Search results for: Temperature gradient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2803

Search results for: Temperature gradient

1423 Low Resolution Single Neural Network Based Face Recognition

Authors: Jahan Zeb, Muhammad Younus Javed, Usman Qayyum

Abstract:

This research paper deals with the implementation of face recognition using neural network (recognition classifier) on low-resolution images. The proposed system contains two parts, preprocessing and face classification. The preprocessing part converts original images into blurry image using average filter and equalizes the histogram of those image (lighting normalization). The bi-cubic interpolation function is applied onto equalized image to get resized image. The resized image is actually low-resolution image providing faster processing for training and testing. The preprocessed image becomes the input to neural network classifier, which uses back-propagation algorithm to recognize the familiar faces. The crux of proposed algorithm is its beauty to use single neural network as classifier, which produces straightforward approach towards face recognition. The single neural network consists of three layers with Log sigmoid, Hyperbolic tangent sigmoid and Linear transfer function respectively. The training function, which is incorporated in our work, is Gradient descent with momentum (adaptive learning rate) back propagation. The proposed algorithm was trained on ORL (Olivetti Research Laboratory) database with 5 training images. The empirical results provide the accuracy of 94.50%, 93.00% and 90.25% for 20, 30 and 40 subjects respectively, with time delay of 0.0934 sec per image.

Keywords: Average filtering, Bicubic Interpolation, Neurons, vectorization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
1422 Numerical Solution of Transient Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates

Authors: Djalal Hamed

Abstract:

The aim of this paper is to perform, by mean of the finite volume method, a numerical solution of the transient natural convection in a narrow rectangular channel between two vertical parallel Material Testing Reactor (MTR)-type fuel plates, imposed under a heat flux with a cosine shape to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not reach a specific safety limits (90 °C). For this purpose, a computer program is developed to determine the principal parameters related to the nuclear core safety, such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor core power. Throughout the obtained results, we noticed that the core power should not reach 400 kW, to ensure a safe passive residual heat removing from the nuclear core by the upward natural convection cooling mode.

Keywords: Buoyancy force, friction force, friction factor, finite volume method, transient natural convection, thermal hydraulic analysis, vertical heated rectangular channel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 755
1421 Haemocompatibility of Surface Modified AISI 316L Austenitic Stainless Steel Tested in Artificial Plasma

Authors: W. Walke, J. Przondziono, K. Nowińska

Abstract:

The study comprises evaluation of suitability of passive layer created on the surface of AISI 316L stainless steel for products that are intended to have contact with blood. For that purpose, prior to and after chemical passivation, samples were subject to 7 day exposure in artificial plasma at the temperature of T=37°C. Next, tests of metallic ions infiltration from the surface to the solution were performed. The tests were performed with application of spectrometer JY 2000, by Yobin – Yvon, employing Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). In order to characterize physical and chemical features of electrochemical processes taking place during exposure of samples to artificial plasma, tests with application of electrochemical impedance spectroscopy were suggested. The tests were performed with application of measuring unit equipped with potentiostat PGSTAT 302n with an attachment for impedance tests FRA2. Measurements were made in the environment simulating human blood at the temperature of T=37°C. Performed tests proved that application of chemical passivation process for AISI 316L stainless steel used for production of goods intended to have contact with blood is well-grounded and useful in order to improve safety of their usage.

Keywords: AISI 316L stainless steel, chemical passivation, artificial plasma, ions infiltration, EIS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097
1420 Utilization of Agro-Industrial Byproducts for Bacteriocin Production Using Newly Isolated Enterococcus faecium BS13

Authors: Vandana Bali, Manab B. Bera, Parmjit S. Panesar

Abstract:

Microbial production of antimicrobials as biopreservatives is the major area of focus nowadays due to increased interest of consumers towards natural and safe preservation of ready to eat food products. The agro-industrial byproduct based medium and optimized process conditions can contribute in economical production of bacteriocins. Keeping this in view, the present investigation was carried out on agro-industrial byproducts utilization for the production of bacteriocin using Enterococcus faecium BS13 isolated from local fermented food. Different agro-industrial byproduct based carbon sources (whey, potato starch liquor, kinnow peel, deoiledrice bran and molasses), nitrogen sources (soya okra, pea pod and corn steep liquor), metal ions and surfactants were tested for optimal bacteriocin production. The effect of various process parameters such as pH, temperature, inoculum level, agitation and time were also tested on bacteriocin production. The optimized medium containing whey, supplemented with 4%corn steep liquor and polysorbate-80 displayed maximum bacteriocin activity with 2% inoculum, at pH 6.5, temperature 40oC under shaking conditions (100 rpm).

