Search results for: Gaussian process classification model with multiclass
10811 An Automatic Tool for Checking Consistency between Data Flow Diagrams (DFDs)
Authors: Rosziati Ibrahim, Siow Yen Yen
Abstract:
System development life cycle (SDLC) is a process uses during the development of any system. SDLC consists of four main phases: analysis, design, implement and testing. During analysis phase, context diagram and data flow diagrams are used to produce the process model of a system. A consistency of the context diagram to lower-level data flow diagrams is very important in smoothing up developing process of a system. However, manual consistency check from context diagram to lower-level data flow diagrams by using a checklist is time-consuming process. At the same time, the limitation of human ability to validate the errors is one of the factors that influence the correctness and balancing of the diagrams. This paper presents a tool that automates the consistency check between Data Flow Diagrams (DFDs) based on the rules of DFDs. The tool serves two purposes: as an editor to draw the diagrams and as a checker to check the correctness of the diagrams drawn. The consistency check from context diagram to lower-level data flow diagrams is embedded inside the tool to overcome the manual checking problem.Keywords: Data Flow Diagram, Context Diagram, ConsistencyCheck, Syntax and Semantic Rules
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 343910810 Analysis Model for the Relationship of Users, Products, and Stores on Online Marketplace Based on Distributed Representation
Authors: Ke He, Wumaier Parezhati, Haruka Yamashita
Abstract:
Recently, online marketplaces in the e-commerce industry, such as Rakuten and Alibaba, have become some of the most popular online marketplaces in Asia. In these shopping websites, consumers can select purchase products from a large number of stores. Additionally, consumers of the e-commerce site have to register their name, age, gender, and other information in advance, to access their registered account. Therefore, establishing a method for analyzing consumer preferences from both the store and the product side is required. This study uses the Doc2Vec method, which has been studied in the field of natural language processing. Doc2Vec has been used in many cases to analyze the extraction of semantic relationships between documents (represented as consumers) and words (represented as products) in the field of document classification. This concept is applicable to represent the relationship between users and items; however, the problem is that one more factor (i.e., shops) needs to be considered in Doc2Vec. More precisely, a method for analyzing the relationship between consumers, stores, and products is required. The purpose of our study is to combine the analysis of the Doc2vec model for users and shops, and for users and items in the same feature space. This method enables the calculation of similar shops and items for each user. In this study, we derive the real data analysis accumulated in the online marketplace and demonstrate the efficiency of the proposal.Keywords: Doc2Vec, marketing, online marketplace, recommendation system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46810809 Assessing Land Cover Change Trajectories in Olomouc, Czech Republic
Authors: Mukesh Singh Boori, Vít Voženílek
Abstract:
Olomouc is a unique and complex landmark with widespread forestation and land use. This research work was conducted to assess important and complex land use change trajectories in Olomouc region. Multi-temporal satellite data from 1991, 2001 and 2013 were used to extract land use/cover types by object oriented classification method. To achieve the objectives, three different aspects were used: (1) Calculate the quantity of each transition; (2) Allocate location based landscape pattern (3) Compare land use/cover evaluation procedure. Land cover change trajectories shows that 16.69% agriculture, 54.33% forest and 21.98% other areas (settlement, pasture and water-body) were stable in all three decade. Approximately 30% of the study area maintained as a same land cove type from 1991 to 2013. Here broad scale of political and socioeconomic factors was also affect the rate and direction of landscape changes. Distance from the settlements was the most important predictor of land cover change trajectories. This showed that most of landscape trajectories were caused by socio-economic activities and mainly led to virtuous change on the ecological environment.
Keywords: Remote Sensing, land use/cover, Change trajectories, Image classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 286710808 Domin-Specific Language for Enabling End- Users Model-Driven Information System Engineering
Authors: Ahmad F. Subahi, Anthony J. H. Simons
Abstract:
This Paper presents an on-going research in the area of Model-Driven Engineering (MDE). The premise is that UML is too unwieldy to serve as the basis for model-driven engineering. We need a smaller, simpler notation with a cleaner semantics. We propose some ideas for a simpler notation with a clean semantics. The result is known as μML, or the Micro-Modelling Language.
