Search results for: panel data regression models
8119 Incremental Learning of Independent Topic Analysis
Authors: Takahiro Nishigaki, Katsumi Nitta, Takashi Onoda
Abstract:
In this paper, we present a method of applying Independent Topic Analysis (ITA) to increasing the number of document data. The number of document data has been increasing since the spread of the Internet. ITA was presented as one method to analyze the document data. ITA is a method for extracting the independent topics from the document data by using the Independent Component Analysis (ICA). ICA is a technique in the signal processing; however, it is difficult to apply the ITA to increasing number of document data. Because ITA must use the all document data so temporal and spatial cost is very high. Therefore, we present Incremental ITA which extracts the independent topics from increasing number of document data. Incremental ITA is a method of updating the independent topics when the document data is added after extracted the independent topics from a just previous the data. In addition, Incremental ITA updates the independent topics when the document data is added. And we show the result applied Incremental ITA to benchmark datasets.Keywords: Text mining, topic extraction, independent, incremental, independent component analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10598118 A New Composition Method of Admissible Support Vector Kernel Based on Reproducing Kernel
Authors: Wei Zhang, Xin Zhao, Yi-Fan Zhu, Xin-Jian Zhang
Abstract:
Kernel function, which allows the formulation of nonlinear variants of any algorithm that can be cast in terms of dot products, makes the Support Vector Machines (SVM) have been successfully applied in many fields, e.g. classification and regression. The importance of kernel has motivated many studies on its composition. It-s well-known that reproducing kernel (R.K) is a useful kernel function which possesses many properties, e.g. positive definiteness, reproducing property and composing complex R.K by simple operation. There are two popular ways to compute the R.K with explicit form. One is to construct and solve a specific differential equation with boundary value whose handicap is incapable of obtaining a unified form of R.K. The other is using a piecewise integral of the Green function associated with a differential operator L. The latter benefits the computation of a R.K with a unified explicit form and theoretical analysis, whereas there are relatively later studies and fewer practical computations. In this paper, a new algorithm for computing a R.K is presented. It can obtain the unified explicit form of R.K in general reproducing kernel Hilbert space. It avoids constructing and solving the complex differential equations manually and benefits an automatic, flexible and rigorous computation for more general RKHS. In order to validate that the R.K computed by the algorithm can be used in SVM well, some illustrative examples and a comparison between R.K and Gaussian kernel (RBF) in support vector regression are presented. The result shows that the performance of R.K is close or slightly superior to that of RBF.
Keywords: admissible support vector kernel, reproducing kernel, reproducing kernel Hilbert space, Green function, support vectorregression
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15448117 Seismic Performance of Slopes Subjected to Earthquake Mainshock Aftershock Sequences
Authors: Alisha Khanal, Gokhan Saygili
Abstract:
It is commonly observed that aftershocks follow the mainshock. Aftershocks continue over a period of time with a decreasing frequency and typically there is not sufficient time for repair and retrofit between a mainshock–aftershock sequence. Usually, aftershocks are smaller in magnitude; however, aftershock ground motion characteristics such as the intensity and duration can be greater than the mainshock due to the changes in the earthquake mechanism and location with respect to the site. The seismic performance of slopes is typically evaluated based on the sliding displacement predicted to occur along a critical sliding surface. Various empirical models are available that predict sliding displacement as a function of seismic loading parameters, ground motion parameters, and site parameters but these models do not include the aftershocks. The seismic risks associated with the post-mainshock slopes ('damaged slopes') subjected to aftershocks is significant. This paper extends the empirical sliding displacement models for flexible slopes subjected to earthquake mainshock-aftershock sequences (a multi hazard approach). A dataset was developed using 144 pairs of as-recorded mainshock-aftershock sequences using the Pacific Earthquake Engineering Research Center (PEER) database. The results reveal that the combination of mainshock and aftershock increases the seismic demand on slopes relative to the mainshock alone; thus, seismic risks are underestimated if aftershocks are neglected.