Keywords: Bacteriocin, biopreservation, corn steep liquor, Enterococcus faecium, waste utilization, whey.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2761
1419 Structure and Magnetic Properties of Nanocomposite Fe2O3/TiO2 Catalysts Fabricated by Heterogeneous Precipitation

Authors: Jana P. Vejpravova, Daniel Niznansky, Vaclav Vales, Barbara Bittova, Vaclav Tyrpekl, Stanislav Danis, Vaclav Holy, Stephen Doyle

Abstract:

The aim of our work is to study phase composition, particle size and magnetic response of Fe2O3/TiO2 nanocomposites with respect to the final annealing temperature. Those nanomaterials are considered as smart catalysts, separable from a liquid/gaseous phase by applied magnetic field. The starting product was obtained by an ecologically acceptable route, based on heterogeneous precipitation of the TiO2 on modified g-Fe2O3 nanocrystals dispersed in water. The precursor was subsequently annealed on air at temperatures ranging from 200 oC to 900 oC. The samples were investigated by synchrotron X-ray powder diffraction (S-PXRD), magnetic measurements and Mössbauer spectroscopy. As evidenced by S-PXRD and Mössbauer spectroscopy, increasing the annealing temperature causes evolution of the phase composition from anatase/maghemite to rutile/hematite, finally above 700 oC the pseudobrookite (Fe2TiO5) also forms. The apparent particle size of the various Fe2O3/TiO2 phases has been determined from the highquality S-PXRD data by using two different approaches: the Rietveld refinement and the Debye method. Magnetic response of the samples is discussed in considering the phase composition and the particle size.

Keywords: X-ray diffraction, profile analysis, Mössbauer spectroscopy, magnetic properties, TiO2, Fe2O3, Fe2TiO5

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2123
1418 Holistic Face Recognition using Multivariate Approximation, Genetic Algorithms and AdaBoost Classifier: Preliminary Results

Authors: C. Villegas-Quezada, J. Climent

Abstract:

Several works regarding facial recognition have dealt with methods which identify isolated characteristics of the face or with templates which encompass several regions of it. In this paper a new technique which approaches the problem holistically dispensing with the need to identify geometrical characteristics or regions of the face is introduced. The characterization of a face is achieved by randomly sampling selected attributes of the pixels of its image. From this information we construct a set of data, which correspond to the values of low frequencies, gradient, entropy and another several characteristics of pixel of the image. Generating a set of “p" variables. The multivariate data set with different polynomials minimizing the data fitness error in the minimax sense (L∞ - Norm) is approximated. With the use of a Genetic Algorithm (GA) it is able to circumvent the problem of dimensionality inherent to higher degree polynomial approximations. The GA yields the degree and values of a set of coefficients of the polynomials approximating of the image of a face. By finding a family of characteristic polynomials from several variables (pixel characteristics) for each face (say Fi ) in the data base through a resampling process the system in use, is trained. A face (say F ) is recognized by finding its characteristic polynomials and using an AdaBoost Classifier from F -s polynomials to each of the Fi -s polynomials. The winner is the polynomial family closer to F -s corresponding to target face in data base.

Keywords: AdaBoost Classifier, Holistic Face Recognition, Minimax Multivariate Approximation, Genetic Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498
1417 Prone Positioning and Clinical Outcomes of Mechanically Ventilated Patients with Severe Acute Respiratory Distress Syndrome

Authors: Maha Salah Abdullah Ismail, Mahmoud M. Alsagheir, Mohammed Salah Abd Allah

Abstract:

Acute respiratory distress syndrome (ARDS) is characterized by permeability pulmonary edema and refractory hypoxemia. Lung-protective ventilation is still the key of better outcome in ARDS. Prone position reduces the trans-pulmonary pressure gradient, recruiting collapsed regions of the lung without increasing airway pressure or hyperinflation. Prone ventilation showed improved oxygenation and improved outcomes in severe hypoxemic patients with ARDS. This study evaluates the effect of prone positioning on mechanically ventilated patients with ARDS. A quasi-experimental design was carried out at Critical Care Units, on 60 patients. Two tools were utilized to collect data; Socio demographic, medical and clinical outcomes data sheet. Results of the present study indicated that prone position improves oxygenation in patients with severe respiratory distress syndrome. The study recommended that use prone position in patients with severe ARDS, as early as possible and for long sessions. Also, replication of this study on larger probability sample at the different geographical location is highly recommended.

Keywords: Acute respiratory distress syndrome, Critical care, Mechanical ventilation and Prone position.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2181
1416 On the Catalytic Combustion Behaviors of CH4 in a MCFC Power Generation System

Authors: Man Young Kim

Abstract:

Catalytic combustion is generally accepted as an environmentally preferred alternative for the generation of heat and power from fossil fuels mainly due to its advantages related to the stable combustion under very lean conditions with low emissions of NOx, CO, and UHC at temperatures lower than those occurred in conventional flame combustion. Despite these advantages, the commercial application of catalytic combustion has been delayed because of complicated reaction processes and the difficulty in developing appropriate catalysts with the required stability and durability. To develop the catalytic combustors, detailed studies on the combustion characteristics of catalytic combustion should be conducted. To the end, in current research, quantitative studies on the combustion characteristics of the catalytic combustors, with a Pd-based catalyst for MCFC power generation systems, relying on numerical simulations have been conducted. In addition, data from experimental studies of variations in outlet temperatures and fuel conversion, taken after operating conditions have been used to validate the present numerical approach. After introducing the governing equations for mass, momentum, and energy equations as well as a description of catalytic combustion kinetics, the effects of the excess air ratio, space velocity, and inlet gas temperature on the catalytic combustion characteristics are extensively investigated. Quantitative comparisons are also conducted with previous experimental data. Finally, some concluding remarks are presented.

