Search results for: Data Clustering
6254 Data Envelopment Analysis under Uncertainty and Risk
Authors: P. Beraldi, M. E. Bruni
Abstract:
Data Envelopment Analysis (DEA) is one of the most widely used technique for evaluating the relative efficiency of a set of homogeneous decision making units. Traditionally, it assumes that input and output variables are known in advance, ignoring the critical issue of data uncertainty. In this paper, we deal with the problem of efficiency evaluation under uncertain conditions by adopting the general framework of the stochastic programming. We assume that output parameters are represented by discretely distributed random variables and we propose two different models defined according to a neutral and risk-averse perspective. The models have been validated by considering a real case study concerning the evaluation of the technical efficiency of a sample of individual firms operating in the Italian leather manufacturing industry. Our findings show the validity of the proposed approach as ex-ante evaluation technique by providing the decision maker with useful insights depending on his risk aversion degree.Keywords: DEA, Stochastic Programming, Ex-ante evaluation technique, Conditional Value at Risk.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19676253 Signed Approach for Mining Web Content Outliers
Authors: G. Poonkuzhali, K.Thiagarajan, K.Sarukesi, G.V.Uma
Abstract:
The emergence of the Internet has brewed the revolution of information storage and retrieval. As most of the data in the web is unstructured, and contains a mix of text, video, audio etc, there is a need to mine information to cater to the specific needs of the users without loss of important hidden information. Thus developing user friendly and automated tools for providing relevant information quickly becomes a major challenge in web mining research. Most of the existing web mining algorithms have concentrated on finding frequent patterns while neglecting the less frequent ones that are likely to contain outlying data such as noise, irrelevant and redundant data. This paper mainly focuses on Signed approach and full word matching on the organized domain dictionary for mining web content outliers. This Signed approach gives the relevant web documents as well as outlying web documents. As the dictionary is organized based on the number of characters in a word, searching and retrieval of documents takes less time and less space.Keywords: Outliers, Relevant document, , Signed Approach, Web content mining, Web documents..
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23496252 Disaggregation the Daily Rainfall Dataset into Sub-Daily Resolution in the Temperate Oceanic Climate Region
Authors: Mohammad Bakhshi, Firas Al Janabi
Abstract:
High resolution rain data are very important to fulfill the input of hydrological models. Among models of high-resolution rainfall data generation, the temporal disaggregation was chosen for this study. The paper attempts to generate three different rainfall resolutions (4-hourly, hourly and 10-minutes) from daily for around 20-year record period. The process was done by DiMoN tool which is based on random cascade model and method of fragment. Differences between observed and simulated rain dataset are evaluated with variety of statistical and empirical methods: Kolmogorov-Smirnov test (K-S), usual statistics, and Exceedance probability. The tool worked well at preserving the daily rainfall values in wet days, however, the generated data are cumulated in a shorter time period and made stronger storms. It is demonstrated that the difference between generated and observed cumulative distribution function curve of 4-hourly datasets is passed the K-S test criteria while in hourly and 10-minutes datasets the P-value should be employed to prove that their differences were reasonable. The results are encouraging considering the overestimation of generated high-resolution rainfall data.
Keywords: DiMoN tool, disaggregation, exceedance probability, Kolmogorov-Smirnov Test, rainfall.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10076251 A Pre-Assessment Questionnaire to Identify Healthcare Professionals’ Perception on Information Technology Implementation
Authors: Y. Atilgan Şengül
Abstract:
Health information technologies promise higher quality, safer care and much more for both patients and professionals. Despite their promise, they are costly to develop and difficult to implement. On the other hand, user acceptance and usage determine the success of implemented information technology in healthcare. This study provides a model to understand health professionals’ perception and expectation of health information technology. Extensive literature review has been conducted to determine the main factors to be measured. A questionnaire has been designed as a measurement model and submitted to the personnel of an in vitro fertilization clinic. The respondents’ degree of agreement according to five-point Likert scale was 72% for convenient access to data and 69.4% for the importance of data security. There was a significant difference in acceptance of electronic data storage for female respondents. Also, other significant differences between professions were obtained.