Keywords: Model-driven engineering, model transformations, domain-specific languages, end-user development.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167510807 Effect of Adaptation Gain on system Performance for Model Reference Adaptive Control Scheme using MIT Rule
Authors: Pankaj Swarnkar, Shailendra Jain, R.K Nema
Abstract:
Adaptive control involves modifying the control law used by the controller to cope with the fact that the parameters of the system being controlled change drastically due to change in environmental conditions or in system itself. This technique is based on the fundamental characteristic of adaptation of living organism. The adaptive control process is one that continuously and automatically measures the dynamic behavior of plant, compares it with the desired output and uses the difference to vary adjustable system parameters or to generate an actuating signal in such a way so that optimal performance can be maintained regardless of system changes. This paper deals with application of model reference adaptive control scheme in first order system. The rule which is used for this application is MIT rule. This paper also shows the effect of adaptation gain on the system performance. Simulation is done in MATLAB and results are discussed in detail.Keywords: Adaptive control system, Adaptation gain, MIT rule, Model reference adaptive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222710806 Robotics System Design for Assembly and Disassembly Process
Authors: Nina Danišová, Roman Ružarovský, Karol Velíšek
Abstract:
In this paper is described a new conception of the Cartesian robot for automated assembly and also disassembly process. The advantage of this conception is the utilization the Cartesian assembly robot with its all peripheral automated devices for assembly of the assembled product. The assembly product in the end of the lifecycle can be disassembled with the same Cartesian disassembly robot with the use of the same peripheral automated devices and equipment. It is a new approach to problematic solving and development of the automated assembly systems with respect to lifecycle management of the assembly product and also assembly system with Cartesian robot. It is also important to develop the methodical process for design of automated assembly and disassembly system with Cartesian robot. Assembly and disassembly system use the same Cartesian robot input and output devices, assembly and disassembly units in one workplace with different application. Result of design methodology is the verification and proposition of real automated assembly and disassembly workplace with Cartesian robot for known verified model of assembled actuator.Keywords: Cartesian robot, design methodology, assembly, disassembly, pneumatic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 295210805 Problems and Obstacles to Value Creation of Thai Monk-s Bowls: The Case Study of Ban-Baat Village, Bangkok
Authors: Pirada Techaratpong
Abstract:
This research aims to study value-creation process of producing monk-s bowls, Thai traditional handicrafts, which is facing problems in adapting to the changing society. It also aims to identify problems and obstacles to value creation. This research is based on a case study of monk-s bowl manufactures from Ban-Baat Village, Bangkok. The conceptual framework is based on the model of value chain to analyze the process. The research methodology is qualitative. This research found that the value-creation process of monk-s bowls consists of eight activities contributing to adding value to the products and increasing profits to the producers in return. Five major problems and obstacles are found. The research suggests that these problems and obstacles limit the manufacturers- potential for creating more valued product and lead to business stagnation. These problems should be addressed and solved with collaboration among the government, the private sector and the manufacturers.Keywords: Craft manufacturing, problems and obstacles, value chain, value creation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 179610804 Method of Estimating Absolute Entropy of Municipal Solid Waste
Authors: Francis Chinweuba Eboh, Peter Ahlström, Tobias Richards
Abstract:
Entropy, as an outcome of the second law of thermodynamics, measures the level of irreversibility associated with any process. The identification and reduction of irreversibility in the energy conversion process helps to improve the efficiency of the system. The entropy of pure substances known as absolute entropy is determined at an absolute reference point and is useful in the thermodynamic analysis of chemical reactions; however, municipal solid waste (MSW) is a structurally complicated material with unknown absolute entropy. In this work, an empirical model to calculate the absolute entropy of MSW based on the content of carbon, hydrogen, oxygen, nitrogen, sulphur, and chlorine on a dry ash free basis (daf) is presented. The proposed model was derived from 117 relevant organic substances which represent the main constituents in MSW with known standard entropies using statistical analysis. The substances were divided into different waste fractions; namely, food, wood/paper, textiles/rubber and plastics waste and the standard entropies of each waste fraction and for the complete mixture were calculated. The correlation of the standard entropy of the complete waste mixture derived was found to be somsw= 0.0101C + 0.0630H + 0.0106O + 0.0108N + 0.0155S + 0.0084Cl (kJ.K-1.kg) and the present correlation can be used for estimating the absolute entropy of MSW by using the elemental compositions of the fuel within the range of 10.3% ≤ C ≤ 95.1%, 0.0% ≤ H ≤ 14.3%, 0.0% ≤ O ≤ 71.1%, 0.0 ≤ N ≤ 66.7%, 0.0% ≤ S ≤ 42.1%, 0.0% ≤ Cl ≤ 89.7%. The model is also applicable for the efficient modelling of a combustion system in a waste-to-energy plant.