Keywords: Catalytic combustion, Methane, BOP, MCFC power generation system, Inlet temperature, Excess air ratio, Space velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2174
1415 Vacuum Membrane Distillation for Desalination of Ground Water by using Flat Sheet Membrane

Authors: Bhausaheb L. Pangarkar, M.G. Sane, Saroj B. Parjane, Mahendra Guddad

Abstract:

The possibility of producing drinking water from brackish ground water using Vacuum membrane distillation (VMD) process was studied. It is a rising technology for seawater or brine desalination process. The process simply consists of a flat sheet hydrophobic micro porous PTFE membrane and diaphragm vacuum pump without a condenser for the water recovery or trap. In this work, VMD performance was investigated for aqueous NaCl solution and natural ground water. The influence of operational parameters such as feed flow rate (30 to 55 l/h), feed temperature (313 to 333 K), feed salt concentration (5000 to 7000 mg/l) and permeate pressure (1.5 to 6 kPa) on the membrane distillation (MD) permeation flux have been investigated. The maximum flux reached to 28.34 kg/m2 h at feed temperature, 333 K; vacuum pressure, 1.5 kPa; feed flow rate, 55 l/h and feed salt concentration, 7000 mg/l. The negligible effects in the reduction of permeate flux found over 150 h experimental run for salt water. But for the natural ground water application over 75 h, scale deposits observed on the membrane surface and 29% reduction in the permeate flux over 75 h. This reduction can be eliminated by acidification of feed water. Hence, promote the research attention in apply of VMD for the ground water purification over today-s conventional RO operation.

Keywords: VMD, hydrophobic PTFE flat membrane, desalination, ground water

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3289
1414 Larval Occurrence and Climatic Factors Affecting DHF Incidence in Samui Islands, Thailand

Authors: S. Wongkoon, M. Jaroensutasinee, K. Jaroensutasinee, W. Preechaporn, S. Chumkiew

Abstract:

This study investigated the number of Aedes larvae, the key breeding sites of Aedes sp., and the relationship between climatic factors and the incidence of DHF in Samui Islands. We conducted our questionnaire and larval surveys from randomly selected 105 households in Samui Islands in July-September 2006. Pearson-s correlation coefficient was used to explore the primary association between the DHF incidence and all climatic factors. Multiple stepwise regression technique was then used to fit the statistical model. The results showed that the positive indoor containers were small jars, cement tanks, and plastic tanks. The positive outdoor containers were small jars, cement tanks, plastic tanks, used cans, tires, plastic bottles, discarded objects, pot saucers, plant pots, and areca husks. All Ae. albopictus larval indices (i.e., CI, HI, and BI) were higher than Ae. aegypti larval indices in this area. These larval indices were higher than WHO standard. This indicated a high risk of DHF transmission at Samui Islands. The multiple stepwise regression model was y = –288.80 + 11.024xmean temp. The mean temperature was positively associated with the DHF incidence in this area.

Keywords: Dengue vectors, Aedes aegypti, Aedes albopictus, Container Index, House Index, Breteau Index, Aedes indices, Climatic factors, Temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
1413 Study of Forging Process in 7075 Aluminum Alloy Professional Bicycle Pedal using Taguchi Method

Authors: Dyi-Cheng Chen, Wen-Hsuan Ku, Ming-Ren Chen

Abstract:

The current of professional bicycle pedal-s manufacturing model mostly used casting, forging, die-casting processing methods, so the paper used 7075 aluminum alloy which is to produce the bicycle parts most commonly, and employs the rigid-plastic finite element (FE) DEFORMTM 3D software to simulate and to analyze the professional bicycle pedal design. First we use Solid works 2010 3D graphics software to design the professional bicycle pedal of the mold and appearance, then import finite element (FE) DEFORMTM 3D software for analysis. The paper used rigid-plastic model analytical methods, and assuming mode to be rigid body. A series of simulation analyses in which the variables depend on different temperature of forging billet, friction factors, forging speed, mold temperature are reveal to effective stress, effective strain, damage and die radial load distribution for forging bicycle pedal. The analysis results hope to provide professional bicycle pedal forming mold references to identified whether suit with the finite element results for high-strength design suitability of aluminum alloy.

Keywords: Bicycle pedal, finite element analysis, 7075 aluminum alloy, Taguchi method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2791
1412 Effect of Two Radial Fins on Heat Transfer and Flow Structure in a Horizontal Annulus

Authors: Anas El Amraoui, Abdelkhalek Cheddadi, Mohammed Touhami Ouazzani

Abstract:

Laminar natural convection in a cylindrical annular cavity filled with air and provided with two fins is studied numerically using the discretization of the governing equations with the Centered Finite Difference method based on the Alternating Direction Implicit (ADI) scheme. The fins are attached to the inner cylinder of radius ri (hot wall of temperature Ti). The outer cylinder of radius ro is maintained at a temperature To (To < Ti). Two values of the dimensionless thickness of the fins are considered: 0.015 and 0.203. We consider a low fin height equal to 0.078 and medium fin heights equal to 0.093 and 0.203. The position of the fin is 0.82π and the radius ratio is equal to 2. The effect of Rayleigh number, Ra, on the flow structure and heat transfer is analyzed for a range of Ra from 103 to 104. The results for established flow structures and heat transfer at low height indicate that the flow regime that occurs is unicellular for all Ra and fin thickness; in addition, the heat transfer rate increases with increasing Rayleigh number and is the same for both thicknesses. At median fin heights 0.093 and 0.203, the increase of Rayleigh number leads to transitions of flow structure which correspond to significant variations of the heat transfer. The critical Rayleigh numbers, Rac.app and Rac.disp corresponding to the appearance of the bicellular flow regime and its disappearance, are determined and their influence on the change of heat transfer rate is analyzed.