Keywords: Healthcare, health informatics, medical record system, questionnaire.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14006250 Tree-on-DAG for Data Aggregation in Sensor Networks
Authors: Prakash G L, Thejaswini M, S H Manjula, K R Venugopal, L M Patnaik
Abstract:
Computing and maintaining network structures for efficient data aggregation incurs high overhead for dynamic events where the set of nodes sensing an event changes with time. Moreover, structured approaches are sensitive to the waiting time that is used by nodes to wait for packets from their children before forwarding the packet to the sink. An optimal routing and data aggregation scheme for wireless sensor networks is proposed in this paper. We propose Tree on DAG (ToD), a semistructured approach that uses Dynamic Forwarding on an implicitly constructed structure composed of multiple shortest path trees to support network scalability. The key principle behind ToD is that adjacent nodes in a graph will have low stretch in one of these trees in ToD, thus resulting in early aggregation of packets. Based on simulations on a 2,000-node Mica2- based network, we conclude that efficient aggregation in large-scale networks can be achieved by our semistructured approach.Keywords: Aggregation, Packet Merging, Query Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19316249 Three-dimensional Simulation of Flow Pattern at the Lateral Intake in Straight Path, using Finite-Volume Method
Authors: R.Goudarzizadeh, N.Hedayat, S.H.Mousavi Jahromi
Abstract:
Channel junctions can be analyzed in two ways of division (lateral intake) and combined flows (confluence). The present paper investigates 3D flow pattern at lateral intake using Navier-Stokes equation and κ -ε (RNG) turbulent model. The equations are solved by Finite-Volume Method (FVM) and results are compared with the experimental data of (Barkdoll, B.D., 1997) to test the validity of the findings. Comparison of the results with the experimental data indicated a close proximity between the two sets of data which suggest a very close simulation. Results further indicated an inverse relation between the effects of discharge ratio ( r Q ) on the length and width of the separation zone. In other words, as the discharge ration increases, the length and width of separation zone decreases.Keywords: 900 junction, flow division, turbulent flow, numerical modeling, flow separation zone.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17166248 Preparation of Computer Model of the Aircraft for Numerical Aeroelasticity Tests – Flutter
Authors: M. Rychlik, R. Roszak, M. Morzynski, M. Nowak, H. Hausa, K. Kotecki
Abstract:
Article presents the geometry and structure reconstruction procedure of the aircraft model for flatter research (based on the I22-IRYDA aircraft). For reconstruction the Reverse Engineering techniques and advanced surface modeling CAD tools are used. Authors discuss all stages of data acquisition process, computation and analysis of measured data. For acquisition the three dimensional structured light scanner was used. In the further sections, details of reconstruction process are present. Geometry reconstruction procedure transform measured input data (points cloud) into the three dimensional parametric computer model (NURBS solid model) which is compatible with CAD systems. Parallel to the geometry of the aircraft, the internal structure (structural model) are extracted and modeled. In last chapter the evaluation of obtained models are discussed.Keywords: computer modeling, numerical simulation, Reverse Engineering, structural model
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17586247 Application of Artificial Neural Network for the Prediction of Pressure Distribution of a Plunging Airfoil
Authors: F. Rasi Maezabadi, M. Masdari, M. R. Soltani
Abstract:
Series of experimental tests were conducted on a section of a 660 kW wind turbine blade to measure the pressure distribution of this model oscillating in plunging motion. In order to minimize the amount of data required to predict aerodynamic loads of the airfoil, a General Regression Neural Network, GRNN, was trained using the measured experimental data. The network once proved to be accurate enough, was used to predict the flow behavior of the airfoil for the desired conditions. Results showed that with using a few of the acquired data, the trained neural network was able to predict accurate results with minimal errors when compared with the corresponding measured values. Therefore with employing this trained network the aerodynamic coefficients of the plunging airfoil, are predicted accurately at different oscillation frequencies, amplitudes, and angles of attack; hence reducing the cost of tests while achieving acceptable accuracy.Keywords: Airfoil, experimental, GRNN, Neural Network, Plunging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16566246 An Efficient Hardware Implementation of Extended and Fast Physical Addressing in Microprocessor-Based Systems Using Programmable Logic
Authors: Mountassar Maamoun, Abdelhamid Meraghni, Abdelhalim Benbelkacem, Daoud Berkani
Abstract:
This paper describes an efficient hardware implementation of a new technique for interfacing the data exchange between the microprocessor-based systems and the external devices. This technique, based on the use of software/hardware system and a reduced physical address, enlarges the interfacing capacity of the microprocessor-based systems, uses the Direct Memory Access (DMA) to increases the frequency of the new bus, and improves the speed of data exchange. While using this architecture in microprocessor-based system or in computer, the input of the hardware part of our system will be connected to the bus system, and the output, which is a new bus, will be connected to an external device. The new bus is composed of a data bus, a control bus and an address bus. A Xilinx Integrated Software Environment (ISE) 7.1i has been used for the programmable logic implementation.
