and local searching ability and preventing trapped in local optima. From the experimental result, the significant performance validates the SEAIS II is effective when solving the permutation flows-hop problems.Keywords: Artificial Immune System, Clonal Selection, Immune Response, Permutation Flow-shop Scheduling Problems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16071008 Experimental Design and Performance Analysis in Plasma Arc Surface Hardening
Authors: M.I.S. Ismail, Z. Taha
Abstract:
In this paper, the experimental design of using the Taguchi method is employed to optimize the processing parameters in the plasma arc surface hardening process. The processing parameters evaluated are arc current, scanning velocity and carbon content of steel. In addition, other significant effects such as the relation between processing parameters are also investigated. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to investigate the effects of these processing parameters. Through this study, not only the hardened depth increased and surface roughness improved, but also the parameters that significantly affect the hardening performance are identified. Experimental results are provided to verify the effectiveness of this approach.Keywords: Plasma arc, hardened depth, surface roughness, Taguchi method, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23601007 Prediction of Kinematic Viscosity of Binary Mixture of Poly (Ethylene Glycol) in Water using Artificial Neural Networks
Authors: M. Mohagheghian, A. M. Ghaedi, A. Vafaei
Abstract:
An artificial neural network (ANN) model is presented for the prediction of kinematic viscosity of binary mixtures of poly (ethylene glycol) (PEG) in water as a function of temperature, number-average molecular weight and mass fraction. Kinematic viscosities data of aqueous solutions for PEG (0.55419×10-6 – 9.875×10-6 m2/s) were obtained from the literature for a wide range of temperatures (277.15 - 338.15 K), number-average molecular weight (200 -10000), and mass fraction (0.0 – 1.0). A three layer feed-forward artificial neural network was employed. This model predicts the kinematic viscosity with a mean square error (MSE) of 0.281 and the coefficient of determination (R2) of 0.983. The results show that the kinematic viscosity of binary mixture of PEG in water could be successfully predicted using an artificial neural network model.Keywords: Artificial neural network, kinematic viscosity, poly ethylene glycol (PEG)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25301006 Effects of Canned Cycles and Cutting Parameters on Hole Quality in Cryogenic Drilling of Aluminum 6061-6T
Authors: M. N. Islam, B. Boswell, Y. R. Ginting
Abstract:
The influence of canned cycles and cutting parameters on hole quality in cryogenic drilling has been investigated experimentally and analytically. A three-level, three-parameter experiment was conducted by using the design-of-experiment methodology. The three levels of independent input parameters were the following: for canned cycles—a chip-breaking canned cycle (G73), a spot drilling canned cycle (G81), and a deep hole canned cycle (G83); for feed rates—0.2, 0.3, and 0.4 mm/rev; and for cutting speeds—60, 75, and 100 m/min. The selected work and tool materials were aluminum 6061-6T and high-speed steel (HSS), respectively. For cryogenic cooling, liquid nitrogen (LN2) was used and was applied externally. The measured output parameters were the three widely used quality characteristics of drilled holes—diameter error, circularity, and surface roughness. Pareto ANOVA was applied for analyzing the results. The findings revealed that the canned cycle has a significant effect on diameter error (contribution ratio 44.09%) and small effects on circularity and surface finish (contribution ratio 7.25% and 6.60%, respectively). The best results for the dimensional accuracy and surface roughness were achieved by G81. G73 produced the best circularity results; however, for dimensional accuracy, it was the worst level.Keywords: Circularity, diameter error, drilling canned cycle, Pareto ANOVA, surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11431005 Comparison of Two-Phase Critical Flow Models for Estimation of Leak Flow Rate through Cracks
Authors: Tadashi Watanabe, Jinya Katsuyama, Akihiro Mano
Abstract:
The estimation of leak flow rates through narrow cracks in structures is of importance for nuclear reactor safety, since the leak flow could be detected before occurrence of loss-of-coolant accidents. The two-phase critical leak flow rates are calculated using the system analysis code, and two representative non-homogeneous critical flow models, Henry-Fauske model and Ransom-Trapp model, are compared. The pressure decrease and vapor generation in the crack, and the leak flow rates are found to be larger for the Henry-Fauske model. It is shown that the leak flow rates are not affected by the structural temperature, but affected largely by the roughness of crack surface.