Keywords: Natural convection, fins, critical Rayleigh number, heat transfer, fluid flow regime, horizontal annulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 533
1411 Thermal Cracking Approach Investigation to Improve Biodiesel Properties

Authors: Roghaieh Parvizsedghy, Seyyed Mojtaba Sadrameli

Abstract:

Biodiesel as an alternative diesel fuel is steadily gaining more attention and significance. However, there are some drawbacks while using biodiesel regarding its properties that requires it to be blended with petrol based diesel and/or additives to improve the fuel characteristics. This study analyses thermal cracking as an alternative technology to improve biodiesel characteristics in which, FAME based biodiesel produced by transesterification of castor oil is fed into a continuous thermal cracking reactor at temperatures range of 450-500°C and flowrate range of 20-40 g/hr. Experiments designed by response surface methodology and subsequent statistical studies show that temperature and feed flowrate significantly affect the products yield. Response surfaces were used to study the impact of temperature and flowrate on the product properties. After each experiment, the produced crude bio-oil was distilled and diesel cut was separated. As shorter chain molecules are produced through thermal cracking, the distillation curve of the diesel cut fitted more with petrol based diesel curve in comparison to the biodiesel. Moreover, the produced diesel cut properties adequately pose within property ranges defined by the related standard of petrol based diesel. Cold flow properties, high heating value as the main drawbacks of the biodiesel are improved by this technology. Thermal cracking decreases kinematic viscosity, Flash point and cetane number. 

Keywords: Biodiesel, castor oil, fuel properties, thermal cracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3673
1410 Influence of Slope Shape and Surface Roughness on the Moving Paths of a Single Rockfall

Authors: Iau-Teh Wang, Chin-Yu Lee

Abstract:

Rockfall is a kind of irregular geological disaster. Its destruction time, space and movements are highly random. The impact force is determined by the way and velocity rocks move. The movement velocity of a rockfall depends on slope gradient of its moving paths, height, slope surface roughness and rock shapes. For effectively mitigate and prevent disasters brought by rockfalls, it is required to precisely calculate the moving paths of a rockfall so as to provide the best protective design. This paper applies Colorado Rockfall Simulation Program (CRSP) as our study tool to discuss the impact of slope shape and surface roughness on the moving paths of a single rockfall. The analytical results showed that the slope, m=1:1, acted as the threshold for rockfall bounce height on a monoclinal slight slope. When JRC ´╝£ 1.2, movement velocity reduced and bounce height increased as JCR increased. If slope fixed and JRC increased, the bounce height of rocks increased gradually with reducing movement velocity. Therefore, the analysis on the moving paths of rockfalls with CRSP could simulate bouncing of falling rocks. By analyzing moving paths, velocity, and bounce height of falling rocks, we could effectively locate impact points of falling rocks on a slope. Such analysis can be served as a reference for future disaster prevention and control.

Keywords: Rockfall, Slope Shape, Moving Path, SurfaceRoughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2809
1409 Correlation to Predict Thermal Performance According to Working Fluids of Vertical Closed-Loop Pulsating Heat Pipe

Authors: Niti Kammuang-lue, Kritsada On-ai, Phrut Sakulchangsatjatai, Pradit Terdtoon

Abstract:

The objectives of this paper are to investigate effects of dimensionless numbers on thermal performance of the vertical closed-loop pulsating heat pipe (VCLPHP) and to establish a correlation to predict the thermal performance of the VCLPHP. The CLPHPs were made of long copper capillary tubes with inner diameters of 1.50, 1.78, and 2.16mm and bent into 26 turns. Then, both ends were connected together to form a loop. The evaporator, adiabatic, and condenser sections length were equal to 50 and 150 mm. R123, R141b, acetone, ethanol, and water were chosen as variable working fluids with constant filling ratio of 50% by total volume. Inlet temperature of heating medium and adiabatic section temperature was constantly controlled at 80 and 50oC, respectively. Thermal performance was represented in a term of Kutateladze number (Ku). It can be concluded that when Prandtl number of liquid working fluid (Prl), and Karman number (Ka) increases, thermal performance increases. On contrary, when Bond number (Bo), Jacob number (Ja), and Aspect ratio (Le/Di) increases, thermal performance decreases. Moreover, the correlation to predict more precise thermal performance has been successfully established by analyzing on all dimensionless numbers that have effect on the thermal performance of the VCLPHP.