Keywords: Interfacing, Software/hardware System, CPLD, programmable logic, DMA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13856245 The Maximum Likelihood Method of Random Coefficient Dynamic Regression Model
Authors: Autcha Araveeporn
Abstract:
The Random Coefficient Dynamic Regression (RCDR) model is to developed from Random Coefficient Autoregressive (RCA) model and Autoregressive (AR) model. The RCDR model is considered by adding exogenous variables to RCA model. In this paper, the concept of the Maximum Likelihood (ML) method is used to estimate the parameter of RCDR(1,1) model. Simulation results have shown the AIC and BIC criterion to compare the performance of the the RCDR(1,1) model. The variables as the stationary and weakly stationary data are good estimates where the exogenous variables are weakly stationary. However, the model selection indicated that variables are nonstationarity data based on the stationary data of the exogenous variables.Keywords: Autoregressive, Maximum Likelihood Method, Nonstationarity, Random Coefficient Dynamic Regression, Stationary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16476244 Operating Live E! Digital Meteorological Equipments Using Solar Photovoltaics
Authors: Eiko Takaoka, Ryohei Takahashi, Takashi Toyoda
Abstract:
We installed solar panels and digital meteorological equipments whose electrical power is supplied using PV on July 13, 2011. Then, the relationship between the electric power generation and the irradiation, air temperature, and wind velocity was investigated on a roof at a university. The electrical power generation, irradiation, air temperature, and wind velocity were monitored over two years. By analyzing the measured meteorological data and electric power generation data using PTC, we calculated the size of the solar panel that is most suitable for this system. We also calculated the wasted power generation using PTC with the measured meteorological data obtained in this study. In conclusion, to reduce the "wasted power generation", a smaller-size solar panel is required for stable operation.
Keywords: Digital meteorological equipments, PV, photovoltaic, irradiation, PTC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15446243 The Current Status of Middle Class Internet Use in China: An Analysis Based on the Chinese General Social Survey 2015 Data and Semi-Structured Investigation
Authors: Abigail Qian Zhou
Abstract:
In today's China, the well-educated middle class, with stable jobs and above-average income, are the driving force behind its Internet society. Through the analysis of data from the 2015 Chinese General Social Survey and 50 interviewees, this study investigates the current situation of this group’s specific internet usage. The findings of this study demonstrate that daily life among the members of this socioeconomic group is closely tied to the Internet. For Chinese middle class, the Internet is used to socialize and entertain self and others. It is also used to search for and share information as well as to build their identities. The empirical results of this study will provide a reference, supported by factual data, for enterprises seeking to target the Chinese middle class through online marketing efforts.
Keywords: China, internet use, middle class, network behavior, online marketing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7616242 Native Language Identification with Cross-Corpus Evaluation Using Social Media Data: 'Reddit'
Authors: Yasmeen Bassas, Sandra Kuebler, Allen Riddell
Abstract:
Native Language Identification is one of the growing subfields in Natural Language Processing (NLP). The task of Native Language Identification (NLI) is mainly concerned with predicting the native language of an author’s writing in a second language. In this paper, we investigate the performance of two types of features; content-based features vs. content independent features when they are evaluated on a different corpus (using social media data “Reddit”). In this NLI task, the predefined models are trained on one corpus (TOEFL) and then the trained models are evaluated on a different data using an external corpus (Reddit). Three classifiers are used in this task; the baseline, linear SVM, and Logistic Regression. Results show that content-based features are more accurate and robust than content independent ones when tested within corpus and across corpus.