Keywords: Seismic slope stability, sliding displacement, mainshock, aftershock, landslide, earthquake.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9008116 The Proof of Analogous Results for Martingales and Partial Differential Equations Options Price Valuation Formulas Using Stochastic Differential Equation Models in Finance
Authors: H. D. Ibrahim, H. C. Chinwenyi, A. H. Usman
Abstract:
Valuing derivatives (options, futures, swaps, forwards, etc.) is one uneasy task in financial mathematics. The two ways this problem can be effectively resolved in finance is by the use of two methods (Martingales and Partial Differential Equations (PDEs)) to obtain their respective options price valuation formulas. This research paper examined two different stochastic financial models which are Constant Elasticity of Variance (CEV) model and Black-Karasinski term structure model. Assuming their respective option price valuation formulas, we proved the analogous of the Martingales and PDEs options price valuation formulas for the two different Stochastic Differential Equation (SDE) models. This was accomplished by using the applications of Girsanov theorem for defining an Equivalent Martingale Measure (EMM) and the Feynman-Kac theorem. The results obtained show the systematic proof for analogous of the two (Martingales and PDEs) options price valuation formulas beginning with the Martingales option price formula and arriving back at the Black-Scholes parabolic PDEs and vice versa.
Keywords: Option price valuation, Martingales, Partial Differential Equations, PDEs, Equivalent Martingale Measure, Girsanov Theorem, Feyman-Kac Theorem, European Put Option.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3888115 Creation of Economic and Social Value by Social Entrepreneurship for Sustainable Development
Authors: Ahaskar Pandey, Gaurav Mukherjee, Sushil Kumar
Abstract:
The ever growing sentiment of environmentalism across the globe has made many people think on the green lines. But most of such ideas halt short of implementation because of the short term economic viability issues with the concept of going green. In this paper we have tried to amalgamate the green concept with social entrepreneurship for solving a variety of issues faced by the society today. In addition the paper also tries to ensure that the short term economic viability does not act as a deterrent. The paper comes up three sustainable models of social entrepreneurship which tackle a wide assortment of issues such as nutrition problem, land problems, pollution problems and employment problems. The models described fall under the following heads: - Spirulina cultivation: The model addresses nutrition, land and employment issues. It deals with cultivation of a blue green alga called Spirulina which can be used as a very nutritious food. Also, the implementation of this model would bring forth employment to the poor people of the area. - Biocomposites: The model comes up with various avenues in which biocomposites can be used in an economically sustainable manner. This model deals with the environmental concerns and addresses the depletion of natural resources. - Packaging material from empty fruit bunches (EFB) of oil palm: This one deals with air and land pollution. It is intended to be a substitute for packaging materials made from Styrofoam and plastics which are non-biodegradable. It takes care of the biodegradability and land pollution issues. It also reduces air pollution as the empty fruit bunches are not incinerated. All the three models are sustainable and do not deplete the natural resources any further. This paper explains each of the models in detail and deals with the operational/manufacturing procedures and cost analysis while also throwing light on the benefits derived and sustainability aspects.
Keywords: Biodegradable, Pollution, Social entrepreneurship, Sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18238114 Fast and Efficient On-Chip Interconnection Modeling for High Speed VLSI Systems
Authors: A.R. Aswatha, T. Basavaraju, S. Sandeep Kumar
Abstract:
Timing driven physical design, synthesis, and optimization tools need efficient closed-form delay models for estimating the delay associated with each net in an integrated circuit (IC) design. The total number of nets in a modern IC design has increased dramatically and exceeded millions. Therefore efficient modeling of interconnection is needed for high speed IC-s. This paper presents closed–form expressions for RC and RLC interconnection trees in current mode signaling, which can be implemented in VLSI design tool. These analytical model expressions can be used for accurate calculation of delay after the design clock tree has been laid out and the design is fully routed. Evaluation of these analytical models is several orders of magnitude faster than simulation using SPICE.Keywords: IC design, RC/RLC Interconnection, VLSI Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15078113 A Framework for Data Mining Based Multi-Agent: An Application to Spatial Data
Authors: H. Baazaoui Zghal, S. Faiz, H. Ben Ghezala
Abstract:
Data mining is an extraordinarily demanding field referring to extraction of implicit knowledge and relationships, which are not explicitly stored in databases. A wide variety of methods of data mining have been introduced (classification, characterization, generalization...). Each one of these methods includes more than algorithm. A system of data mining implies different user categories,, which mean that the user-s behavior must be a component of the system. The problem at this level is to know which algorithm of which method to employ for an exploratory end, which one for a decisional end, and how can they collaborate and communicate. Agent paradigm presents a new way of conception and realizing of data mining system. The purpose is to combine different algorithms of data mining to prepare elements for decision-makers, benefiting from the possibilities offered by the multi-agent systems. In this paper the agent framework for data mining is introduced, and its overall architecture and functionality are presented. The validation is made on spatial data. Principal results will be presented.