Keywords: Vertical closed-loop pulsating heat pipe, working fluid, thermal performance, dimensionless parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2336
1408 The Experimental and Numerical Analysis of the Joining Processes for Air Conditioning Systems

Authors: M.St. Węglowski, D. Miara, S. Błacha, J. Dworak, J. Rykała, K. Kwieciński, J. Pikuła, G. Ziobro, A. Szafron, P. Zimierska-Nowak, M. Richert, P. Noga

Abstract:

In the paper the results of welding of car’s air-conditioning elements are presented. These systems based on, mainly, the environmental unfriendly refrigerants. Thus, the producers of cars will have to stop using traditional refrigerant and to change it to carbon dioxide (R744). This refrigerant is environmental friendly. However, it should be noted that the air condition system working with R744 refrigerant operates at high temperature (up to 150 °C) and high pressure (up to 130 bar). These two parameters are much higher than for other refrigerants. Thus new materials, design as well as joining technologies are strongly needed for these systems. AISI 304 and 316L steels as well as aluminium alloys 5xxx are ranked among the prospective materials. As a joining process laser welding, plasma welding, electron beam welding as well as high rotary friction welding can be applied. In the study, the metallographic examination based on light microscopy as well as SEM was applied to estimate the quality of welded joints. The analysis of welding was supported by numerical modelling based on Sysweld software. The results indicated that using laser, plasma and electron beam welding, it is possible to obtain proper quality of welds in stainless steel. Moreover, high rotary friction welding allows to guarantee the metallic continuity in the aluminium welded area. The metallographic examination revealed that the grain growth in the heat affected zone (HAZ) in laser and electron beam welded joints were not observed. It is due to low heat input and short welding time. The grain growth and subgrains can be observed at room temperature when the solidification mode is austenitic. This caused low microstructural changes during solidification. The columnar grain structure was found in the weld metal. Meanwhile, the equiaxed grains were detected in the interface. The numerical modelling of laser welding process allowed to estimate the temperature profile in the welded joint as well as predicts the dimensions of welds. The agreement between FEM analysis and experimental data was achieved.  

Keywords: Car’s air–conditioning, microstructure, numerical modelling, welding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 806
1407 Effect on the Performance of the Nano-Particulate Graphite Lubricant in the Turning of AISI 1040 Steel under Variable Machining Conditions

Authors: S. Srikiran, Dharmala Venkata Padmaja, P. N. L. Pavani, R. Pola Rao, K. Ramji

Abstract:

Technological advancements in the development of cutting tools and coolant/lubricant chemistry have enhanced the machining capabilities of hard materials under higher machining conditions. Generation of high temperatures at the cutting zone during machining is one of the most important and pertinent problems which adversely affect the tool life and surface finish of the machined components. Generally, cutting fluids and solid lubricants are used to overcome the problem of heat generation, which is not effectively addressing the problems. With technological advancements in the field of tribology, nano-level particulate solid lubricants are being used nowadays in machining operations, especially in the areas of turning and grinding. The present investigation analyses the effect of using nano-particulate graphite powder as lubricant in the turning of AISI 1040 steel under variable machining conditions and to study its effect on cutting forces, tool temperature and surface roughness of the machined component. Experiments revealed that the increase in cutting forces and tool temperature resulting in the decrease of surface quality with the decrease in the size of nano-particulate graphite powder as lubricant.

Keywords: Solid lubricant, graphite, minimum quantity lubrication, nanoparticles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 944
1406 Assessment of Ultra-High Cycle Fatigue Behavior of EN-GJL-250 Cast Iron Using Ultrasonic Fatigue Testing Machine

Authors: Saeedeh Bakhtiari, Johannes Depessemier, Stijn Hertelé, Wim De Waele

Abstract:

High cycle fatigue comprising up to 107 load cycles has been the subject of many studies, and the behavior of many materials was recorded adequately in this regime. However, many applications involve larger numbers of load cycles during the lifetime of machine components. In this ultra-high cycle regime, other failure mechanisms play, and the concept of a fatigue endurance limit (assumed for materials such as steel) is often an oversimplification of reality. When machine component design demands a high geometrical complexity, cast iron grades become interesting candidate materials. Grey cast iron is known for its low cost, high compressive strength, and good damping properties. However, the ultra-high cycle fatigue behavior of cast iron is poorly documented. The current work focuses on the ultra-high cycle fatigue behavior of EN-GJL-250 (GG25) grey cast iron by developing an ultrasonic (20 kHz) fatigue testing system. Moreover, the testing machine is instrumented to measure the temperature and the displacement of  the specimen, and to control the temperature. The high resonance frequency allowed to assess the  behavior of the cast iron of interest within a matter of days for ultra-high numbers of cycles, and repeat the tests to quantify the natural scatter in fatigue resistance.

