Search results for: project based learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13042

Search results for: project based learning

11632 The Emergence of Construction Mafia in South Africa: The Implication on the Construction Industry

Authors: Thandokazi Nyangiwe, Christopher Amoah, Charles P. Mukumba

Abstract:

The South African construction sector is threatened by emerging black business forums called construction mafias. The emergence of the construction mafia has culminated in the disruptions and abandonment of construction sites resulting in the loss of jobs for construction workers. The paper examines the origin of construction mafias and their impact on the construction sector, including the potential ways to cope with their operations. A qualitative research approach was adopted for this study using open-ended interview questions to gather information from 30 key construction industry stakeholders, including contractors, subcontractors, consultants, and the construction project communities. Content and thematic analyses were used to analyses the data collected. The findings suggest that most participants do not fully understand the existence and operations of construction mafias in the construction industry. Construction mafias claim to be part of the local business forums. They disrupt construction projects and demand a certain amount, usually 30% of the construction value. Construction mafias frequently resort to intimidation and violence if their demands are unmet. Their operations have resulted in delayed completion of construction projects, abandonment of projects, and loss of income for the contractor and jobs for the construction workers. The interviews were limited to construction stakeholders. Because of the nature of the mafias’ operations, they could not be accessed for interviews for fear of being identified because of the connotation attached to their role as construction mafias. Construction project owners face disruptions of projects resulting in loss of equipment, materials, and income. Therefore, there is a need to sensitize the construction stakeholders in the construction industry regarding the existence and operations of the construction mafia and the implications on construction project performance and delivery. The findings will give insight into the operations of the construction mafias in the South African construction industry, which has caused disruptions in construction project sites. Stakeholders must find solutions to address the construction mafias’ disruptive actions on construction projects. The study presents an initial inquiry that will come up with how to manage and cope with the growing operations of construction mafias in the South African construction industry.

Keywords: Black business forums, construction mafia, South African construction industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 240
11631 PhilSHORE: Development of a WebGIS-Based Marine Spatial Planning Tool for Tidal Current Energy Resource Assessment and Site Suitability Analysis

Authors: Ma. Rosario Concepcion O. Ang, Luis Caezar Ian K. Panganiban, Charmyne B. Mamador, Oliver Dan G. De Luna, Michael D. Bausas, Joselito P. Cruz

Abstract:

PhilSHORE is a multi-site, multi-device and multicriteria decision support tool designed to support the development of tidal current energy in the Philippines. Its platform is based on Geographic Information Systems (GIS) which allows for the collection, storage, processing, analyses and display of geospatial data. Combining GIS tools with open source web development applications, PhilSHORE becomes a webGIS-based marine spatial planning tool. To date, PhilSHORE displays output maps and graphs of power and energy density, site suitability and site-device analysis. It enables stakeholders and the public easy access to the results of tidal current energy resource assessments and site suitability analyses. Results of the initial development show that PhilSHORE is a promising decision support tool for ORE project developments.

Keywords: GIS, Site Suitability Analysis, Tidal Current Energy Resource Assessment, WebGIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2715
11630 Study on the Influence of Cladding and Finishing Materials of Apartment Buildings on the Architectural Identity of Amman, Jordan

Authors: Asil Y. Zureigat, Ayat A. Oudat

Abstract:

Analyzing the old and bringing in the new is an ever-ongoing process in driving innovations in architecture. This paper looks at the excessive use of stone in apartment buildings in Amman and speculates on the existing possibilities of changing the cladding material. By looking at architectural exceptions present in Amman, the paper seeks to make the exception the rule, by adding new materials to the architectural library of Amman and in turn, project a series of possible new identities to the existing stone scape. Through distributing a survey, conducting a photographic study on exceptional buildings and shedding light on the historical narrative of stone, the paper highlights the ways in which new finishing materials such as plaster, paint and stone variations could be introduced in an attempt to project a new architectural identity to Amman.