Keywords: NLI, NLP, content-based features, content independent features, social media corpus, ML.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4146241 dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling
Authors: Yanling Li, Linying Ji, Zita Oravecz, Timothy R. Brick, Michael D. Hunter, Sy-Miin Chow
Abstract:
Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even though ILD provide rich information, they also bring other data analytic challenges. One of these is the increased occurrence of missingness with increased study length, possibly under non-ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating several imputed data sets, and pooling the estimation results across imputed data sets to yield final estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible functions for estimating and visualizing the results from fitting linear and nonlinear dynamic systems models in discrete as well as continuous time. By integrating the estimation functions in dynr and the MI procedures available from the R package, Multivariate Imputation by Chained Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector autoregressive model, the relationships among individuals’ ambulatory physiological measures, and self-report affect valence and arousal. The results from MI were compared to those from listwise deletion of entries with missingness in the covariates. When we determined the number of iterations based on the convergence diagnostics available from dynr.mi(), differences in the statistical significance of the covariate parameters were observed between the listwise deletion and MI approaches. These results underscore the importance of considering diagnostic information in the implementation of MI procedures.Keywords: Dynamic modeling, missing data, multiple imputation, physiological measures.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8106240 The Use of Classifiers in Image Analysis of Oil Wells Profiling Process and the Automatic Identification of Events
Authors: Jaqueline M. R. Vieira
Abstract:
Different strategies and tools are available at the oil and gas industry for detecting and analyzing tension and possible fractures in borehole walls. Most of these techniques are based on manual observation of the captured borehole images. While this strategy may be possible and convenient with small images and few data, it may become difficult and suitable to errors when big databases of images must be treated. While the patterns may differ among the image area, depending on many characteristics (drilling strategy, rock components, rock strength, etc.). In this work we propose the inclusion of data-mining classification strategies in order to create a knowledge database of the segmented curves. These classifiers allow that, after some time using and manually pointing parts of borehole images that correspond to tension regions and breakout areas, the system will indicate and suggest automatically new candidate regions, with higher accuracy. We suggest the use of different classifiers methods, in order to achieve different knowledge dataset configurations.
Keywords: Brazil, classifiers, data-mining, Image Segmentation, oil well visualization, classifiers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25446239 EFL Learners- Perceptions of Computer-Mediated Communication (CMC) to Facilitate Communication in a Foreign Language
Authors: Lin, Huifen, Fang, Yueh-chiu
Abstract:
This study explores perceptions of English as a Foreign Language (EFL) learners on using computer mediated communication technology in their learner of English. The data consists of observations of both synchronous and asynchronous communication participants engaged in for over a period of 4 months, which included online, and offline communication protocols, open-ended interviews and reflection papers composed by participants. Content analysis of interview data and the written documents listed above, as well as, member check and triangulation techniques are the major data analysis strategies. The findings suggest that participants generally do not benefit from computer-mediated communication in terms of its effect in learning a foreign language. Participants regarded the nature of CMC as artificial, or pseudo communication that did not aid their authentic communicational skills in English. The results of this study sheds lights on insufficient and inconclusive findings, which most quantitative CMC studies previously generated.Keywords: computer-mediated communication, EFL, writing
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25816238 Experimental Investigation of Natural Frequency and Forced Vibration of Euler-Bernoulli Beam under Displacement of Concentrated Mass and Load
Authors: Aref Aasi, Sadegh Mehdi Aghaei, Balaji Panchapakesan
Abstract:
This work aims to evaluate the free and forced vibration of a beam with two end joints subjected to a concentrated moving mass and a load using the Euler-Bernoulli method. The natural frequency is calculated for different locations of the concentrated mass and load on the beam. The analytical results are verified by the experimental data. The variations of natural frequency as a function of the location of the mass, the effect of the forced frequency on the vibrational amplitude, and the displacement amplitude versus time are investigated. It is discovered that as the concentrated mass moves toward the center of the beam, the natural frequency of the beam and the relative error between experimental and analytical data decreases. There is a close resemblance between analytical data and experimental observations.
