Search results for: local binary patterns
1112 Building an Integrated Relational Database from Swiss Nutrition National Survey and Swiss Health Datasets for Data Mining Purposes
Authors: Ilona Mewes, Helena Jenzer, Farshideh Einsele
Abstract:
Objective: The objective of the study was to integrate two big databases from Swiss nutrition national survey (menuCH) and Swiss health national survey 2012 for data mining purposes. Each database has a demographic base data. An integrated Swiss database is built to later discover critical food consumption patterns linked with lifestyle diseases known to be strongly tied with food consumption. Design: Swiss nutrition national survey (menuCH) with approx. 2000 respondents from two different surveys, one by Phone and the other by questionnaire along with Swiss health national survey 2012 with 21500 respondents were pre-processed, cleaned and finally integrated to a unique relational database. Results: The result of this study is an integrated relational database from the Swiss nutritional and health databases.
Keywords: Health informatics, data mining, nutritional and health databases, nutritional and chronical databases.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17261111 Undecimated Wavelet Transform Based Contrast Enhancement
Authors: Numan Unaldi, Samil Temel, Süleyman Demirci
Abstract:
A novel undecimated wavelet transform based contrast enhancement algorithmis proposed to for both gray scale andcolor images. Contrast enhancement is realized by tuning the magnitude of approximation coefficients at each level with respect to the approximation coefficients of one higher level during the inverse transform phase in a center/surround enhancement sense.The performance of the proposed algorithm is evaluated using a statistical visual contrast measure (VCM). Experimental results on the proposed algorithm show improvement in terms of the VCM.
Keywords: Image enhancement, local contrast enhancement, visual contrast measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27461110 Evaluation of NH3-Slip from Diesel Vehicles Equipped with Selective Catalytic Reduction Systems by Neural Networks Approach
Authors: Mona Lisa M. Oliveira, Nara A. Policarpo, Ana Luiza B. P. Barros, Carla A. Silva
Abstract:
Selective catalytic reduction systems for nitrogen oxides reduction by ammonia has been the chosen technology by most of diesel vehicle (i.e. bus and truck) manufacturers in Brazil, as also in Europe. Furthermore, at some conditions, over-stoichiometric ammonia availability is also needed that increases the NH3 slips even more. Ammonia (NH3) by this vehicle exhaust aftertreatment system provides a maximum efficiency of NOx removal if a significant amount of NH3 is stored on its catalyst surface. In the other words, the practice shows that slightly less than 100% of the NOx conversion is usually targeted, so that the aqueous urea solution hydrolyzes to NH3 via other species formation, under relatively low temperatures. This paper presents a model based on neural networks integrated with a road vehicle simulator that allows to estimate NH3-slip emission factors for different driving conditions and patterns. The proposed model generates high NH3slips which are not also limited in Brazil, but more efforts needed to be made to elucidate the contribution of vehicle-emitted NH3 to the urban atmosphere.Keywords: Ammonia slip, neural-network, vehicles emissions, SCR-NOx.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10421109 Fatigue Crack Initiation of Al-Alloys “Effect of Heat Treatment Condition”
Authors: M. Benachour, N. Benachour, M. Benguediab
Abstract:
In this investigation an empirical study was made on fatigue crack initiation on 7075 T6 and 7075 T71 Al-alloys under constant amplitude loading. In initiation stage, local strain approach at the notch was applied. Single Edge Notch Tensile specimen with semi circular notch is used. Based on experimental results, effect of mean stress, is highlights on fatigue initiation life. Results show that fatigue life initiation is affected by notch geometry and mean stress.