Keywords: Absolute entropy, irreversibility, municipal solid waste, waste-to-energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 184010803 A Model of Market Segmentation for the Customers of Mellat Bank in Iran
Authors: Nader Gharibnavaz, Hossein Yazdi
Abstract:
If organizations like Mellat Bank want to identify its customer market completely to reach its specified goals, it can segment the market to offer the product package to the right segment. Our objective is to offer a segmentation model for Iran banking market in Mellat bank view. The methodology of this project is combined by “segmentation on the basis of four part-quality variables" and “segmentation on the basis of different in means". Required data are gathered from E-Systems and researcher personal observation. Finally, the research offers the organization that at first step form a four dimensional matrix with 756 segments using four variables named value-based, behavioral, activity style, and activity level, and at the second step calculate the means of profit for every cell of matrix in two distinguished work level (levels α1:normal condition and α2: high pressure condition) and compare the segments by checking two conditions that are 1- homogeneity every segment with its sub segment and 2- heterogeneity with other segments, and so it can do the necessary segmentation process. After all, the last offer (more explained by an operational example and feedback algorithm) is to test and update the model because of dynamic environment, technology, and banking system.Keywords: market segmentation model, banking system, Mellat bank
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 328710802 Cognitive Virtual Exploration for Optimization Model Reduction
Authors: Livier Serna, Xavier Fischer, Fouad Bennis
Abstract:
In this paper, a decision aid method for preoptimization is presented. The method is called “negotiation", and it is based on the identification, formulation, modeling and use of indicators defined as “negotiation indicators". These negotiation indicators are used to explore the solution space by means of a classbased approach. The classes are subdomains for the negotiation indicators domain. They represent equivalent cognitive solutions in terms of the negotiation indictors being used. By this method, we reduced the size of the solution space and the criteria, thus aiding the optimization methods. We present an example to show the method.Keywords: Optimization Model Reduction, Pre-Optimization, Negotiation Process, Class-Making, Cognition Based VirtualExploration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 142710801 Automated Process Quality Monitoring with Prediction of Fault Condition Using Measurement Data
Authors: Hyun-Woo Cho
Abstract:
Detection of incipient abnormal events is important to improve safety and reliability of machine operations and reduce losses caused by failures. Improper set-ups or aligning of parts often leads to severe problems in many machines. The construction of prediction models for predicting faulty conditions is quite essential in making decisions on when to perform machine maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of machine measurement data. The calibration model is used to predict two faulty conditions from historical reference data. This approach utilizes genetic algorithms (GA) based variable selection, and we evaluate the predictive performance of several prediction methods using real data. The results shows that the calibration model based on supervised probabilistic principal component analysis (SPPCA) yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.Keywords: Prediction, operation monitoring, on-line data, nonlinear statistical methods, empirical model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165810800 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment
Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee
Abstract:
Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.Keywords: Deep neural models, natural language inference, recognizing textual entailment, sentence-to-sentence relation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 145410799 Prototype for Enhancing Information Security Awareness in Industry
Authors: E. Kritzinger, E. Smith
Abstract:
Human-related information security breaches within organizations are primarily caused by employees who have not been made aware of the importance of protecting the information they work with. Information security awareness is accordingly attracting more attention from industry, because stakeholders are held accountable for the information with which they work. The authors developed an Information Security Retrieval and Awareness model – entitled “ISRA" – that is tailored specifically towards enhancing information security awareness in industry amongst all users of information, to address shortcomings in existing information security awareness models. This paper is principally aimed at expounding a prototype for the ISRA model to highlight the advantages of utilizing the model. The prototype will focus on the non-technical, humanrelated information security issues in industry. The prototype will ensure that all stakeholders in an organization are part of an information security awareness process, and that these stakeholders are able to retrieve specific information related to information security issues relevant to their job category, preventing them from being overburdened with redundant information.