Keywords: Databases, data mining, multi-agent, spatial datamart.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20458112 Comparison of Two-Phase Critical Flow Models for Estimation of Leak Flow Rate through Cracks
Authors: Tadashi Watanabe, Jinya Katsuyama, Akihiro Mano
Abstract:
The estimation of leak flow rates through narrow cracks in structures is of importance for nuclear reactor safety, since the leak flow could be detected before occurrence of loss-of-coolant accidents. The two-phase critical leak flow rates are calculated using the system analysis code, and two representative non-homogeneous critical flow models, Henry-Fauske model and Ransom-Trapp model, are compared. The pressure decrease and vapor generation in the crack, and the leak flow rates are found to be larger for the Henry-Fauske model. It is shown that the leak flow rates are not affected by the structural temperature, but affected largely by the roughness of crack surface.
Keywords: Crack, critical flow, leak, roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8438111 Breast Cancer Survivability Prediction via Classifier Ensemble
Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia
Abstract:
This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.Keywords: Classifier ensemble, breast cancer survivability, data mining, SEER.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16728110 Developing a Statistical Model for Electromagnetic Environment for Mobile Wireless Networks
Authors: C. Temaneh Nyah
Abstract:
The analysis of electromagnetic environment using deterministic mathematical models is characterized by the impossibility of analyzing a large number of interacting network stations with a priori unknown parameters, and this is characteristic, for example, of mobile wireless communication networks. One of the tasks of the tools used in designing, planning and optimization of mobile wireless network is to carry out simulation of electromagnetic environment based on mathematical modelling methods, including computer experiment, and to estimate its effect on radio communication devices. This paper proposes the development of a statistical model of electromagnetic environment of a mobile wireless communication network by describing the parameters and factors affecting it including the propagation channel and their statistical models.Keywords: Electromagnetic Environment, Statistical model, Wireless communication network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19188109 Mass Transfer Modeling in a Packed Bed of Palm Kernels under Supercritical Conditions
Authors: I. Norhuda, A. K. Mohd Omar
Abstract:
Studies on gas solid mass transfer using Supercritical fluid CO2 (SC-CO2) in a packed bed of palm kernels was investigated at operating conditions of temperature 50 °C and 70 °C and pressures ranges from 27.6 MPa, 34.5 MPa, 41.4 MPa and 48.3 MPa. The development of mass transfer models requires knowledge of three properties: the diffusion coefficient of the solute, the viscosity and density of the Supercritical fluids (SCF). Matematical model with respect to the dimensionless number of Sherwood (Sh), Schmidt (Sc) and Reynolds (Re) was developed. It was found that the model developed was found to be in good agreement with the experimental data within the system studied.