Keywords: Fatigue crack initiation, Al-Alloy, mean stress, heat treatment state.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29701108 Classifying Bio-Chip Data using an Ant Colony System Algorithm
Authors: Minsoo Lee, Yearn Jeong Kim, Yun-mi Kim, Sujeung Cheong, Sookyung Song
Abstract:
Bio-chips are used for experiments on genes and contain various information such as genes, samples and so on. The two-dimensional bio-chips, in which one axis represent genes and the other represent samples, are widely being used these days. Instead of experimenting with real genes which cost lots of money and much time to get the results, bio-chips are being used for biological experiments. And extracting data from the bio-chips with high accuracy and finding out the patterns or useful information from such data is very important. Bio-chip analysis systems extract data from various kinds of bio-chips and mine the data in order to get useful information. One of the commonly used methods to mine the data is classification. The algorithm that is used to classify the data can be various depending on the data types or number characteristics and so on. Considering that bio-chip data is extremely large, an algorithm that imitates the ecosystem such as the ant algorithm is suitable to use as an algorithm for classification. This paper focuses on finding the classification rules from the bio-chip data using the Ant Colony algorithm which imitates the ecosystem. The developed system takes in consideration the accuracy of the discovered rules when it applies it to the bio-chip data in order to predict the classes.Keywords: Ant Colony System, DNA chip data, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14691107 A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling
Authors: Addin Osman, Anwar Ali Yahya, Mohammed Basit Kamal
Abstract:
Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies.
Keywords: Benchmark collection, program educational objectives, student outcomes, ABET, Accreditation, machine learning, supervised multiclass classification, text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8371106 Recognition of Tifinagh Characters with Missing Parts Using Neural Network
Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui
Abstract:
In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.
Keywords: Tifinagh character recognition, Neural networks, Local cost computation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12861105 Measurement of Convective Heat Transfer from a Vertical Flat Plate Using Mach-Zehnder Interferometer with Wedge Fringe Setting
Authors: Divya Haridas, C. B. Sobhan
Abstract:
Laser interferometric methods have been utilized for the measurement of natural convection heat transfer from a heated vertical flat plate, in the investigation presented here. The study mainly aims at comparing two different fringe orientations in the wedge fringe setting of Mach-Zehnder interferometer (MZI), used for the measurements. The interference fringes are set in horizontal and vertical orientations with respect to the heated surface, and two different fringe analysis methods, namely the stepping method and the method proposed by Naylor and Duarte, are used to obtain the heat transfer coefficients. The experimental system is benchmarked with theoretical results, thus validating its reliability in heat transfer measurements. The interference fringe patterns are analyzed digitally using MATLAB 7 and MOTIC Plus softwares, which ensure improved efficiency in fringe analysis, hence reducing the errors associated with conventional fringe tracing. The work also discuss the relative merits and limitations of the two methods used.
Keywords: MZI, Natural Convection, Naylor Method, Vertical Flat Plate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31251104 SEM Image Classification Using CNN Architectures
Authors: G. Türkmen, Ö. Tekin, K. Kurtuluş, Y. Y. Yurtseven, M. Baran
Abstract:
A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.
Keywords: Convolutional Neural Networks, deep learning, image classification, scanning electron microscope.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1981103 Gender Component in the National Project of Kazakhstan
Authors: D.Nuketaeva, A.Kanagatova, I.Khan, B.Kylyshbayeva, G.Bektenova
Abstract:
This article describes the aspects of the formation of the national idea and national identity through the prism of gender control and its contradistinction to the obsolete, Soviet component. The role of females in ethnic and national projects is considered from the point of view of Dr. Nira Yuval-Davis: as biological reproducers of the ethnic communities- members; as reproducers of the boarders of ethnic/national groups; as central participants in the ideological reproduction of community and transducers of its culture; as symbols in ideology, reproduction and transformation of ethnic/national categories; and as participants of national, economical, political and military combats. The society of the transitional type uses the symbolic resources of the formation of gender component in the national project. The gender patterns act like cultural codes, executing the important ideological function in formation of the national female- image, i.e. the discussion on hijab - it-s not just the discussion on control over the female body, it-s the discussion on the metaphor of social order.Keywords: nation, gender, hijab, Islam, ideology, politics, national idea, national identity, society of the transitional type
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20241102 Pattern Recognition Using Feature Based Die-Map Clusteringin the Semiconductor Manufacturing Process
Authors: Seung Hwan Park, Cheng-Sool Park, Jun Seok Kim, Youngji Yoo, Daewoong An, Jun-Geol Baek
Abstract:
Depending on the big data analysis becomes important, yield prediction using data from the semiconductor process is essential. In general, yield prediction and analysis of the causes of the failure are closely related. The purpose of this study is to analyze pattern affects the final test results using a die map based clustering. Many researches have been conducted using die data from the semiconductor test process. However, analysis has limitation as the test data is less directly related to the final test results. Therefore, this study proposes a framework for analysis through clustering using more detailed data than existing die data. This study consists of three phases. In the first phase, die map is created through fail bit data in each sub-area of die. In the second phase, clustering using map data is performed. And the third stage is to find patterns that affect final test result. Finally, the proposed three steps are applied to actual industrial data and experimental results showed the potential field application.