Keywords: Information security, information security awareness, information security awareness programs
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168010798 Site Selection of Traffic Camera based on Dempster-Shafer and Bagging Theory
Authors: S. Rokhsari, M. Delavar, A. Sadeghi-Niaraki, A. Abed-Elmdoust, B. Moshiri
Abstract:
Traffic incident has bad effect on all parts of society so controlling road networks with enough traffic devices could help to decrease number of accidents, so using the best method for optimum site selection of these devices could help to implement good monitoring system. This paper has considered here important criteria for optimum site selection of traffic camera based on aggregation methods such as Bagging and Dempster-Shafer concepts. In the first step, important criteria such as annual traffic flow, distance from critical places such as parks that need more traffic controlling were identified for selection of important road links for traffic camera installation, Then classification methods such as Artificial neural network and Decision tree algorithms were employed for classification of road links based on their importance for camera installation. Then for improving the result of classifiers aggregation methods such as Bagging and Dempster-Shafer theories were used.Keywords: Aggregation, Bagging theory, Dempster-Shafer theory, Site selection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 170610797 Lean Impact Analysis Assessment Models: Development of a Lean Measurement Structural Model
Authors: Catherine Maware, Olufemi Adetunji
Abstract:
The paper is aimed at developing a model to measure the impact of Lean manufacturing deployment on organizational performance. The model will help industry practitioners to assess the impact of implementing Lean constructs on organizational performance. It will also harmonize the measurement models of Lean performance with the house of Lean that seems to have become the industry standard. The sheer number of measurement models for impact assessment of Lean implementation makes it difficult for new adopters to select an appropriate assessment model or deployment methodology. A literature review is conducted to classify the Lean performance model. Pareto analysis is used to select the Lean constructs for the development of the model. The model is further formalized through the use of Structural Equation Modeling (SEM) in defining the underlying latent structure of a Lean system. An impact assessment measurement model developed can be used to measure Lean performance and can be adopted by different industries.
Keywords: Impact measurement model, lean bundles, lean manufacturing, organizational performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 122510796 An Implicit Region-Based Deformable Model with Local Segmentation Applied to Weld Defects Extraction
Authors: Y. Boutiche, N. Ramou, M. Ben Gharsallah
Abstract:
This paper is devoted to present and discuss a model that allows a local segmentation by using statistical information of a given image. It is based on Chan-Vese model, curve evolution, partial differential equations and binary level sets method. The proposed model uses the piecewise constant approximation of Chan-Vese model to compute Signed Pressure Force (SPF) function, this one attracts the curve to the true object(s)-s boundaries. The implemented model is used to extract weld defects from weld radiographic images in the aim to calculate the perimeter and surfaces of those weld defects; encouraged resultants are obtained on synthetic and real radiographic images.