Keywords: Euler-Bernoulli beam, natural frequency, forced vibration, experimental setup.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6036237 Tuning Cubic Equations of State for Supercritical Water Applications
Authors: Shyh-Ming Chern
Abstract:
Cubic equations of state (EoS), popular due to their simple mathematical form, ease of use, semi-theoretical nature and reasonable accuracy, are normally fitted to vapor-liquid equilibrium P-v-T data. As a result, they often show poor accuracy in the region near and above the critical point. In this study, the performance of the renowned Peng-Robinson (PR) and Patel-Teja (PT) EoS’s around the critical area has been examined against the P-v-T data of water. Both of them display large deviations at critical point. For instance, PR-EoS exhibits discrepancies as high as 47% for the specific volume, 28% for the enthalpy departure and 43% for the entropy departure at critical point. It is shown that incorporating P-v-T data of the supercritical region into the retuning of a cubic EoS can improve its performance at and above the critical point dramatically. Adopting a retuned acentric factor of 0.5491 instead of its genuine value of 0.344 for water in PR-EoS and a new F of 0.8854 instead of its original value of 0.6898 for water in PT-EoS reduces the discrepancies to about one third or less.
Keywords: Equation of state, EoS, supercritical water, SCW.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20256236 Development of a Remote Testing System for Performance of Gas Leakage Detectors
Authors: Gyoutae Park, Woosuk Kim, Sangguk Ahn, Seungmo Kim, Minjun Kim, Jinhan Lee, Youngdo Jo, Jongsam Moon, Hiesik Kim
Abstract:
In this research, we designed a remote system to test parameters of gas detectors such as gas concentration and initial response time. This testing system is available to measure two gas instruments simultaneously. First of all, we assembled an experimental jig with a square structure. Those parts are included with a glass flask, two high-quality cameras, and two Ethernet modems for transmitting data. This remote gas detector testing system extracts numerals from videos with continually various gas concentrations while LCDs show photographs from cameras. Extracted numeral data are received to a laptop computer through Ethernet modem. And then, the numerical data with gas concentrations and the measured initial response speeds are recorded and graphed. Our remote testing system will be diversely applied on gas detector’s test and will be certificated in domestic and international countries.
Keywords: Gas leakage detector, inspection instrument, extracting numerals, concentration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9046235 Refractive Index, Excess Molar Volume and Viscometric Study of Binary Liquid Mixture of Morpholine with Cumene at 298.15 K, 303.15 K, and 308.15 K
Authors: B. K. Gill, Himani Sharma, V. K. Rattan
Abstract:
Experimental data of refractive index, excess molar volume and viscosity of binary mixture of morpholine with cumene over the whole composition range at 298.15 K, 303.15 K, 308.15 K and normal atmospheric pressure have been measured. The experimental data were used to compute the density, deviation in molar refraction, deviation in viscosity and excess Gibbs free energy of activation as a function of composition. The experimental viscosity data have been correlated with empirical equations like Grunberg- Nissan, Herric correlation and three body McAllister’s equation. The excess thermodynamic properties were fitted to Redlich-Kister polynomial equation. The variation of these properties with composition and temperature of the binary mixtures are discussed in terms of intermolecular interactions.Keywords: Cumene, excess Gibbs free energy, excess molar volume, morpholine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13176234 Certain Data Dimension Reduction Techniques for application with ANN based MCS for Study of High Energy Shower
Authors: Gitanjali Devi, Kandarpa Kumar Sarma, Pranayee Datta, Anjana Kakoti Mahanta
Abstract:
Cosmic showers, from their places of origin in space, after entering earth generate secondary particles called Extensive Air Shower (EAS). Detection and analysis of EAS and similar High Energy Particle Showers involve a plethora of experimental setups with certain constraints for which soft-computational tools like Artificial Neural Network (ANN)s can be adopted. The optimality of ANN classifiers can be enhanced further by the use of Multiple Classifier System (MCS) and certain data - dimension reduction techniques. This work describes the performance of certain data dimension reduction techniques like Principal Component Analysis (PCA), Independent Component Analysis (ICA) and Self Organizing Map (SOM) approximators for application with an MCS formed using Multi Layer Perceptron (MLP), Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN). The data inputs are obtained from an array of detectors placed in a circular arrangement resembling a practical detector grid which have a higher dimension and greater correlation among themselves. The PCA, ICA and SOM blocks reduce the correlation and generate a form suitable for real time practical applications for prediction of primary energy and location of EAS from density values captured using detectors in a circular grid.Keywords: EAS, Shower, Core, ANN, Location.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16086233 Classifier Based Text Mining for Neural Network