Keywords: Architectural city identity, cladding materials, façade architecture, image of the city.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 588
11629 Multi-Dimensional Concerns Mining for Web Applications via Concept-Analysis

Authors: Carlo Bellettini, Alessandro Marchetto, Andrea Trentini

Abstract:

Web applications have become very complex and crucial, especially when combined with areas such as CRM (Customer Relationship Management) and BPR (Business Process Reengineering), the scientific community has focused attention to Web applications design, development, analysis, and testing, by studying and proposing methodologies and tools. This paper proposes an approach to automatic multi-dimensional concern mining for Web Applications, based on concepts analysis, impact analysis, and token-based concern identification. This approach lets the user to analyse and traverse Web software relevant to a particular concern (concept, goal, purpose, etc.) via multi-dimensional separation of concerns, to document, understand and test Web applications. This technique was developed in the context of WAAT (Web Applications Analysis and Testing) project. A semi-automatic tool to support this technique is currently under development.

Keywords: Concepts Analysis, Concerns Mining, Multi-Dimensional Separation of Concerns, Impact Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
11628 Face Recognition Based On Vector Quantization Using Fuzzy Neuro Clustering

Authors: Elizabeth B. Varghese, M. Wilscy

Abstract:

A face recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame. A lot of algorithms have been proposed for face recognition. Vector Quantization (VQ) based face recognition is a novel approach for face recognition. Here a new codebook generation for VQ based face recognition using Integrated Adaptive Fuzzy Clustering (IAFC) is proposed. IAFC is a fuzzy neural network which incorporates a fuzzy learning rule into a competitive neural network. The performance of proposed algorithm is demonstrated by using publicly available AT&T database, Yale database, Indian Face database and a small face database, DCSKU database created in our lab. In all the databases the proposed approach got a higher recognition rate than most of the existing methods. In terms of Equal Error Rate (ERR) also the proposed codebook is better than the existing methods.

Keywords: Face Recognition, Vector Quantization, Integrated Adaptive Fuzzy Clustering, Self Organization Map.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2242
11627 The Mentoring in Professional Development of University Teachers

Authors: Nagore Guerra Bilbao, Clemente Lobato Fraile

Abstract:

Mentoring is provided by professionals with a higher level of experience and competence as part of the professional development of a university faculty. This paper explores the characteristics of the mentoring provided by those teachers participating in the development of an active methodology program run at the University of the Basque Country: to examine and to analyze mentors’ performance with the aim of providing empirical evidence regarding its value as a lifelong learning strategy for teaching staff. A total of 183 teachers were trained during the first three programs. The analysis method uses a coding technique and is based on flexible, systematic guidelines for gathering and analyzing qualitative data. The results have confirmed the conception of mentoring as a methodological innovation in higher education. In short, university teachers in general assessed the mentoring they received positively, considering it to be a valid, useful strategy in their professional development. They highlighted the methodological expertise of their mentor and underscored how they monitored the learning process of the active method and provided guidance and advice when necessary. Finally, they also drew attention to traits such as availability, personal commitment and flexibility in. However, a minority critique is pointed to some aspects of the performance of some mentors.

Keywords: Higher education, Mentoring, Professional development, University teachers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 951
11626 A Case Study on Vocational Teachers’ Perceptions on Their Linguistically and Culturally Responsive Teaching

Authors: Kirsi Korkealehto

Abstract:

In Finland the transformation from homogenous culture into multicultural one as a result of heavy immigration has been rapid in the recent decades. As multilingualism and multiculturalism are growing features in our society, teachers in all educational levels need to be competent for encounters with students from diverse cultural backgrounds. Consequently, also the number of multicultural and multilingual vocational school students has increased which has not been taken into consideration in teacher education enough. To bridge this gap between teachers’ competences and the requirements of the contemporary school world, Finnish Ministry of Culture and Education established the DivEd-project. The aim of the project is to prepare all teachers to work in the linguistically and culturally diverse world they live in, to develop and increase culturally sustaining and linguistically responsive pedagogy in Finland, increase awareness among Teacher Educators working with preservice teachers and to increase awareness and provide specific strategies to in-service teachers. The partners in the nationwide project are 6 universities and 2 universities of applied sciences. In this research, the linguistically and culturally sustainable teaching practices developed within the DivEd-project are tested in practice. This research aims to explore vocational teachers’ perceptions of these multilingualism and multilingual educational practices. The participants of this study are vocational teachers in of different fields. The data were collected by individual, face-to-face interviews. The data analysis was conducted through content analysis. The findings indicate that the vocational teachers experience that they lack knowledge on linguistically and culturally responsive pedagogy. Moreover, they regard themselves in some extent incompetent in incorporating multilingually and multiculturally sustainable pedagogy in everyday teaching work. Therefore, they feel they need more training pertaining multicultural and multilingual knowledge, competences and suitable pedagogical methods for teaching students from diverse linguistic and cultural backgrounds.

Keywords: Multicultural, multilingual, teacher competences, vocational school.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 511
11625 Vision-Based Collision Avoidance for Unmanned Aerial Vehicles by Recurrent Neural Networks

Authors: Yao-Hong Tsai

Abstract:

Due to the sensor technology, video surveillance has become the main way for security control in every big city in the world. Surveillance is usually used by governments for intelligence gathering, the prevention of crime, the protection of a process, person, group or object, or the investigation of crime. Many surveillance systems based on computer vision technology have been developed in recent years. Moving target tracking is the most common task for Unmanned Aerial Vehicle (UAV) to find and track objects of interest in mobile aerial surveillance for civilian applications. The paper is focused on vision-based collision avoidance for UAVs by recurrent neural networks. First, images from cameras on UAV were fused based on deep convolutional neural network. Then, a recurrent neural network was constructed to obtain high-level image features for object tracking and extracting low-level image features for noise reducing. The system distributed the calculation of the whole system to local and cloud platform to efficiently perform object detection, tracking and collision avoidance based on multiple UAVs. The experiments on several challenging datasets showed that the proposed algorithm outperforms the state-of-the-art methods.

Keywords: Unmanned aerial vehicle, object tracking, deep learning, collision avoidance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 953
11624 A Robust Eyelashes and Eyelid Detection in Transformation Invariant Iris Recognition: In Application with LRC Security System

Authors: R. Bremananth

Abstract:

Biometric authentication is an essential task for any kind of real-life applications. In this paper, we contribute two primary paradigms to Iris recognition such as Robust Eyelash Detection (RED) using pathway kernels and hair curve fitting synthesized model. Based on these two paradigms, rotation invariant iris recognition is enhanced. In addition, the presented framework is tested with real-life iris data to provide the authentication for LRC (Learning Resource Center) users. Recognition performance is significantly improved based on the contributed schemes by evaluating real-life irises. Furthermore, the framework has been implemented using Java programming language. Experiments are performed based on 1250 diverse subjects in different angles of variations on the authentication process. The results revealed that the methodology can deploy in the process on LRC management system and other security required applications.

Keywords: Authentication, biometric, eye lashes detection, iris scanning, LRC security, secure access.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035
11623 Experimental and Numerical Study of the Effect of Lateral Wind on the Feeder Airship

Authors: A. Suñol, D. Vucinic, S.Vanlanduit, T. Markova, A. Aksenov, I. Moskalyov

Abstract:

Feeder is one of the airships of the Multibody Advanced Airship for Transport (MAAT) system, under development within the EU FP7 project. MAAT is based on a modular concept composed of two different parts that have the possibility to join; respectively they are the so-called Cruiser and Feeder, designed on the lighter than air principle. Feeder, also named ATEN (Airship Transport Elevator Network), is the smaller one which joins the bigger one, Cruiser, also named PTAH (Photovoltaic modular Transport Airship for High altitude),envisaged to happen at 15km altitude. During the MAAT design phase, the aerodynamic studies of the both airships and their interactions are analyzed. The objective of these studies is to understand the aerodynamic behavior of all the preselected configurations, as an important element in the overall MAAT system design. The most of these configurations are only simulated by CFD, while the most feasible one is experimentally analyzed in order to validate and thrust the CFD predictions. This paper presents the numerical and experimental investigation of the Feeder “conical like" shape configuration. The experiments are focused on the aerodynamic force coefficients and the pressure distribution over the Feeder outer surface, while the numerical simulation cover also the analysis of the velocity and pressure distribution. Finally, the wind tunnel experiment is compared with its CFD model in order to validate such specific simulations with respective experiments and to better understand the difference between the wind tunnel and in-flight circumstances.

Keywords: MAAT project Feeder, CFD simulations, wind tunnel experiments, lateral wind influence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2573
11622 Using Technology with a New Model of Management Development by Simulation of Neural Network and its Application on Intelligent Schools

Authors: Ahmad Ghayoumi, Mehdi Ghayoumi

Abstract:

Intelligent schools are those which use IT devices and technologies as media software, hardware and networks to improve learning process. On the other hand management improvement is best described as the process from which managers learn and improve their skills not only to benefit themselves but also their employing organizations Here, we present a model Management improvement System that has been applied on some schools and have made strict improvement.

Keywords: Intelligent school, Management development system, Learning station, Teaching station

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1095
11621 Intelligent Off-Grid Photovoltaic Supply Systems

Authors: Prashant Kumar Soori, Parthasarathy L., Masami Okano, Awet Mana

Abstract:

Off-grid Photovoltaic (PV) systems are empowering technology in underdeveloped countries like Ethiopia where many people live far away from the modern world. Where there is relatively low energy consumption, providing energy from grid systems is not commercially cost-effective. As a result, significant people groups worldwide stay without access to electricity. One remote village in northern Ethiopia was selected by the United Nations for a pilot project to improve its living conditions. As part of this comprehensive project, an intelligent charge controller circuit for Off-grid PV systems was designed for the clinic in that village. In this paper, design aspects of an intelligent charge controller unit and its load driver circuits are discussed for an efficient utilization of PVbased supply systems.

Keywords: Compact Fluorescent Lamp (CFL), FluorescentLamp, Intelligent Charge Controller Unit (ICCU), Light EmittingDiode (LED), Photovoltaic (PV).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2002
11620 Development of a Simulator for Explaining Organic Chemical Reactions Based on Qualitative Process Theory

Authors: Alicia Y. C. Tang, Rukaini Hj. Abdullah, Sharifuddin M. Zain

Abstract:

This paper discusses the development of a qualitative simulator (abbreviated QRiOM) for predicting the behaviour of organic chemical reactions. The simulation technique is based on the qualitative process theory (QPT) ontology. The modelling constructs of QPT embody notions of causality which can be used to explain the behaviour of a chemical system. The major theme of this work is that, in a qualitative simulation environment, students are able to articulate his/her knowledge through the inspection of explanations generated by software. The implementation languages are Java and Prolog. The software produces explanation in various forms that stresses on the causal theories in the chemical system which can be effectively used to support learning.

Keywords: Chemical reactions, explanation, qualitative processtheory, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566
11619 Local Linear Model Tree (LOLIMOT) Reconfigurable Parallel Hardware

Authors: A. Pedram, M. R. Jamali, T. Pedram, S. M. Fakhraie, C. Lucas

Abstract:

Local Linear Neuro-Fuzzy Models (LLNFM) like other neuro- fuzzy systems are adaptive networks and provide robust learning capabilities and are widely utilized in various applications such as pattern recognition, system identification, image processing and prediction. Local linear model tree (LOLIMOT) is a type of Takagi-Sugeno-Kang neuro fuzzy algorithm which has proven its efficiency compared with other neuro fuzzy networks in learning the nonlinear systems and pattern recognition. In this paper, a dedicated reconfigurable and parallel processing hardware for LOLIMOT algorithm and its applications are presented. This hardware realizes on-chip learning which gives it the capability to work as a standalone device in a system. The synthesis results on FPGA platforms show its potential to improve the speed at least 250 of times faster than software implemented algorithms.