Keywords: Mass Transfer, Palm Kernel, Supercritical fluid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18178108 Interest Rate Fluctuation Effect on Commercial Bank’s Fixed Fund Deposit in Nigeria
Authors: Okolo Chimaobi Valentine
Abstract:
Commercial banks in Nigeria adopted many strategies to attract fresh deposits including the use of high deposit rate. However, pricing of banking services moved in favor of the banks at the expense of customers, resulting in their seeking other investment alternatives rather than saving their money in the bank. Both deposit and lending rates were greatly influenced by the Central Bank of Nigeria (CBN) decision on interest rate. Therefore, commercial bank effort to attract deposits via manipulation of her rates was greatly limited, otherwise the banks will be giving out more than it earned. The study aimed at examining the relationship between interest rate and fixed fund deposit of commercial banks, how policy-controlled interest rate affected commercial bank’s fixed fund deposit The researcher employed ordinary least square technique, using, multiple linear regression, unrestricted vector auto-regression, correlation matrix test, granger causality and impulse response graph in the analysis. Commercial bank’s interest rates affected commercial bank’s fixed fund deposit significantly while policy-controlled interest rate did not significantly transmit through the commercial bank’s interest rates to affect fixed fund deposit. While commercial banks seek creative ways to expand their fixed fund deposit, policy authorities in Nigeria should better coordinate interest rate fluctuation and induce competition in the entire financial sector.Keywords: Commercial bank, fixed fund deposit, fluctuation effects, interest rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36028107 Latent Topic Based Medical Data Classification
Authors: Jian-hua Yeh, Shi-yi Kuo
Abstract:
This paper discusses the classification process for medical data. In this paper, we use the data from ACM KDDCup 2008 to demonstrate our classification process based on latent topic discovery. In this data set, the target set and outliers are quite different in their nature: target set is only 0.6% size in total, while the outliers consist of 99.4% of the data set. We use this data set as an example to show how we dealt with this extremely biased data set with latent topic discovery and noise reduction techniques. Our experiment faces two major challenge: (1) extremely distributed outliers, and (2) positive samples are far smaller than negative ones. We try to propose a suitable process flow to deal with these issues and get a best AUC result of 0.98.
Keywords: classification, latent topics, outlier adjustment, feature scaling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16428106 Data Collection in Hospital Emergencies: A Questionnaire Survey
Authors: Nouha Mhimdi, Wahiba Ben Abdessalem Karaa, Henda Ben Ghezala
Abstract:
Many methods are used to collect data like questionnaires, surveys, focus group interviews. Or the collection of poor-quality data resulting, for example, from poorly designed questionnaires, the absence of good translators or interpreters, and the incorrect recording of data allow conclusions to be drawn that are not supported by the data or to focus only on the average effect of the program or policy. There are several solutions to avoid or minimize the most frequent errors, including obtaining expert advice on the design or adaptation of data collection instruments; or use technologies allowing better "anonymity" in the responses. In this context, and to overcome the aforementioned problems, we suggest in this paper an approach to achieve the collection of relevant data, by carrying out a large-scale questionnaire-based survey. We have been able to collect good quality, consistent and practical data on hospital emergencies to improve emergency services in hospitals, especially in the case of epidemics or pandemics.
Keywords: Data collection, survey, database, data analysis, hospital emergencies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6678105 Space Telemetry Anomaly Detection Based on Statistical PCA Algorithm
Authors: B. Nassar, W. Hussein, M. Mokhtar
Abstract:
The critical concern of satellite operations is to ensure the health and safety of satellites. The worst case in this perspective is probably the loss of a mission, but the more common interruption of satellite functionality can result in compromised mission objectives. All the data acquiring from the spacecraft are known as Telemetry (TM), which contains the wealth information related to the health of all its subsystems. Each single item of information is contained in a telemetry parameter, which represents a time-variant property (i.e. a status or a measurement) to be checked. As a consequence, there is a continuous improvement of TM monitoring systems to reduce the time required to respond to changes in a satellite's state of health. A fast conception of the current state of the satellite is thus very important to respond to occurring failures. Statistical multivariate latent techniques are one of the vital learning tools that are used to tackle the problem above coherently. Information extraction from such rich data sources using advanced statistical methodologies is a challenging task due to the massive volume of data. To solve this problem, in this paper, we present a proposed unsupervised learning algorithm based on Principle Component Analysis (PCA) technique. The algorithm is particularly applied on an actual remote sensing spacecraft. Data from the Attitude Determination and Control System (ADCS) was acquired under two operation conditions: normal and faulty states. The models were built and tested under these conditions, and the results show that the algorithm could successfully differentiate between these operations conditions. Furthermore, the algorithm provides competent information in prediction as well as adding more insight and physical interpretation to the ADCS operation.Keywords: Space telemetry monitoring, multivariate analysis, PCA algorithm, space operations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20628104 SIPINA Induction Graph Method for Seismic Risk Prediction
Authors: B. Selma
Abstract:
The aim of this study is to test the feasibility of SIPINA method to predict the harmfulness parameters controlling the seismic response. The approach developed takes into consideration both the focal depth and the peak ground acceleration. The parameter to determine is displacement. The data used for the learning of this method and analysis nonlinear seismic are described and applied to a class of models damaged to some typical structures of the existing urban infrastructure of Jassy, Romania. The results obtained indicate an influence of the focal depth and the peak ground acceleration on the displacement.