Authors: M. Govindarajan, R. M. Chandrasekaran
Abstract:
Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In Neural Network that address classification problems, training set, testing set, learning rate are considered as key tasks. That is collection of input/output patterns that are used to train the network and used to assess the network performance, set the rate of adjustments. This paper describes a proposed back propagation neural net classifier that performs cross validation for original Neural Network. In order to reduce the optimization of classification accuracy, training time. The feasibility the benefits of the proposed approach are demonstrated by means of five data sets like contact-lenses, cpu, weather symbolic, Weather, labor-nega-data. It is shown that , compared to exiting neural network, the training time is reduced by more than 10 times faster when the dataset is larger than CPU or the network has many hidden units while accuracy ('percent correct') was the same for all datasets but contact-lences, which is the only one with missing attributes. For contact-lences the accuracy with Proposed Neural Network was in average around 0.3 % less than with the original Neural Network. This algorithm is independent of specify data sets so that many ideas and solutions can be transferred to other classifier paradigms.Keywords: Back propagation, classification accuracy, textmining, time complexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42186232 Benchmarking Cleaner Production Performance of Coal-fired Power Plants Using Two-stage Super-efficiency Data Envelopment Analysis
Authors: Shao-lun Zeng, Yu-long Ren
Abstract:
Benchmarking cleaner production performance is an effective way of pollution control and emission reduction in coal-fired power industry. A benchmarking method using two-stage super-efficiency data envelopment analysis for coal-fired power plants is proposed – firstly, to improve the cleaner production performance of DEA-inefficient or weakly DEA-efficient plants, then to select the benchmark from performance-improved power plants. An empirical study is carried out with the survey data of 24 coal-fired power plants. The result shows that in the first stage the performance of 16 plants is DEA-efficient and that of 8 plants is relatively inefficient. The target values for improving DEA-inefficient plants are acquired by projection analysis. The efficient performance of 24 power plants and the benchmarking plant is achieved in the second stage. The two-stage benchmarking method is practical to select the optimal benchmark in the cleaner production of coal-fired power industry and will continuously improve plants- cleaner production performance.Keywords: benchmarking, cleaner production performance, coal-fired power plant, super-efficiency data envelopment analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24326231 Text Mining Technique for Data Mining Application
Authors: M. Govindarajan
Abstract:
Text Mining is around applying knowledge discovery techniques to unstructured text is termed knowledge discovery in text (KDT), or Text data mining or Text Mining. In decision tree approach is most useful in classification problem. With this technique, tree is constructed to model the classification process. There are two basic steps in the technique: building the tree and applying the tree to the database. This paper describes a proposed C5.0 classifier that performs rulesets, cross validation and boosting for original C5.0 in order to reduce the optimization of error ratio. The feasibility and the benefits of the proposed approach are demonstrated by means of medial data set like hypothyroid. It is shown that, the performance of a classifier on the training cases from which it was constructed gives a poor estimate by sampling or using a separate test file, either way, the classifier is evaluated on cases that were not used to build and evaluate the classifier are both are large. If the cases in hypothyroid.data and hypothyroid.test were to be shuffled and divided into a new 2772 case training set and a 1000 case test set, C5.0 might construct a different classifier with a lower or higher error rate on the test cases. An important feature of see5 is its ability to classifiers called rulesets. The ruleset has an error rate 0.5 % on the test cases. The standard errors of the means provide an estimate of the variability of results. One way to get a more reliable estimate of predictive is by f-fold –cross- validation. The error rate of a classifier produced from all the cases is estimated as the ratio of the total number of errors on the hold-out cases to the total number of cases. The Boost option with x trials instructs See5 to construct up to x classifiers in this manner. Trials over numerous datasets, large and small, show that on average 10-classifier boosting reduces the error rate for test cases by about 25%.Keywords: C5.0, Error Ratio, text mining, training data, test data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24896230 Literature-Based Discoveries in Lupus Treatment