Keywords: Active contour, Chan-Vese Model, local segmentation, weld radiographic images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150510795 Recognition of Isolated Handwritten Latin Characters using One Continuous Route of Freeman Chain Code Representation and Feedforward Neural Network Classifier
Authors: Dewi Nasien, Siti S. Yuhaniz, Habibollah Haron
Abstract:
In a handwriting recognition problem, characters can be represented using chain codes. The main problem in representing characters using chain code is optimizing the length of the chain code. This paper proposes to use randomized algorithm to minimize the length of Freeman Chain Codes (FCC) generated from isolated handwritten characters. Feedforward neural network is used in the classification stage to recognize the image characters. Our test results show that by applying the proposed model, we reached a relatively high accuracy for the problem of isolated handwritten when tested on NIST database.Keywords: Handwriting Recognition, Freeman Chain Code andFeedforward Backpropagation Neural Networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 182210794 Formal Verification of Cache System Using a Novel Cache Memory Model
Authors: Guowei Hou, Lixin Yu, Wei Zhuang, Hui Qin, Xue Yang
Abstract:
Formal verification is proposed to ensure the correctness of the design and make functional verification more efficient. As cache plays a vital role in the design of System on Chip (SoC), and cache with Memory Management Unit (MMU) and cache memory unit makes the state space too large for simulation to verify, then a formal verification is presented for such system design. In the paper, a formal model checking verification flow is suggested and a new cache memory model which is called “exhaustive search model” is proposed. Instead of using large size ram to denote the whole cache memory, exhaustive search model employs just two cache blocks. For cache system contains data cache (Dcache) and instruction cache (Icache), Dcache memory model and Icache memory model are established separately using the same mechanism. At last, the novel model is employed to the verification of a cache which is module of a custom-built SoC system that has been applied in practical, and the result shows that the cache system is verified correctly using the exhaustive search model, and it makes the verification much more manageable and flexible.
Keywords: Cache system, formal verification, novel model, System on Chip (SoC).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229810793 The Effects of Consumer Inertia and Emotions on New Technology Acceptance
Authors: Chyi Jaw
Abstract:
Prior literature on innovation diffusion or acceptance has almost exclusively concentrated on consumers’ positive attitudes and behaviors for new products/services. Consumers’ negative attitudes or behaviors to innovations have received relatively little marketing attention, but it happens frequently in practice. This study discusses consumer psychological factors when they try to learn or use new technologies. According to recent research, technological innovation acceptance has been considered as a dynamic or mediated process. This research argues that consumers can experience inertia and emotions in the initial use of new technologies. However, given such consumer psychology, the argument can be made as to whether the inclusion of consumer inertia (routine seeking and cognitive rigidity) and emotions increases the predictive power of new technology acceptance model. As data from the empirical study find, the process is potentially consumer emotion changing (independent of performance benefits) because of technology complexity and consumer inertia, and impact innovative technology use significantly. Finally, the study presents the superior predictability of the hypothesized model, which let managers can better predict and influence the successful diffusion of complex technological innovations.
Keywords: Cognitive rigidity, consumer emotions, new technology acceptance, routine seeking, technology complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 279810792 A Propagator Method like Algorithm for Estimation of Multiple Real-Valued Sinusoidal Signal Frequencies
Authors: Sambit Prasad Kar, P.Palanisamy
Abstract:
In this paper a novel method for multiple one dimensional real valued sinusoidal signal frequency estimation in the presence of additive Gaussian noise is postulated. A computationally simple frequency estimation method with efficient statistical performance is attractive in many array signal processing applications. The prime focus of this paper is to combine the subspace-based technique and a simple peak search approach. This paper presents a variant of the Propagator Method (PM), where a collaborative approach of SUMWE and Propagator method is applied in order to estimate the multiple real valued sine wave frequencies. A new data model is proposed, which gives the dimension of the signal subspace is equal to the number of frequencies present in the observation. But, the signal subspace dimension is twice the number of frequencies in the conventional MUSIC method for estimating frequencies of real-valued sinusoidal signal. The statistical analysis of the proposed method is studied, and the explicit expression of asymptotic (large-sample) mean-squared-error (MSE) or variance of the estimation error is derived. The performance of the method is demonstrated, and the theoretical analysis is substantiated through numerical examples. The proposed method can achieve sustainable high estimation accuracy and frequency resolution at a lower SNR, which is verified by simulation by comparing with conventional MUSIC, ESPRIT and Propagator Method.