Keywords: LOLIMOT, hardware, neurofuzzy systems, reconfigurable, parallel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3888
11618 End-to-End Pyramid Based Method for MRI Reconstruction

Authors: Omer Cahana, Maya Herman, Ofer Levi

Abstract:

Magnetic Resonance Imaging (MRI) is a lengthy medical scan that stems from a long acquisition time. Its length is mainly due to the traditional sampling theorem, which defines a lower boundary for sampling. However, it is still possible to accelerate the scan by using a different approach such as Compress Sensing (CS) or Parallel Imaging (PI). These two complementary methods can be combined to achieve a faster scan with high-fidelity imaging. To achieve that, two conditions must be satisfied: i) the signal must be sparse under a known transform domain, and ii) the sampling method must be incoherent. In addition, a nonlinear reconstruction algorithm must be applied to recover the signal. While the rapid advances in Deep Learning (DL) have had tremendous successes in various computer vision tasks, the field of MRI reconstruction is still in its early stages. In this paper, we present an end-to-end method for MRI reconstruction from k-space to image. Our method contains two parts. The first is sensitivity map estimation (SME), which is a small yet effective network that can easily be extended to a variable number of coils. The second is reconstruction, which is a top-down architecture with lateral connections developed for building high-level refinement at all scales. Our method holds the state-of-art fastMRI benchmark, which is the largest, most diverse benchmark for MRI reconstruction.

Keywords: Accelerate MRI scans, image reconstruction, pyramid network, deep learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 337
11617 Developing of Intelligent Schools with a New Model of Strategic Management System

Authors: Ahmad Ghayoumi, Mehdi Ghayoumi

Abstract:

Intelligent schools are those which use IT devices and technologies as media software, hardware and networks to improve learning process. On the other hand Strategic management is a field that deals with the major intended and emergent initiatives taken by general managers on behalf of owners, involving utilization of resources, to enhance the performance of firms in their external environments. Here, we present a model Strategic Management System that has been applied on some schools and have made strict improvement.

Keywords: Intelligent school, Strategic management system, Learning station, Teaching station

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400
11616 Human Factors as the Main Reason of the Accident in Scaffold Use Assessment

Authors: Krzysztof J. Czarnocki, E. Czarnocka, K. Szaniawska

Abstract:

Main goal of the research project is Scaffold Use Risk Assessment Model (SURAM) formulation, developed for the assessment of risk levels as a various construction process stages with various work trades. Finally, in 2016, the project received financing by the National Center for Research and development according to PBS3/A2/19/2015–Research Grant. The presented data, calculations and analyzes discussed in this paper were created as a result of the completion on the first and second phase of the PBS3/A2/19/2015 project. Method: One of the arms of the research project is the assessment of worker visual concentration on the sight zones as well as risky visual point inadequate observation. In this part of research, the mobile eye-tracker was used to monitor the worker observation zones. SMI Eye Tracking Glasses is a tool, which allows us to analyze in real time and place where our eyesight is concentrated on and consequently build the map of worker's eyesight concentration during a shift. While the project is still running, currently 64 construction sites have been examined, and more than 600 workers took part in the experiment including monitoring of typical parameters of the work regimen, workload, microclimate, sound vibration, etc. Full equipment can also be useful in more advanced analyses. Because of that technology we have verified not only main focus of workers eyes during work on or next to scaffolding, but we have also examined which changes in the surrounding environment during their shift influenced their concentration. In the result of this study it has been proven that only up to 45.75% of the shift time, workers’ eye concentration was on one of three work-related areas. Workers seem to be distracted by noisy vehicles or people nearby. In opposite to our initial assumptions and other authors’ findings, we observed that the reflective parts of the scaffoldings were not more recognized by workers in their direct workplaces. We have noticed that the red curbs were the only well recognized part on a very few scaffoldings. Surprisingly on numbers of samples, we have not recognized any significant number of concentrations on those curbs. Conclusion: We have found the eye-tracking method useful for the construction of the SURAM model in the risk perception and worker’s behavior sub-modules. We also have found that the initial worker's stress and work visual conditions seem to be more predictive for assessment of the risky developing situation or an accident than other parameters relating to a work environment.