Keywords: Crack, critical flow, leak, roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8421004 Influence of Slope Shape and Surface Roughness on the Moving Paths of a Single Rockfall
Authors: Iau-Teh Wang, Chin-Yu Lee
Abstract:
Rockfall is a kind of irregular geological disaster. Its destruction time, space and movements are highly random. The impact force is determined by the way and velocity rocks move. The movement velocity of a rockfall depends on slope gradient of its moving paths, height, slope surface roughness and rock shapes. For effectively mitigate and prevent disasters brought by rockfalls, it is required to precisely calculate the moving paths of a rockfall so as to provide the best protective design. This paper applies Colorado Rockfall Simulation Program (CRSP) as our study tool to discuss the impact of slope shape and surface roughness on the moving paths of a single rockfall. The analytical results showed that the slope, m=1:1, acted as the threshold for rockfall bounce height on a monoclinal slight slope. When JRC ´╝£ 1.2, movement velocity reduced and bounce height increased as JCR increased. If slope fixed and JRC increased, the bounce height of rocks increased gradually with reducing movement velocity. Therefore, the analysis on the moving paths of rockfalls with CRSP could simulate bouncing of falling rocks. By analyzing moving paths, velocity, and bounce height of falling rocks, we could effectively locate impact points of falling rocks on a slope. Such analysis can be served as a reference for future disaster prevention and control.Keywords: Rockfall, Slope Shape, Moving Path, SurfaceRoughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28091003 The Grinding Influence on the Strength of Fan-Out Wafer-Level Packages
Authors: Z. W. Zhong, C. Xu, W. K. Choi
Abstract:
To build a thin fan-out wafer-level package, the package had to be ground to a thin level. In this work, the influence of the grinding processes on the strength of the fan-out wafer-level packages was investigated. After different grinding processes, all specimens were placed on a three-point-bending fixture installed on a universal tester for three-point-bending testing, and the strength of the fan-out wafer-level packages was measured. The experiments revealed that the average flexure strength increased with the decreasing surface roughness height of the fan-out wafer-level package tested. The grinding processes had a significant influence on the strength of the fan-out wafer-level packages investigated.Keywords: FOWLP strength, surface roughness, three-point bending, grinding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10161002 Physico-Chemical Characteristics of Cement Manufactured with Artificial Pozzolan (Waste Brick)
Authors: A. Naceri, M. Chikouche Hamina, P. Grosseau
Abstract:
The effect of artificial pozzolan (waste brick) on the physico-chemical properties of cement manufactured was investigated. The waste brick is generated by the manufacture of bricks. It was used in the proportions of 0%, 5%, 10%, 15% and 20% by mass of cement to study its effect on the physico-chemical properties of cement incorporating artificial pozzolan. The physicochemical properties of cement at anhydrous state and the hydrated state (chemical composition, specific weight, fineness, consistency of the cement paste and setting times) were studied. The experimental results obtained show that the quantity of pozzolanic admixture (waste brick) of cement manufactured is the principal parameter who influences on the variation of the physico-chemical properties of the cement tested.Keywords: Artificial pozzolan, waste brick, cement, physicochemicalcharacteristics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17521001 Artificial Neural Network with Steepest Descent Backpropagation Training Algorithm for Modeling Inverse Kinematics of Manipulator
Authors: Thiang, Handry Khoswanto, Rendy Pangaldus
Abstract:
Inverse kinematics analysis plays an important role in developing a robot manipulator. But it is not too easy to derive the inverse kinematic equation of a robot manipulator especially robot manipulator which has numerous degree of freedom. This paper describes an application of Artificial Neural Network for modeling the inverse kinematics equation of a robot manipulator. In this case, the robot has three degree of freedoms and the robot was implemented for drilling a printed circuit board. The artificial neural network architecture used for modeling is a multilayer perceptron networks with steepest descent backpropagation training algorithm. The designed artificial neural network has 2 inputs, 2 outputs and varies in number of hidden layer. Experiments were done in variation of number of hidden layer and learning rate. Experimental results show that the best architecture of artificial neural network used for modeling inverse kinematics of is multilayer perceptron with 1 hidden layer and 38 neurons per hidden layer. This network resulted a RMSE value of 0.01474.