Keywords: Frequency estimation, peak search, subspace-based method without eigen decomposition, quadratic convex function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173210791 Treatment of Cutting Oily-Wastewater by Sono Fenton Process: Experimental Approach and Combined Process
Authors: P. Painmanakul, T. Chintateerachai, S. Lertlapwasin, N. Rojvilavan, T. Chalermsinsuwan, N. Chawaloesphonsiya, O. Larpparisudthi
Abstract:
Conventional coagulation, advance oxidation process (AOPs), and the combined process were evaluated and compared for its suitability to treat the stabilized cutting-oil wastewater. The 90% efficiency was obtained from the coagulation at Al2(SO4)3 dosage of 150 mg/L and pH 7. On the other hands, efficiencies of AOPs for 30 minutes oxidation time were 10% for acoustic oxidation, 12% for acoustic oxidation with hydrogen peroxide, 76% for Fenton, and 92% sono-Fenton processes. The highest efficiency for effective oil removal of AOPs required large amount of chemical. Therefore, AOPs were studied as a post-treatment after conventional separation process. The efficiency was considerable as the effluent COD can pass the standard required for industrial wastewater discharge with less chemical and energy consumption.
Keywords: Cutting oily-wastewater, Advance oxidation process, Sono-Fenton, Combined process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 326810790 Optimal Control of Volterra Integro-Differential Systems Based On Legendre Wavelets and Collocation Method
Authors: Khosrow Maleknejad, Asyieh Ebrahimzadeh
Abstract:
In this paper, the numerical solution of optimal control problem (OCP) for systems governed by Volterra integro-differential (VID) equation is considered. The method is developed by means of the Legendre wavelet approximation and collocation method. The properties of Legendre wavelet together with Gaussian integration method are utilized to reduce the problem to the solution of nonlinear programming one. Some numerical examples are given to confirm the accuracy and ease of implementation of the method.
Keywords: Collocation method, Legendre wavelet, optimal control, Volterra integro-differential equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 289510789 Real-time Detection of Space Manipulator Self-collision
Authors: Zhang Xiaodong, Tang Zixin, Liu Xin
Abstract:
In order to avoid self-collision of space manipulators during operation process, a real-time detection method is proposed in this paper. The manipulator is fitted into a cylinder-enveloping surface, and then, a kind of detection algorithm of collision between cylinders is analyzed. The collision model of space manipulator self-links can be detected by using this algorithm in real-time detection during the operation process. To ensure security of the operation, a safety threshold is designed. The simulation and experiment results verify the effectiveness of the proposed algorithm for a 7-DOF space manipulator.Keywords: Space manipulator, Collision detection, Self-collision, the real-time collision detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203510788 Automatic Generation of Ontology from Data Source Directed by Meta Models
Authors: Widad Jakjoud, Mohamed Bahaj, Jamal Bakkas
Abstract:
Through this paper we present a method for automatic generation of ontological model from any data source using Model Driven Architecture (MDA), this generation is dedicated to the cooperation of the knowledge engineering and software engineering. Indeed, reverse engineering of a data source generates a software model (schema of data) that will undergo transformations to generate the ontological model. This method uses the meta-models to validate software and ontological models.
Keywords: Meta model, model, ontology, data source.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 199810787 Zero Inflated Strict Arcsine Regression Model
Authors: Y. N. Phang, E. F. Loh
Abstract:
Zero inflated strict arcsine model is a newly developed model which is found to be appropriate in modeling overdispersed count data. In this study, we extend zero inflated strict arcsine model to zero inflated strict arcsine regression model by taking into consideration the extra variability caused by extra zeros and covariates in count data. Maximum likelihood estimation method is used in estimating the parameters for this zero inflated strict arcsine regression model.Keywords: Overdispersed count data, maximum likelihood estimation, simulated annealing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175510786 An Extended Eclectic Paradigm of Dunning: Impact of New International Business Processes
Authors: D. de Matías Batalla
Abstract:
This paper develops and extended eclectic paradigm to fit the firm internationalization process with the real international business world. The approach is based on Dunning´s, introducing new concepts like mode of entry, international joint venture o international mergers and acquisitions. At the same time is presented a model to describe the Spanish international mergers and acquisitions in order to determinate the most important factor that influence in this type of foreign direct investment.