Keywords: Accident assessment model, eye tracking, occupational safety, scaffolding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1147
11615 Learning Materials of Atmospheric Pressure Plasma Process: Application in Wrinkle-Resistant Finishing of Cotton Fabric

Authors: C. W. Kan

Abstract:

Cotton fibre is a commonly-used natural fibre because of its good fibre strength, high moisture absorption behaviour and minimal static problems. However, one of the main drawbacks of cotton fibre is wrinkling after washing, which is recently overcome by wrinkle-resistant treatment. 1,2,3,4-butanetetracarboxylic acid (BTCA) could improve the wrinkle-resistant properties of cotton fibre. Although the BTCA process is an effective method for wrinkle resistant application of cotton fabrics, reduced fabric strength was observed after treatment. Therefore, this paper would explore the use of atmospheric pressure plasma treatment under different discharge powers as a pretreatment process to enhance the application of BTCA process on cotton fabric without generating adverse effect. The aim of this study is to provide learning information to the users to know how the atmospheric pressure plasma treatment can be incorporated in textile finishing process with positive impact.

Keywords: Learning materials, atmospheric pressure plasma treatment, cotton, wrinkle-resistant, BTCA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1391
11614 eLearning for Electric Distribution Planning Engineers

Authors: Isaias Ramirez, Jose Luis Silva, Carlos Gonzalez, Gustavo Candelaria, Jose Pepe Rasgado, Carlos Carrillo

Abstract:

This paper presents the experience in an eLearning training project that is being implemented for electrical planning engineers from the national Mexican utility Comision Federal de Electricidad (CFE) Distribution. This modality is implemented and will be used in the utility for training purposes to help personnel in their daily technical activities. One important advantage of this training project is that once it is implemented and applied, financial resources will be saved by CFE Distribution Company because online training will be used in all the country; the infrastructure for the eLearning training will be uploaded in computational servers installed in the National CFE Distribution Training Department, in Ciudad de Mexico, and can be used in workplaces of 16 Distribution Divisions and 150 Zones of CFE Distribution. In this way, workers will not need to travel to the National Training Department, saving enormous efforts, financial, and human resources.

Keywords: Moodle, eLearning, corporate training, electrical planning engineer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 465
11613 Development of Greenhouse Analysis Tools for Home Agriculture Project

Authors: M. Amir Abas, M. Dahlui

Abstract:

This paper presents the development of analysis tools for Home Agriculture project. The tools are required for monitoring the condition of greenhouse which involves two components: measurement hardware and data analysis engine. Measurement hardware is functioned to measure environment parameters such as temperature, humidity, air quality, dust and etc while analysis tool is used to analyse and interpret the integrated data against the condition of weather, quality of health, irradiance, quality of soil and etc. The current development of the tools is completed for off-line data recorded technique. The data is saved in MMC and transferred via ZigBee to Environment Data Manager (EDM) for data analysis. EDM converts the raw data and plot three combination graphs. It has been applied in monitoring three months data measurement for irradiance, temperature and humidity of the greenhouse..

Keywords: Monitoring, Environment, Greenhouse, Analysis tools

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
11612 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing ECG Based on ResNet and Bi-LSTM

Authors: Yang Zhang, Jian He

Abstract:

Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper presents sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for CHD prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.