Keywords: Artificial neural network, back propagation, inverse kinematics, manipulator, robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22881000 Artificial Neural Networks for Cognitive Radio Network: A Survey
Authors: Vishnu Pratap Singh Kirar
Abstract:
The main aim of a communication system is to achieve maximum performance. In Cognitive Radio any user or transceiver has ability to sense best suitable channel, while channel is not in use. It means an unlicensed user can share the spectrum of a licensed user without any interference. Though, the spectrum sensing consumes a large amount of energy and it can reduce by applying various artificial intelligent methods for determining proper spectrum holes. It also increases the efficiency of Cognitive Radio Network (CRN). In this survey paper we discuss the use of different learning models and implementation of Artificial Neural Network (ANN) to increase the learning and decision making capacity of CRN without affecting bandwidth, cost and signal rate.
Keywords: Artificial Neural Network, Cognitive Radio, Cognitive Radio Networks, Back Propagation, Spectrum Sensing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4106999 Forecasting e-Learning Efficiency by Using Artificial Neural Networks and a Balanced Score Card
Authors: Petar Halachev
Abstract:
Forecasting the values of the indicators, which characterize the effectiveness of performance of organizations is of great importance for their successful development. Such forecasting is necessary in order to assess the current state and to foresee future developments, so that measures to improve the organization-s activity could be undertaken in time. The article presents an overview of the applied mathematical and statistical methods for developing forecasts. Special attention is paid to artificial neural networks as a forecasting tool. Their strengths and weaknesses are analyzed and a synopsis is made of the application of artificial neural networks in the field of forecasting of the values of different education efficiency indicators. A method of evaluation of the activity of universities using the Balanced Scorecard is proposed and Key Performance Indicators for assessment of e-learning are selected. Resulting indicators for the evaluation of efficiency of the activity are proposed. An artificial neural network is constructed and applied in the forecasting of the values of indicators for e-learning efficiency on the basis of the KPI values.Keywords: artificial neural network, balanced scorecard, e-learning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1546998 Quantity and Quality Aware Artificial Bee Colony Algorithm for Clustering
Authors: U. Idachaba, F. Z. Wang, A. Qi, N. Helian
Abstract:
Artificial Bee Colony (ABC) algorithm is a relatively new swarm intelligence technique for clustering. It produces higher quality clusters compared to other population-based algorithms but with poor energy efficiency, cluster quality consistency and typically slower in convergence speed. Inspired by energy saving foraging behavior of natural honey bees this paper presents a Quality and Quantity Aware Artificial Bee Colony (Q2ABC) algorithm to improve quality of cluster identification, energy efficiency and convergence speed of the original ABC. To evaluate the performance of Q2ABC algorithm, experiments were conducted on a suite of ten benchmark UCI datasets. The results demonstrate Q2ABC outperformed ABC and K-means algorithm in the quality of clusters delivered.