Keywords: GG25, cast iron, ultra-high cycle fatigue, ultrasonic test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804
1405 A Saltwater Battery Inspired by the Membrane Potential Found in Biological Cells

Authors: Andrew Jester, Ross Lee, Pritpal Singh

Abstract:

As the world transitions to a more sustainable energy economy, the deployment of energy storage technologies is expected to increase to develop a more resilient grid system. However, current technologies are associated with various environmental and safety issues throughout their entire lifecycle; therefore, a new battery technology is desirable for grid applications to curtail these risks. Biological cells, such as human neurons and electrocytes in the electric eel, can serve as a more sustainable design template for a new bio-inspired (i.e., biomimetic) battery. Within biological cells, an electrochemical gradient across the cell membrane forms the membrane potential, which serves as the driving force for ion transport into/out of the cell akin to the charging/discharging of a battery cell. This work serves as the first step for developing such a biomimetic battery cell, starting with the fabrication and characterization of ion-selective membranes to facilitate ion transport through the cell. Performance characteristics (e.g., cell voltage, power density, specific energy, roundtrip efficiency) for the cell under investigation are compared to incumbent battery technologies and biological cells to assess the readiness level for this emerging technology. Using a Na+-Form Nafion-117 membrane, the cell in this work successfully demonstrated behavior like human neurons; these findings will inform how cell components can be re-engineered to enhance device performance.

Keywords: Battery, biomimetic, electrocytes, human neurons, ion-selective membranes, membrane potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 391
1404 Modeling and Experimental Studies on Solar Crop Dryer Coupled with Reversed Absorber Type Solar Air Heater

Authors: Vijay R. Khawale, Shashank B. Thakare

Abstract:

The experiment was carried out to study the performance of solar crop dryer coupled with reversed absorber type solar air heater (SD2). Excel software is used to analyse the raw data obtained from the drying experiment to develop a model. An attempt is made in this paper to correlate the collector efficiency, dryer efficiency and pick-up efficiency. All these efficiencies are dependent on the parameters such as solar flux, ambient temperature, collector outlet temperature and moisture content. The simulation equation was developed to predict the values of collector efficiency. The parameters a, n and drying constant k were determined from a plot of curve using a drying models. Experimental data of drying red chili in conventional solar dryer and solar dryer coupled with reversed absorber solar air heater was compared by fitting with three drying models. The moisture content will be rapidly reduced in solar dryer with reversed absorber due to higher drying temperatures. The best fit model was selected to describe the drying behavior of red chili. For SD2 the values of the coefficient of determination (R2=0.997), mean bias error (MBE=0.00026) and root mean square error (RMSE=0.016) were used to determine the goodness or the quality of the fit. Pages model showed a better fit to drying red chili among Newton model and Henderson & Pabis model.

Keywords: Solar dryer, red chili, reversed absorber, reflector, Buckingham pi theorem, drying model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1034
1403 Experimental and Numerical Study of A/C Outletsand Its Impact on Room Airflow Characteristics

Authors: Mohammed A. Aziz, Ibrahim A. M. Gad, El Shahat F. A. Mohammed, Ramy H. Mohammed

Abstract:

This paper investigates experimental and numerical study of the airflow characteristics for vortex, round and square ceiling diffusers and its effect on the thermal comfort in a ventilated room. Three different thermal comfort criteria namely; Mean Age of the Air (MAA), ventilation effectiveness (E), and Effective Draft Temperature (EDT) have been used to predict the thermal comfort zone inside the room. In experimental work, a sub-scale room is set-up to measure the temperature field in the room. In numerical analysis, unstructured grids have been used to discretize the numerical domain. Conservation equations are solved using FLUENT commercial flow solver. The code is validated by comparing the numerical results obtained from three different turbulence models with the available experimental data. The comparison between the various numerical models shows that the standard k-ε turbulence model can be used to simulate these cases successfully. After validation of the code, effect of supply air velocity on the flow and thermal field could be investigated and hence the thermal comfort. The results show that the pressure coefficient created by the square diffuser is 1.5 times greater than that created by the vortex diffuser. The velocity decay coefficient is nearly the same for square and round diffusers and is 2.6 times greater than that for the vortex diffuser.

Keywords: Ceiling diffuser, Thermal Comfort, MAA, EDT, Fluent, Turbulence model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2143
1402 Water Immersion Recovery for Swimmers in Hot Environments

Authors: Thanura Abeywardena

Abstract:

This study recognized the effectiveness of cold-water immersion recovery post short-term exhaustive exercise. The purpose of this study was to understand if 16-20 °C of cold-water immersion would be beneficial in a tropical environment to achieve an optimal recovery in sprint swim performance in comparison to 10-15 °C of water immersion. Two 100 m-sprint swim performance times were measured along with blood lactate (BLa), heart rate (HR) and rate of perceived exertion (RPE) in a 25 m swimming pool with full body head out horizontal water immersions of 10-15 °C, 16-20 °C and 29-32 °C (pool temperature) for 10 minutes followed by 5 minutes of seated passive rest outside; in between the two swim performances. 10 well-trained adult swimmers (5 male and 5 female) within the top twenty in the Sri Lankan nationals swimming championships in 100m Butterfly and Freestyle in the years 2020 & 2021 volunteered for this study. One-way ANOVA analysis (p < 0.05) suggested performance time, BLa and HR had no significant differences between the three conditions after the second sprint, however RPE was significantly different with p = 0.034 between 10-15 °C and 16-20 °C immersion conditions. The study suggested that the recovery post the two cold-water immersion conditions were similar in terms of performance and physiological factors however the 16-20 °C temperature had a better “feel good” factor post sprint 2. Further study is recommended as there was participant bias with the swimmers not reaching optimal levels in sprint 1. Therefore, they might have been possibly fully recovered before sprint 2 invalidating the physiological effect of recovery.