Authors: Oluwaseyi Jaiyeoba, Vetria Byrd
Abstract:
Systemic lupus erythematosus (aka lupus) is a chronic disease known for its chameleon-like ability to mimic symptoms of other diseases rendering it hard to detect, diagnose and treat. The heterogeneous nature of the disease generates disparate data that are often multifaceted and multi-dimensional. Musculoskeletal manifestation of lupus is one of the most common clinical manifestations of lupus. This research links disparate literature on the treatment of lupus as it affects the musculoskeletal system using the discoveries from literature-based research articles available on the PubMed database. Several Natural Language Processing (NPL) tools exist to connect disjointed but related literature, such as Connected Papers, Bitola, and Gopalakrishnan. Literature-based discovery (LBD) has been used to bridge unconnected disciplines based on text mining procedures. The technical/medical literature consists of many technical/medical concepts, each having its sub-literature. This approach has been used to link Parkinson’s, Raynaud, and Multiple Sclerosis treatment within works of literature. Literature-based discovery methods can connect two or more related but disjointed literature concepts to produce a novel and plausible approach to solving a research problem. Data visualization techniques with the help of natural language processing tools are used to visually represent the result of literature-based discoveries. Literature search results can be voluminous, but Data visualization processes can provide insight and detect subtle patterns in large data. These insights and patterns can lead to discoveries that would have otherwise been hidden from disjointed literature. In this research, literature data are mined and combined with visualization techniques for heterogeneous data to discover viable treatments reported in the literature for lupus expression in the musculoskeletal system. This research answers the question of using literature-based discovery to identify potential treatments for a multifaceted disease like lupus. A three-pronged methodology is used in this research: text mining, natural language processing, and data visualization. These three research-related fields are employed to identify patterns in lupus-related data that, when visually represented, could aid research in the treatment of lupus. This work introduces a method for visually representing interconnections of various lupus-related literature. The methodology outlined in this work is the first step toward literature-based research and treatment planning for the musculoskeletal manifestation of lupus. The results also outline the interconnection of complex, disparate data associated with the manifestation of lupus in the musculoskeletal system. The societal impact of this work is broad. Advances in this work will improve the quality of life for millions of persons in the workforce currently diagnosed and silently living with a musculoskeletal disease associated with lupus.
Keywords: Systemic lupus erythematosus, LBD, Data Visualization, musculoskeletal system, treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5066229 Big Bang – Big Crunch Learning Method for Fuzzy Cognitive Maps
Authors: Engin Yesil, Leon Urbas
Abstract:
Modeling of complex dynamic systems, which are very complicated to establish mathematical models, requires new and modern methodologies that will exploit the existing expert knowledge, human experience and historical data. Fuzzy cognitive maps are very suitable, simple, and powerful tools for simulation and analysis of these kinds of dynamic systems. However, human experts are subjective and can handle only relatively simple fuzzy cognitive maps; therefore, there is a need of developing new approaches for an automated generation of fuzzy cognitive maps using historical data. In this study, a new learning algorithm, which is called Big Bang-Big Crunch, is proposed for the first time in literature for an automated generation of fuzzy cognitive maps from data. Two real-world examples; namely a process control system and radiation therapy process, and one synthetic model are used to emphasize the effectiveness and usefulness of the proposed methodology.Keywords: Big Bang-Big Crunch optimization, Dynamic Systems, Fuzzy Cognitive Maps, Learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18416228 Post ERP Feral System and use of ‘Feral System as Coping Mechanism
Authors: Tajul Urus, S., Molla, A., Teoh, S.Y.