Keywords: Bi-LSTM, CHD, coronary heart disease, ECG, electrocardiogram, ResNet, sliding window.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 337
11611 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer Aljohani

Abstract:

The COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred as corona virus which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as Omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. Numerous COVID-19 cases have produced a huge burden on hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease based on the symptoms and medical history of the patient. As machine learning is a widely accepted area and gives promising results for healthcare, this research presents an architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard University of California Irvine (UCI) dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques on the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and Principal Component Analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, Receiver Operating Characteristic (ROC) and Area under Curve (AUC). The results depict that Decision tree, Random Forest and neural networks outperform all other state-of-the-art ML techniques. This result can be used to effectively identify COVID-19 infection cases.

Keywords: Supervised machine learning, COVID-19 prediction, healthcare analytics, Random Forest, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 384
11610 A Descriptive Preference Analysis on Waterfront Parks Neighboring Lake Shihwa

Authors: J. H. Ahn, J. W. Moon, K. H. Kim, H. K. Kim

Abstract:

As the ecology of Lake Shihwa has been restored significantly nowadays, the urban development is in progress around Lake Shihwa areas. Each development project includes a plan on utilizing waterfront areas, but there exist a difference on waterfront design criteria between experts and users. Therefore, it is significant to analyze preferences in design elements of existing waterfront parks around Lake Shihwa (Ansan Waterfront Park, Shihwa Reed Wetland Park, and T-Light Park) based on users’ perspectives and to reflect the result on upcoming waterfront developments. This study derives design elements on waterfront parks from literature reviews. The survey questionnaires are created based on these classified elements and the surveys are conducted to experts and users with in-depth interviews. For all three parks, several park facilities appear to be not recognized by users. Therefore the circulation path should be introduced in guide maps and information activities and furthermore in disposition of park facilities.

Keywords: Design Elements, Lake Shihwa, Preference, Waterfront Park.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1436
11609 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection

Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra, Abdus Sobur

Abstract:

In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of artificial intelligence (AI), specifically deep learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images, representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our approach presents a hybrid model, amalgamating the strengths of two renowned convolutional neural networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.

Keywords: Artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1469
11608 Combining Bagging and Boosting

Authors: S. B. Kotsiantis, P. E. Pintelas

Abstract:

Bagging and boosting are among the most popular resampling ensemble methods that generate and combine a diversity of classifiers using the same learning algorithm for the base-classifiers. Boosting algorithms are considered stronger than bagging on noisefree data. However, there are strong empirical indications that bagging is much more robust than boosting in noisy settings. For this reason, in this work we built an ensemble using a voting methodology of bagging and boosting ensembles with 10 subclassifiers in each one. We performed a comparison with simple bagging and boosting ensembles with 25 sub-classifiers, as well as other well known combining methods, on standard benchmark datasets and the proposed technique was the most accurate.

Keywords: data mining, machine learning, pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2563
11607 Leveraging xAPI in a Corporate e-Learning Environment to Facilitate the Tracking, Modelling, and Predictive Analysis of Learner Behaviour

Authors: Libor Zachoval, Daire O Broin, Oisin Cawley

Abstract:

E-learning platforms, such as Blackboard have two major shortcomings: limited data capture as a result of the limitations of SCORM (Shareable Content Object Reference Model), and lack of incorporation of Artificial Intelligence (AI) and machine learning algorithms which could lead to better course adaptations. With the recent development of Experience Application Programming Interface (xAPI), a large amount of additional types of data can be captured and that opens a window of possibilities from which online education can benefit. In a corporate setting, where companies invest billions on the learning and development of their employees, some learner behaviours can be troublesome for they can hinder the knowledge development of a learner. Behaviours that hinder the knowledge development also raise ambiguity about learner’s knowledge mastery, specifically those related to gaming the system. Furthermore, a company receives little benefit from their investment if employees are passing courses without possessing the required knowledge and potential compliance risks may arise. Using xAPI and rules derived from a state-of-the-art review, we identified three learner behaviours, primarily related to guessing, in a corporate compliance course. The identified behaviours are: trying each option for a question, specifically for multiple-choice questions; selecting a single option for all the questions on the test; and continuously repeating tests upon failing as opposed to going over the learning material. These behaviours were detected on learners who repeated the test at least 4 times before passing the course. These findings suggest that gauging the mastery of a learner from multiple-choice questions test scores alone is a naive approach. Thus, next steps will consider the incorporation of additional data points, knowledge estimation models to model knowledge mastery of a learner more accurately, and analysis of the data for correlations between knowledge development and identified learner behaviours. Additional work could explore how learner behaviours could be utilised to make changes to a course. For example, course content may require modifications (certain sections of learning material may be shown to not be helpful to many learners to master the learning outcomes aimed at) or course design (such as the type and duration of feedback).