Keywords: Artificial bee colony algorithm, clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120997 A Novel Method to Manufacture Superhydrophobic and Insulating Polyester Nanofibers via a Meso-Porous Aerogel Powder
Authors: Z. Mazrouei-Sebdani, A. Khoddami, H. Hadadzadeh, M. Zarrebini
Abstract:
In this research, waterglass based aerogel powder was prepared by sol–gel process and ambient pressure drying. Inspired by limited dust releasing, aerogel powder was introduced to the PET electrospinning solution in an attempt to create required bulk and surface structure for the nanofibers to improve their hydrophobic and insulation properties. The samples evaluation was carried out by measuring density, porosity, contact angle, heat transfer, FTIR, BET, and SEM. According to the results, porous silica aerogel powder was fabricated with mean pore diameter of 24 nm and contact angle of 145.9º. The results indicated the usefulness of the aerogel powder confined into nanofibers to control surface roughness for manipulating superhydrophobic nanowebs with water contact angle of 147º. It can be due to a multi-scale surface roughness which was created by nanowebs structure itself and nanofibers surface irregularity in presence of the aerogels while a layer of fluorocarbon created low surface energy. The wettability of a solid substrate is an important property that is controlled by both the chemical composition and geometry of the surface. Also, a decreasing trend in the heat transfer was observed from 22% for the nanofibers without any aerogel powder to 8% for the nanofibers with 4% aerogel powder. The development of thermal insulating materials has become increasingly more important than ever in view of the fossil energy depletion and global warming that call for more demanding energysaving practices.
Keywords: Superhydrophobicity, Insulation, Sol-gel, Surface energy, Roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2968996 Modified Functional Link Artificial Neural Network
Authors: Ashok Kumar Goel, Suresh Chandra Saxena, Surekha Bhanot
Abstract:
In this work, a Modified Functional Link Artificial Neural Network (M-FLANN) is proposed which is simpler than a Multilayer Perceptron (MLP) and improves upon the universal approximation capability of Functional Link Artificial Neural Network (FLANN). MLP and its variants: Direct Linear Feedthrough Artificial Neural Network (DLFANN), FLANN and M-FLANN have been implemented to model a simulated Water Bath System and a Continually Stirred Tank Heater (CSTH). Their convergence speed and generalization ability have been compared. The networks have been tested for their interpolation and extrapolation capability using noise-free and noisy data. The results show that M-FLANN which is computationally cheap, performs better and has greater generalization ability than other networks considered in the work.Keywords: DLFANN, FLANN, M-FLANN, MLP
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803995 Physical and Electrical Characterization of ZnO Thin Films Prepared by Sol-Gel Method
Authors: Mohammad Reza Tabatabaei, Ali Vaseghi Ardekani
Abstract:
In this paper, Zinc Oxide (ZnO) thin films are deposited on glass substrate by sol-gel method. The ZnO thin films with well defined orientation were acquired by spin coating of zinc acetate dehydrate monoethanolamine (MEA), de-ionized water and isopropanol alcohol. These films were pre-heated at 275°C for 10 min and then annealed at 350°C, 450°C and 550°C for 80 min. The effect of annealing temperature and different thickness on structure and surface morphology of the thin films were verified by Atomic Force Microscopy (AFM). It was found that there was a significant effect of annealing temperature on the structural parameters of the films such as roughness exponent, fractal dimension and interface width. Thin films also were characterizied by X-ray Diffractometery (XRD) method. XRD analysis revealed that the annealed ZnO thin films consist of single phase ZnO with wurtzite structure and show the c-axis grain orientation. Increasing annealing temperature increased the crystallite size and the c-axis orientation of the film after 450°C. Also In this study, ZnO thin films in different thickness have been prepared by sol-gel method on the glass substrate at room temperature. The thicknesses of films are 100, 150 and 250 nm. Using fractal analysis, morphological characteristics of surface films thickness in amorphous state were investigated. The results show that with increasing thickness, surface roughness (RMS) and lateral correlation length (ξ) are decreased. Also, the roughness exponent (α) and growth exponent (β) were determined to be 0.74±0.02 and 0.11±0.02, respectively.