Abstract:
A number of studies highlighted problems related to ERP systems, yet, most of these studies focus on the problems during the project and implementation stages but not during the postimplementation use process. Problems encountered in the process of using ERP would hinder the effective exploitation and the extended and continued use of ERP systems and their value to organisations. This paper investigates the different types of problems users (operational, supervisory and managerial) faced in using ERP and how 'feral system' is used as the coping mechanism. The paper adopts a qualitative method and uses data collected from two cases and 26 interviews, to inductively develop a casual network model of ERP usage problem and its coping mechanism. This model classified post ERP usage problems as data quality, system quality, interface and infrastructure. The model is also categorised the different coping mechanism through use of 'feral system' inclusive of feral information system, feral data and feral use of technology.Keywords: Case Studies, Coping Mechanism, Post Implementation ERP system, Usage Problem
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15106227 A Survey on Lossless Compression of Bayer Color Filter Array Images
Authors: Alina Trifan, António J. R. Neves
Abstract:
Although most digital cameras acquire images in a raw format, based on a Color Filter Array that arranges RGB color filters on a square grid of photosensors, most image compression techniques do not use the raw data; instead, they use the rgb result of an interpolation algorithm of the raw data. This approach is inefficient and by performing a lossless compression of the raw data, followed by pixel interpolation, digital cameras could be more power efficient and provide images with increased resolution given that the interpolation step could be shifted to an external processing unit. In this paper, we conduct a survey on the use of lossless compression algorithms with raw Bayer images. Moreover, in order to reduce the effect of the transition between colors that increase the entropy of the raw Bayer image, we split the image into three new images corresponding to each channel (red, green and blue) and we study the same compression algorithms applied to each one individually. This simple pre-processing stage allows an improvement of more than 15% in predictive based methods.Keywords: Bayer images, CFA, losseless compression, image coding standards.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25456226 A Study of Behaviors in Using Social Networks of Corporate Personnel of Suan Sunandha Rajabhat University
Authors: Wipada Chiawchan
Abstract:
This study found that most corporate personnel are using social media to communicate with colleagues to make the process of working more efficient. Complete satisfaction occurred on the use of security within the University’s computer network. The social network usage for communication, collaboration, entertainment and demonstrating concerns accounted for fifty percent of variance to predict interpersonal relationships of corporate personnel. This evaluation on the effectiveness of social networking involved 213 corporate personnel’s. The data was collected by questionnaires. This data was analyzed by using percentage, mean, and standard deviation. The results from the analysis and the effectiveness of using online social networks were derived from the attitude of private users and safety data within the security system. The results showed that the effectiveness on the use of an online social network for corporate personnel of Suan Sunandha Rajabhat University was specifically at a good level, and the overall effects of each aspect was (Ẋ=3.11).Keywords: Behaviors, Social Media, Social Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13946225 Exploring Social Impact of Emerging Technologies from Futuristic Data
Authors: Heeyeul Kwon, Yongtae Park
Abstract:
Despite the highly touted benefits, emerging technologies have unleashed pervasive concerns regarding unintended and unforeseen social impacts. Thus, those wishing to create safe and socially acceptable products need to identify such side effects and mitigate them prior to the market proliferation. Various methodologies in the field of technology assessment (TA), namely Delphi, impact assessment, and scenario planning, have been widely incorporated in such a circumstance. However, literatures face a major limitation in terms of sole reliance on participatory workshop activities. They unfortunately missed out the availability of a massive untapped data source of futuristic information flooding through the Internet. This research thus seeks to gain insights into utilization of futuristic data, future-oriented documents from the Internet, as a supplementary method to generate social impact scenarios whilst capturing perspectives of experts from a wide variety of disciplines. To this end, network analysis is conducted based on the social keywords extracted from the futuristic documents by text mining, which is then used as a guide to produce a comprehensive set of detailed scenarios. Our proposed approach facilitates harmonized depictions of possible hazardous consequences of emerging technologies and thereby makes decision makers more aware of, and responsive to, broad qualitative uncertainties.
Keywords: Emerging technologies, futuristic data, scenario, text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2391