Keywords: SIPINA method, seism, focal depth, peak ground acceleration, displacement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12118103 Application of Building Information Modeling in Energy Management of Individual Departments Occupying University Facilities
Authors: Kung-Jen Tu, Danny Vernatha
Abstract:
To assist individual departments within universities in their energy management tasks, this study explores the application of Building Information Modeling in establishing the ‘BIM based Energy Management Support System’ (BIM-EMSS). The BIM-EMSS consists of six components: (1) sensors installed for each occupant and each equipment, (2) electricity sub-meters (constantly logging lighting, HVAC, and socket electricity consumptions of each room), (3) BIM models of all rooms within individual departments’ facilities, (4) data warehouse (for storing occupancy status and logged electricity consumption data), (5) building energy management system that provides energy managers with various energy management functions, and (6) energy simulation tool (such as eQuest) that generates real time 'standard energy consumptions' data against which 'actual energy consumptions' data are compared and energy efficiency evaluated. Through the building energy management system, the energy manager is able to (a) have 3D visualization (BIM model) of each room, in which the occupancy and equipment status detected by the sensors and the electricity consumptions data logged are displayed constantly; (b) perform real time energy consumption analysis to compare the actual and standard energy consumption profiles of a space; (c) obtain energy consumption anomaly detection warnings on certain rooms so that energy management corrective actions can be further taken (data mining technique is employed to analyze the relation between space occupancy pattern with current space equipment setting to indicate an anomaly, such as when appliances turn on without occupancy); and (d) perform historical energy consumption analysis to review monthly and annually energy consumption profiles and compare them against historical energy profiles. The BIM-EMSS was further implemented in a research lab in the Department of Architecture of NTUST in Taiwan and implementation results presented to illustrate how it can be used to assist individual departments within universities in their energy management tasks.Keywords: Sensor, electricity sub-meters, database, energy anomaly detection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22858102 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters
Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar
Abstract:
Several meteorological parameters were used for the prediction of monthly average daily global solar radiation on horizontal using recurrent neural networks (RNNs). Climatological data and measures, mainly air temperature, humidity, sunshine duration, and wind speed between 1995 and 2007 were used to design and validate a feed forward and recurrent neural network based prediction systems. In this paper we present our reference system based on a feed-forward multilayer perceptron (MLP) as well as the proposed approach based on an RNN model. The obtained results were promising and comparable to those obtained by other existing empirical and neural models. The experimental results showed the advantage of RNNs over simple MLPs when we deal with time series solar radiation predictions based on daily climatological data.