Keywords: Die-Map Clustering, Feature Extraction, Pattern Recognition, Semiconductor Manufacturing Process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31511101 Determinate Fuzzy Set Ranking Analysis for Combat Aircraft Selection with Multiple Criteria Group Decision Making
Authors: C. Ardil
Abstract:
Using the aid of Hausdorff distance function and Minkowski distance function, this study proposes a novel method for selecting combat aircraft for Air Force. In order to do this, the proximity measure method was developed with determinate fuzzy degrees based on the relationship between attributes and combat aircraft alternatives. The combat aircraft selection attributes were identified as payloadability, maneuverability, speedability, stealthability, and survivability. Determinate fuzzy data from the combat aircraft attributes was then aggregated using the determinate fuzzy weighted arithmetic average operator. For the selection of combat aircraft, correlation analysis of the ranking order patterns of options was also examined. A numerical example from military aviation is used to demonstrate the applicability and effectiveness of the proposed method.
Keywords: Combat aircraft selection, multiple criteria decision making, fuzzy sets, determinate fuzzy sets, intuitionistic fuzzy sets, proximity measure method, Hausdorff distance function, Minkowski distance function, PMM, MCDM
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3551100 Promoting Complex Systems Learning through the use of Computer Modeling
Authors: Kamel Hashem, David Mioduser
Abstract:
This paper describes part of a project about Learningby- Modeling (LbM). Studying complex systems is increasingly important in teaching and learning many science domains. Many features of complex systems make it difficult for students to develop deep understanding. Previous research indicates that involvement with modeling scientific phenomena and complex systems can play a powerful role in science learning. Some researchers argue with this view indicating that models and modeling do not contribute to understanding complexity concepts, since these increases the cognitive load on students. This study will investigate the effect of different modes of involvement in exploring scientific phenomena using computer simulation tools, on students- mental model from the perspective of structure, behavior and function. Quantitative and qualitative methods are used to report about 121 freshmen students that engaged in participatory simulations about complex phenomena, showing emergent, self-organized and decentralized patterns. Results show that LbM plays a major role in students' concept formation about complexity concepts.Keywords: Complexity, Educational technology, Learning by modeling, Mental models
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15731099 Hierarchical PSO-Adaboost Based Classifiers for Fast and Robust Face Detection
Authors: Hong Pan, Yaping Zhu, Liang Zheng Xia
Abstract:
We propose a fast and robust hierarchical face detection system which finds and localizes face images with a cascade of classifiers. Three modules contribute to the efficiency of our detector. First, heterogeneous feature descriptors are exploited to enrich feature types and feature numbers for face representation. Second, a PSO-Adaboost algorithm is proposed to efficiently select discriminative features from a large pool of available features and reinforce them into the final ensemble classifier. Compared with the standard exhaustive Adaboost for feature selection, the new PSOAdaboost algorithm reduces the training time up to 20 times. Finally, a three-stage hierarchical classifier framework is developed for rapid background removal. In particular, candidate face regions are detected more quickly by using a large size window in the first stage. Nonlinear SVM classifiers are used instead of decision stump functions in the last stage to remove those remaining complex nonface patterns that can not be rejected in the previous two stages. Experimental results show our detector achieves superior performance on the CMU+MIT frontal face dataset.