Keywords: Compliance Course, Corporate Training, Learner Behaviours, xAPI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 562
11606 Smart Cane Assisted Mobility for the Visually Impaired

Authors: Jayant Sakhardande, Pratik Pattanayak, Mita Bhowmick

Abstract:

An efficient reintegration of the disabled people in the family and society should be fulfilled; hence it is strongly needful to assist their diminished functions or to replace the totally lost functions. Assistive technology helps in neutralizing the impairment. Recent advancements in embedded systems have opened up a vast area of research and development for affordable and portable assistive devices for the visually impaired. Granted there are many assistive devices on the market that are able to detect obstacles, and numerous research and development currently in process to alleviate the cause, unfortunately the cost of devices, size of devices, intrusiveness and higher learning curve prevents the visually impaired from taking advantage of available devices. This project aims at the design and implementation of a detachable unit which is robust, low cost and user friendly, thus, trying to aggrandize the functionality of the existing white cane, to concede above-knee obstacle detection. The designed obstruction detector uses ultrasound sensors for detecting the obstructions before direct contact. It bestows haptic feedback to the user in accordance with the position of the obstacle.

Keywords: Visually impaired, Ultrasonic sensors, Obstruction detector, Mobility aid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6073
11605 Deep Reinforcement Learning for Optimal Decision-making in Supply Chains

Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol

Abstract:

We propose the use of Reinforcement Learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making make it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and a statistical analysis of the results. We study generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.

Keywords: Inventory Management, Reinforcement Learning, Supply Chain Optimization, Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 384
11604 On the Learning of Causal Relationships between Banks in Saudi Equities Market Using Ensemble Feature Selection Methods

Authors: Adel Aloraini

Abstract:

Financial forecasting using machine learning techniques has received great efforts in the last decide . In this ongoing work, we show how machine learning of graphical models will be able to infer a visualized causal interactions between different banks in the Saudi equities market. One important discovery from such learned causal graphs is how companies influence each other and to what extend. In this work, a set of graphical models named Gaussian graphical models with developed ensemble penalized feature selection methods that combine ; filtering method, wrapper method and a regularizer will be shown. A comparison between these different developed ensemble combinations will also be shown. The best ensemble method will be used to infer the causal relationships between banks in Saudi equities market.

Keywords: Causal interactions , banks, feature selection, regularizere,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
11603 Design Process and Real-Time Validation of an Innovative Autonomous Mid-Air Flight and Landing System

Authors: De Lellis E., Di Vito V., Garbarino L., Lai C., Corraro F.

Abstract:

This paper describes the design process and the realtime validation of an innovative autonomous mid-air flight and landing system developed by the Italian Aerospace Research Center in the framework of the Italian national funded project TECVOL (Technologies for the Autonomous Flight). In the paper it is provided an insight of the whole development process of the system under study. In particular, the project framework is illustrated at first, then the functional context and the adopted design and testing approach are described, and finally the on-ground validation test rig on purpose designed is addressed in details. Furthermore, the hardwarein- the-loop validation of the autonomous mid-air flight and landing system by means of the real-time test rig is described and discussed.

Keywords: Autonomous landing, autonomous mid-air flight, design and test approach, real-time hardware-in-the-loop validation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648