Keywords: Recurrent Neural Networks, Global Solar Radiation, Multi-layer perceptron, gradient, Root Mean Square Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25618101 Data Transformation Services (DTS): Creating Data Mart by Consolidating Multi-Source Enterprise Operational Data
Authors: J. D. D. Daniel, K. N. Goh, S. M. Yusop
Abstract:
Trends in business intelligence, e-commerce and remote access make it necessary and practical to store data in different ways on multiple systems with different operating systems. As business evolve and grow, they require efficient computerized solution to perform data update and to access data from diverse enterprise business applications. The objective of this paper is to demonstrate the capability of DTS [1] as a database solution for automatic data transfer and update in solving business problem. This DTS package is developed for the sales of variety of plants and eventually expanded into commercial supply and landscaping business. Dimension data modeling is used in DTS package to extract, transform and load data from heterogeneous database systems such as MySQL, Microsoft Access and Oracle that consolidates into a Data Mart residing in SQL Server. Hence, the data transfer from various databases is scheduled to run automatically every quarter of the year to review the efficient sales analysis. Therefore, DTS is absolutely an attractive solution for automatic data transfer and update which meeting today-s business needs.Keywords: Data Transformation Services (DTS), ObjectLinking and Embedding Database (OLEDB), Data Mart, OnlineAnalytical Processing (OLAP), Online Transactional Processing(OLTP).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20398100 Economic Factors Affecting Rice Export of Thailand
Authors: Somphoom Sawaengkun
Abstract:
The purpose of this study was primarily assessing how important economic factors namely: The Thai export price of white rice, the exchange rate, and the world rice consumption affect the overall Thai white rice export, using historical data during the period 1989-2013 from the Thai Rice Exporters Association, and Food and Agricultural Organization of the United Nations. The co-integration method, regression analysis, and error correction model were applied to investigate the econometric model. The findings indicated that in the long-run, the world rice consumption, the exchange rate, and the Thai export price of white rice were the important factors affecting the export quantity of Thai white rice respectively, as indicated by their significant coefficients. Meanwhile, the rice export price was an important factor affecting the export quantity of Thai white rice in the short-run. This information is useful in the business, export opportunities, price competitiveness, and policymaker in Thailand.
Keywords: Economic Factors, Rice Export, White Rice.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34968099 Extraction of Data from Web Pages: A Vision Based Approach
Authors: P. S. Hiremath, Siddu P. Algur
Abstract:
With the explosive growth of information sources available on the World Wide Web, it has become increasingly difficult to identify the relevant pieces of information, since web pages are often cluttered with irrelevant content like advertisements, navigation-panels, copyright notices etc., surrounding the main content of the web page. Hence, tools for the mining of data regions, data records and data items need to be developed in order to provide value-added services. Currently available automatic techniques to mine data regions from web pages are still unsatisfactory because of their poor performance and tag-dependence. In this paper a novel method to extract data items from the web pages automatically is proposed. It comprises of two steps: (1) Identification and Extraction of the data regions based on visual clues information. (2) Identification of data records and extraction of data items from a data region. For step1, a novel and more effective method is proposed based on visual clues, which finds the data regions formed by all types of tags using visual clues. For step2 a more effective method namely, Extraction of Data Items from web Pages (EDIP), is adopted to mine data items. The EDIP technique is a list-based approach in which the list is a linear data structure. The proposed technique is able to mine the non-contiguous data records and can correctly identify data regions, irrespective of the type of tag in which it is bound. Our experimental results show that the proposed technique performs better than the existing techniques.
Keywords: Web data records, web data regions, web mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19018098 A Materialized Approach to the Integration of XML Documents: the OSIX System
Authors: H. Ahmad, S. Kermanshahani, A. Simonet, M. Simonet
Abstract:
The data exchanged on the Web are of different nature from those treated by the classical database management systems; these data are called semi-structured data since they do not have a regular and static structure like data found in a relational database; their schema is dynamic and may contain missing data or types. Therefore, the needs for developing further techniques and algorithms to exploit and integrate such data, and extract relevant information for the user have been raised. In this paper we present the system OSIX (Osiris based System for Integration of XML Sources). This system has a Data Warehouse model designed for the integration of semi-structured data and more precisely for the integration of XML documents. The architecture of OSIX relies on the Osiris system, a DL-based model designed for the representation and management of databases and knowledge bases. Osiris is a viewbased data model whose indexing system supports semantic query optimization. We show that the problem of query processing on a XML source is optimized by the indexing approach proposed by Osiris.Keywords: Data integration, semi-structured data, views, XML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15908097 Correlation of Viscosity in Nanofluids using Genetic Algorithm-neural Network (GA-NN)
Authors: Hajir Karimi, Fakheri Yousefi, Mahmood Reza Rahimi
Abstract:
An accurate and proficient artificial neural network (ANN) based genetic algorithm (GA) is developed for predicting of nanofluids viscosity. A genetic algorithm (GA) is used to optimize the neural network parameters for minimizing the error between the predictive viscosity and the experimental one. The experimental viscosity in two nanofluids Al2O3-H2O and CuO-H2O from 278.15 to 343.15 K and volume fraction up to 15% were used from literature. The result of this study reveals that GA-NN model is outperform to the conventional neural nets in predicting the viscosity of nanofluids with mean absolute relative error of 1.22% and 1.77% for Al2O3-H2O and CuO-H2O, respectively. Furthermore, the results of this work have also been compared with others models. The findings of this work demonstrate that the GA-NN model is an effective method for prediction viscosity of nanofluids and have better accuracy and simplicity compared with the others models.Keywords: genetic algorithm, nanofluids, neural network, viscosity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20858096 Evaluation of Neighbourhood Characteristics and Active Transport Mode Choice
Authors: Tayebeh Saghapour, Sara Moridpour, Russell George Thompson
Abstract:
One of the common aims of transport policy makers is to switch people’s travel to active transport. For this purpose, a variety of transport goals and investments should be programmed to increase the propensity towards active transport mode choice. This paper aims to investigate whether built environment features in neighbourhoods could enhance the odds of active transportation. The present study introduces an index measuring public transport accessibility (PTAI), and a walkability index along with socioeconomic variables to investigate mode choice behaviour. Using travel behaviour data, an ordered logit regression model is applied to examine the impacts of explanatory variables on walking trips. The findings indicated that high rates of active travel are consistently associated with higher levels of walking and public transport accessibility.
Keywords: Active transport, public transport accessibility, walkability, ordered logit model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10618095 Turbine Compressor Vibration Analysis and Rotor Movement Evaluation by Shaft Center Line Method (The Case History Related to Main Turbine Compressor of an Olefin Plant in Iran Oil Industries)
Authors: Omid A. Zargar
Abstract:
Vibration monitoring methods of most critical equipment like main turbine and compressors always plays important role in preventive maintenance and management consideration in big industrial plants. There are a number of traditional methods like monitoring the overall vibration data from Bently Nevada panel and the time wave form (TWF) or fast Fourier transform (FFT) monitoring. Besides, Shaft centerline monitoring method developed too much in recent years. There are a number of arguments both in favor of and against this method between people who work in preventive maintenance and condition monitoring systems (vibration analysts). In this paper basic principal of Turbine compressor vibration analysis and rotor movement evaluation by shaft centerline method discussed in details through a case history. This case history is related to main turbine compressor of an olefin plant in Iran oil industry. In addition, some common mistakes that may occur by vibration analyst during the process discussed in details. It is worthy to know that, these mistakes may one of the reasons that sometimes this method seems to be not effective. Furthermore, recent patent and innovation in shaft position and movement evaluation are discussed in this paper.
Keywords: Shaft centerline position, attitude angle, journal bearing, sleeve bearing, tilting pad, steam turbine, main compressor, multistage compressor, condition monitoring, non-contact probe
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 71278094 Addictive Use Due to Personality: Focused on Big Five Personality Traits and Game Addiction
Authors: Eui Jun Jeong, Hye Rim Lee
Abstract:
This study examined whether big five personality traits affect game addiction with control of psychological, social, and demographic factors. Specifically, using data from a survey of 789 game users in Korea, we conducted a regression analysis to see the associations of psychological (loneliness/depression), social (activities with family/friends), self-efficacy (game/general), gaming (daily gaming time/perception), demographic (age/gender), and personality traits (extraversion, neuroticism conscientiousness, agreeableness, & openness) with the degree of game addiction. Results showed that neuroticism increase game addiction with no effect of extraversion on the addiction. General self-efficacy negatively affected game addiction, whereas game self-efficacy increased the degree of game addiction. Loneliness enhanced game addiction while depression showed a negative effect on the addiction. Results and implications are discussed.Keywords: Game addiction, big five personality, social activities, self-efficacy, loneliness, depression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49658093 Mathematical Programming Models for Portfolio Optimization Problem: A Review
Authors: M. Mokhtar, A. Shuib, D. Mohamad
Abstract:
Portfolio optimization problem has received a lot of attention from both researchers and practitioners over the last six decades. This paper provides an overview of the current state of research in portfolio optimization with the support of mathematical programming techniques. On top of that, this paper also surveys the solution algorithms for solving portfolio optimization models classifying them according to their nature in heuristic and exact methods. To serve these purposes, 40 related articles appearing in the international journal from 2003 to 2013 have been gathered and analyzed. Based on the literature review, it has been observed that stochastic programming and goal programming constitute the highest number of mathematical programming techniques employed to tackle the portfolio optimization problem. It is hoped that the paper can meet the needs of researchers and practitioners for easy references of portfolio optimization.