Keywords: Hydrotherapy, blood lactate, fatigue, recovery, sprint-performance, sprint-swimming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 249
1401 The Automated Soil Erosion Monitoring System (ASEMS)

Authors: George N. Zaimes, Valasia Iakovoglou, Paschalis Koutalakis, Konstantinos Ioannou, Ioannis Kosmadakis, Panagiotis Tsardaklis, Theodoros Laopoulos

Abstract:

The advancements in technology allow the development of a new system that can continuously measure surface soil erosion. Continuous soil erosion measurements are required in order to comprehend the erosional processes and propose effective and efficient conservation measures to mitigate surface erosion. Mitigating soil erosion, especially in Mediterranean countries such as Greece, is essential in order to maintain environmental and agricultural sustainability. In this paper, we present the Automated Soil Erosion Monitoring System (ASEMS) that measures surface soil erosion along with other factors that impact erosional process. Specifically, this system measures ground level changes (surface soil erosion), rainfall, air temperature, soil temperature, and soil moisture. Another important innovation is that the data will be collected by remote communication. In addition, stakeholder’s awareness is a key factor to help reduce any environmental problem. The different dissemination activities that were utilized are described. The overall outcomes were the development of a new innovative system that can measure erosion very accurately. These data from the system help study the process of erosion and find the best possible methods to reduce erosion. The dissemination activities enhance the stakeholders and public's awareness on surface soil erosion problems and will lead to the adoption of more effective soil erosion conservation practices in Greece.

Keywords: Soil management, climate change, new technologies, conservation practices.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2468
1400 Temperature Distribution in Friction Stir Welding Using Finite Element Method

Authors: Armansyah, I. P. Almanar, M. Saiful Bahari Shaari, M. Shamil Jaffarullah, Nur’amirah Busu, M. Arif Fadzleen Zainal Abidin, M. Amlie A. Kasim

Abstract:

During welding, the amount of heat present in weld zones determines the quality of weldment produced. Thus, the heat distribution characteristics and its magnitude in weld zones with respect to process variables such as tool pin-shoulder rotational and traveling speed during welding is analyzed using thermal finite element analyses method. For this purpose, transient thermal finite element analyses are performed to model the temperatures distribution and its quantities in weld-zones with respect to process variables such as rotational speed and traveling speed during welding. Commercially available software Altair HyperWork is used to model three-dimensional tool pin-shoulder vs. workpieces and to simulate the friction stir process. The results show that increasing tool rotational speed, at a constant traveling speed, will increase the amount of heat generated in weld-zones. In contrary, increasing traveling speed, at constant tool pin-shoulder rotational speeds, will reduce the amount of heat generated in weld zones.

Keywords: Frictions Stir Welding, Temperature Distribution, Finite Element Method, Altair Hyperwork.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3958
1399 Effect of Applied Voltage Frequency on Electrical Treeing in 22 kV Cross-linked Polyethylene Insulated Cable

Authors: R. Thiamsri, N. Ruangkajonmathee, A. Oonsivilaiand B. Marungsri

Abstract:

This paper presents the experimental results on effect of applied voltage stress frequency to the occurrence of electrical treeing in 22 kV cross linked polyethylene (XLPE) insulated cable.Hallow disk of XLPE insulating material with thickness 5 mm taken from unused high voltage cable was used as the specimen in this study. Stainless steel needle was inserted gradually into the specimen to give a tip to earth plane electrode separation of 2.50.2 mm at elevated temperature 105-110°C. The specimen was then annealed for 5 minute to minimize any mechanical stress build up around the needle-plane region before it was cooled down to room temperature. Each specimen were subjected to the same applied voltage stress level at 8 kV AC rms, with various frequency, 50, 100, 500, 1000 and 2000 Hz. Initiation time, propagation speed and pattern of electrical treeing were examined in order to study the effect of applied voltage stress frequency. By the experimental results, initial time of visible treeing decreases with increasing in applied voltage frequency. Also, obviously, propagation speed of electrical treeing increases with increasing in applied voltage frequency.Furthermore, two types of electrical treeing, bush-like and branch-like treeing were observed.The experimental results confirmed the effect of voltage stress frequency as well.

Keywords: Voltage stress frequency, cross-linked polyethylene, electrical treeing, treeing propagation, treeing pattern

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2621
1398 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets

Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi

Abstract:

Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.