Keywords: Dunning, eclectic paradigm, foreign direct investment, IJV, international business, international management, multinational firms, firm internationalization process, M&A.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 306910785 Ontology-based Domain Modelling for Consistent Content Change Management
Authors: Muhammad Javed, Yalemisew M. Abgaz, Claus Pahl
Abstract:
Ontology-based modelling of multi-formatted software application content is a challenging area in content management. When the number of software content unit is huge and in continuous process of change, content change management is important. The management of content in this context requires targeted access and manipulation methods. We present a novel approach to deal with model-driven content-centric information systems and access to their content. At the core of our approach is an ontology-based semantic annotation technique for diversely formatted content that can improve the accuracy of access and systems evolution. Domain ontologies represent domain-specific concepts and conform to metamodels. Different ontologies - from application domain ontologies to software ontologies - capture and model the different properties and perspectives on a software content unit. Interdependencies between domain ontologies, the artifacts and the content are captured through a trace model. The annotation traces are formalised and a graph-based system is selected for the representation of the annotation traces.Keywords: Consistent Content Management, Impact Categorisation, Trace Model, Ontology Evolution
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 168410784 Self-tuned LMS Algorithm for Sinusoidal Time Delay Tracking
Authors: Jonah Gamba
Abstract:
In this paper the problem of estimating the time delay between two spatially separated noisy sinusoidal signals by system identification modeling is addressed. The system is assumed to be perturbed by both input and output additive white Gaussian noise. The presence of input noise introduces bias in the time delay estimates. Normally the solution requires a priori knowledge of the input-output noise variance ratio. We utilize the cascade of a self-tuned filter with the time delay estimator, thus making the delay estimates robust to input noise. Simulation results are presented to confirm the superiority of the proposed approach at low input signal-to-noise ratios.Keywords: LMS algorithm, Self-tuned filter, Systemidentification, Time delay estimation, .
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159010783 Comparison of Two Interval Models for Interval-Valued Differential Evolution
Authors: Hidehiko Okada
Abstract:
The author previously proposed an extension of differential evolution. The proposed method extends the processes of DE to handle interval numbers as genotype values so that DE can be applied to interval-valued optimization problems. The interval DE can employ either of two interval models, the lower and upper model or the center and width model, for specifying genotype values. Ability of the interval DE in searching for solutions may depend on the model. In this paper, the author compares the two models to investigate which model contributes better for the interval DE to find better solutions. Application of the interval DE is evolutionary training of interval-valued neural networks. A result of preliminary study indicates that the CW model is better than the LU model: the interval DE with the CW model could evolve better neural networks.
Keywords: Evolutionary algorithms, differential evolution, neural network, neuroevolution, interval arithmetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166710782 Fractional-Order Modeling of GaN High Electron Mobility Transistors for Switching Applications
Authors: Anwar H. Jarndal, Ahmed S. Elwakil
Abstract:
In this paper, a fraction-order model for pad parasitic effect of GaN HEMT on Si substrate is developed and validated. Open de-embedding structure is used to characterize and de-embed substrate loading parasitic effects. Unbiased device measurements are implemented to extract parasitic inductances and resistances. The model shows very good simulation for S-parameter measurements under different bias conditions. It has been found that this approach can improve the simulation of intrinsic part of the transistor, which is very important for small- and large-signal modeling process.Keywords: Fractional-order modeling, GaN HEMT, Si-substrate, open de-embedding structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1113