Keywords: Portfolio optimization, Mathematical programming, Multi-objective programming, Solution approaches.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 65738092 Upsetting of Tri-Metallic St-Cu-Al and St-Cu60Zn-Al Cylindrical Billets
Authors: Isik Cetintav, Cenk Misirli, Yilmaz Can
Abstract:
This work investigates upsetting of the tri-metallic cylindrical billets both experimentally and analytically with a reduction ratio 30%. Steel, brass, and copper are used for the outer and outmost rings and aluminum for the inner core. Two different models have been designed to show material flow and the cavity took place over the two interfaces during forming after this reduction ratio. Each model has an outmost ring material as steel. Model 1 has an outer ring between the outmost ring and the solid core material as copper and Model 2 has a material as brass. Solid core is aluminum for each model. Billets were upset in press machine by using parallel flat dies. Upsetting load was recorded and compared for models and single billets. To extend the tests and compare with experimental procedure to a wider range of inner core and outer ring geometries, finite element model was performed. ABAQUS software was used for the simulations. The aim is to show how contact between outmost ring, outer ring and the inner core are carried on throughout the upsetting process. Results have shown that, with changing in height, between outmost ring, outer ring and inner core, the Model 1 and Model 2 had very good interaction, and the contact surfaces of models had various interface behaviour. It is also observed that tri-metallic materials have lower weight but better mechanical properties than single materials. This can give an idea for using and producing these new materials for different purposes.
Keywords: Tri-metallic, upsetting, copper, brass, steel, aluminum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11398091 Using Ferry Access Points to Improve the Performance of Message Ferrying in Delay-Tolerant Networks
Authors: Farzana Yasmeen, Md. Nurul Huda, Md. Enamul Haque, Michihiro Aoki, Shigeki Yamada
Abstract:
Delay-Tolerant Networks (DTNs) are sparse, wireless networks where disconnections are common due to host mobility and low node density. The Message Ferrying (MF) scheme is a mobilityassisted paradigm to improve connectivity in DTN-like networks. A ferry or message ferry is a special node in the network which has a per-determined route in the deployed area and relays messages between mobile hosts (MHs) which are intermittently connected. Increased contact opportunities among mobile hosts and the ferry improve the performance of the network, both in terms of message delivery ratio and average end-end delay. However, due to the inherent mobility of mobile hosts and pre-determined periodicity of the message ferry, mobile hosts may often -miss- contact opportunities with a ferry. In this paper, we propose the combination of stationary ferry access points (FAPs) with MF routing to increase contact opportunities between mobile hosts and the MF and consequently improve the performance of the DTN. We also propose several placement models for deploying FAPs on MF routes. We evaluate the performance of the FAP placement models through comprehensive simulation. Our findings show that FAPs do improve the performance of MF-assisted DTNs and symmetric placement of FAPs outperforms other placement strategies.Keywords: Service infrastructure, delay-tolerant network, messageferry routing, placement models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19798090 Definition of a Computing Independent Model and Rules for Transformation Focused on the Model-View-Controller Architecture
Authors: Vanessa Matias Leite, Jandira Guenka Palma, Flávio Henrique de Oliveira
Abstract:
This paper presents a model-oriented development approach to software development in the Model-View-Controller (MVC) architectural standard. This approach aims to expose a process of extractions of information from the models, in which through rules and syntax defined in this work, assists in the design of the initial model and its future conversions. The proposed paper presents a syntax based on the natural language, according to the rules agreed in the classic grammar of the Portuguese language, added to the rules of conversions generating models that follow the norms of the Object Management Group (OMG) and the Meta-Object Facility MOF.
Keywords: Model driven architecture, model-view-controller, bnf syntax, model, transformation, UML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 920