Keywords: Breast cancer, health diagnosis, Machine Learning, biomarker classification, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 321
1397 Optimization of Two Quality Characteristics in Injection Molding Processes via Taguchi Methodology

Authors: Joseph C. Chen, Venkata Karthik Jakka

Abstract:

The main objective of this research is to optimize tensile strength and dimensional accuracy in injection molding processes using Taguchi Parameter Design. An L16 orthogonal array (OA) is used in Taguchi experimental design with five control factors at four levels each and with non-controllable factor vibration. A total of 32 experiments were designed to obtain the optimal parameter setting for the process. The optimal parameters identified for the shrinkage are shot volume, 1.7 cubic inch (A4); mold term temperature, 130 ºF (B1); hold pressure, 3200 Psi (C4); injection speed, 0.61 inch3/sec (D2); and hold time of 14 seconds (E2). The optimal parameters identified for the tensile strength are shot volume, 1.7 cubic inch (A4); mold temperature, 160 ºF (B4); hold pressure, 3100 Psi (C3); injection speed, 0.69 inch3/sec (D4); and hold time of 14 seconds (E2). The Taguchi-based optimization framework was systematically and successfully implemented to obtain an adjusted optimal setting in this research. The mean shrinkage of the confirmation runs is 0.0031%, and the tensile strength value was found to be 3148.1 psi. Both outcomes are far better results from the baseline, and defects have been further reduced in injection molding processes.

Keywords: Injection molding processes, Taguchi Parameter Design, tensile strength, shrinkage test, high-density polyethylene, HDPE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 840
1396 Semi-Analytic Method in Fast Evaluation of Thermal Management Solution in Energy Storage System

Authors: Ya Lv

Abstract:

This article presents the application of the semi-analytic method (SAM) in the thermal management solution (TMS) of the energy storage system (ESS). The TMS studied in this work is fluid cooling. In fluid cooling, both effective heat conduction and heat convection are indispensable due to the heat transfer from solid to fluid. Correspondingly, an efficient TMS requires a design investigation of the following parameters: fluid inlet temperature, ESS initial temperature, fluid flow rate, working c rate, continuous working time, and materials properties. Their variation induces a change of thermal performance in the battery module, which is usually evaluated by numerical simulation. Compared to complicated computation resources and long computation time in simulation, the SAM is developed in this article to predict the thermal influence within a few seconds. In SAM, a fast prediction model is reckoned by combining numerical simulation with theoretical/empirical equations. The SAM can explore the thermal effect of boundary parameters in both steady-state and transient heat transfer scenarios within a short time. Therefore, the SAM developed in this work can simplify the design cycle of TMS and inspire more possibilities in TMS design.

Keywords: Semi-analytic method, fast prediction model, thermal influence of boundary parameters, energy storage system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 662
1395 Wine Grape Residues Gasification in Supercritical Water

Authors: D. Selvi Gökkaya, M. Yüksel, M. Sağlam, T. Güngören Madenoğlu, N. Cengiz, T. Çokkuvvetli, L. Ballice

Abstract:

In this study, production possibilities of hydrogen and/or methane via SCWG from black grape residues have been investigated. For this aim, grape residues which remain as a byproduct of the wine making process have been used. Since utilization from grape residues is limited due to the high moisture content, supercritical water gasification is the most convenient method. The effect of the gasification temperature and type of catalyst on supercritical water gasification have been investigated. Gasification experiments were performed in a batch autoclave at four different temperatures 300, 400, 500 and 600°C. K2CO3 and Trona (NaHCO3.Na2CO3·2H2O) were used as catalyst. Real biomass types of black grape residues have been successfully gasified and the product gas (hydrogen, methane, carbon dioxide, carbon monoxide and a small amount of ethane and ethylene) were identified by using gas chromatography. A TOC analyzer was used to determine total organic carbon (TOC) content of aqueous phase. The amounts of carboxylic acids, aldehydes, ketones, furfurals and phenols present in the aqueous solutions were analyzed by high performance liquid chromatography. When the temperature increased from 300°C to 600°C, mol% of H2 in gas products increased. The presence of catalysts improves the hydrogen yield. Trona showed gasification activity to be similar to that of K2CO3. It may be concluded that the use of Trona instead of commercially produced catalysts, can be preferably used in the gasification of biomass in supercritical water.

Keywords: Biomass, hydrogen, grape residues.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2465
1394 Comparison of Stationary and Two-Axis Tracking System of 50MW Photovoltaic Power Plant in Al-Kufra, Libya: Landscape Impact and Performance

Authors: Yasser Aldali

Abstract:

The scope of this paper is to evaluate and compare the potential of LS-PV(Large Scale Photovoltaic Power Plant) power generation systems in the southern region of Libya at Al-Kufra for both stationary and tracking systems. A Microsoft Excel-VBA program has been developed to compute slope radiation, dew-point, sky temperature, and then cell temperature, maximum power output and module efficiency of the system for stationary system and for tracking system. The results for energy production show that the total energy output is 114GWh/year for stationary system and 148GWh/year for tracking system. The average module efficiency for the stationary system is 16.6% and 16.2% for the tracking system.

The values of electricity generation capacity factor (CF) and solar capacity factor (SCF) for stationary system were found to be 26% and 62.5% respectively and 34% and 82% for tracking system. The GCR (Ground Cover Ratio) for a stationary system is 0.7, which corresponds to a tilt angle of 24°. The GCR for tracking system was found to be 0.12. The estimated ground area needed to build a 50MW PV plant amounts to approx. 0.55km2 for a stationary PV field constituted by HIT PV arrays and approx. 91MW/ km2. In case of a tracker PV field, the required ground area amounts approx.2.4km2 and approx. 20.5MW/ km2.

Keywords: Large PV power plant, solar energy, environmental impact, Dual-axis tracking system, stationary system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3101