Keywords: ZnO, Thin film, Fractal analysis, Morphology, AFM, annealing temperature, different thickness, XRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3488994 Need for Standardization of Manual Inspection in Small and Medium-Scale Manufacturing Industries
Authors: Adithya Nadig
Abstract:
In the field of production, characterization of surface roughness plays a vital role in assessing the quality of a manufactured product. The defined parameters for this assessment, each, have their own drawbacks in describing a profile surface. From the purview of small-scale and medium-scale industries, an increase in time spent for manual inspection of a product for various parameters adds to the cost of the product. In order to reduce this, a uniform and established standard is necessary for quantifying a profile of a manufactured product. The inspection procedure in the small and medium-scale manufacturing units at Jigani Industrial area, Bangalore, was observed. The parameters currently in use in those industries are described in the paper and a change in the inspection method is proposed.Keywords: Efficiency of quality assessment, areal profiling technique, manufacturing, standardization, Surface Roughness Characterization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886993 Adaptive Block State Update Method for Separating Background
Authors: Youngsuck Ji, Youngjoon Han, Hernsoo Hahn
Abstract:
In this paper, we proposed the robust mobile object detection method for light effect in the night street image block based updating reference background model using block state analysis. Experiment image is acquired sequence color video from steady camera. When suddenly appeared artificial illumination, reference background model update this information such as street light, sign light. Generally natural illumination is change by temporal, but artificial illumination is suddenly appearance. So in this paper for exactly detect artificial illumination have 2 state process. First process is compare difference between current image and reference background by block based, it can know changed blocks. Second process is difference between current image-s edge map and reference background image-s edge map, it possible to estimate illumination at any block. This information is possible to exactly detect object, artificial illumination and it was generating reference background more clearly. Block is classified by block-state analysis. Block-state has a 4 state (i.e. transient, stationary, background, artificial illumination). Fig. 1 is show characteristic of block-state respectively [1]. Experimental results show that the presented approach works well in the presence of illumination variance.Keywords: Block-state, Edge component, Reference backgroundi, Artificial illumination.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1321992 Wear Mechanisms in High Speed Steel Gear Cutting Tools
Authors: M. Jalali Azizpour, H. Mohammadi majd
Abstract:
In this paper, the wear of high speed steel hobs during hobbing has been studied. The wear mechanisms are strongly influenced by the choice of cutting speed. At moderate and high cutting speeds three major wear mechanisms were identified: abrasion, mild adhesive and severe adhesive. The microstructure and wear behavior of two high speed steel grades (M2 and ASP30) has been compared. In contrast, a variation in chemical composition or microstructure of HSS tool material generally did not change the dominant wear mechanism. However, the tool material properties determine the resistance against the operating wear mechanism and consequently the tool life. The metallographic analysis and wear measurement at the tip of hob teeth included scanning electron microscopy and stereoscope microscopy. Roughness profilometery is used for measuring the gear surface roughness.Keywords: abrasion, adhesion, cutting speed, hobbing, wear mechanism
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3296991 Multi Response Optimization in Drilling Al6063/SiC/15% Metal Matrix Composite
Authors: Hari Singh, Abhishek Kamboj, Sudhir Kumar
Abstract:
This investigation proposes a grey-based Taguchi method to solve the multi-response problems. The grey-based Taguchi method is based on the Taguchi’s design of experimental method, and adopts grey relational analysis (GRA) to transfer multi-response problems into single-response problems. In this investigation, an attempt has been made to optimize the drilling process parameters considering weighted output response characteristics using grey relational analysis. The output response characteristics considered are surface roughness, burr height and hole diameter error under the experimental conditions of cutting speed, feed rate, step angle, and cutting environment. The drilling experiments were conducted using L27 orthogonal array. A combination of orthogonal array, design of experiments and grey relational analysis was used to ascertain best possible drilling process parameters that give minimum surface roughness, burr height and hole diameter error. The results reveal that combination of Taguchi design of experiment and grey relational analysis improves surface quality of drilled hole.
Keywords: Metal matrix composite, Drilling, Optimization, step drill, Surface roughness, burr height, hole diameter error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3255