Keywords: Adaboost, Face detection, Feature selection, PSO
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21991098 Numerical Simulation of the Aerodynamic Loads acting on top of the SMART Centre for PV Applications
Authors: M. Raciti Castelli, S. Toniato, E. Benini
Abstract:
The flow filed around a flatted-roof compound has been investigated by means of 2D and 3D numerical simulations. A constant wind velocity profile, based both on the maximum reference wind speed in the building site (peak gust speed worked out for a 50- year return period) and on the local roughness coefficient, has been simulated in order to determine the wind-induced loads on top of the roof. After determining the influence of the incoming wind directions on the induced roof loads, a 2D analysis of the most severe load condition has been performed, achieving a numerical quantification of the expected wind-induced forces on the PV panels on top of the roof.Keywords: CFD, wind-induced loads, flow around buildings, photovoltaic system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15661097 Development of a RAM Simulation Model for Acid Gas Removal System
Authors: Ainul Akmar Mokhtar, Masdi Muhammad, Hilmi Hussin, Mohd Amin Abdul Majid
Abstract:
A reliability, availability and maintainability (RAM) model has been built for acid gas removal plant for system analysis that will play an important role in any process modifications, if required, for achieving its optimum performance. Due to the complexity of the plant, the model was based on a Reliability Block Diagram (RBD) with a Monte Carlo simulation engine. The model has been validated against actual plant data as well as local expert opinions, resulting in an acceptable simulation model. The results from the model showed that the operation and maintenance can be further improved, resulting in reduction of the annual production loss.
Keywords: Acid gas removal plant, RAM model, Reliabilityblock diagram
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23431096 Cellulose Nanocrystals Suspensions as Water-Based Lubricants for Slurry Pump Gland Seals
Authors: Mohammad Javad Shariatzadeh, Dana Grecov
Abstract:
The tribological tests were performed on a new tribometer, in order to measure the coefficient of friction of a gland seal packing material on stainless steel shafts in presence of Cellulose Nanocrystal (CNC) suspension as a sustainable, environmentally friendly, water-based lubricant. To simulate the real situation from the slurry pumps, silica sands were used as slurry particles. The surface profiles after tests were measured by interferometer microscope to characterize the surface wear. Moreover, the coefficient of friction and surface wear were measured between stainless steel shaft and chrome steel ball to investigate the tribological effects of CNC in boundary lubrication region. Alignment of nanoparticles in the CNC suspensions are the main reason for friction and wear reduction. The homogeneous concentrated suspensions showed fingerprint patterns of a chiral nematic liquid crystal. These properties made CNC a very good lubricant additive in water.Keywords: Gland seal, lubricant additives, nanocrystalline cellulose, water-based lubricants.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8141095 An Improved Genetic Algorithm to Solve the Traveling Salesman Problem
Authors: Omar M. Sallabi, Younis El-Haddad
Abstract:
The Genetic Algorithm (GA) is one of the most important methods used to solve many combinatorial optimization problems. Therefore, many researchers have tried to improve the GA by using different methods and operations in order to find the optimal solution within reasonable time. This paper proposes an improved GA (IGA), where the new crossover operation, population reformulates operation, multi mutation operation, partial local optimal mutation operation, and rearrangement operation are used to solve the Traveling Salesman Problem. The proposed IGA was then compared with three GAs, which use different crossover operations and mutations. The results of this comparison show that the IGA can achieve better results for the solutions in a faster time.
Keywords: AI, Genetic algorithms, TSP.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26131094 The RK1GL2X3 Method for Initial Value Problems in Ordinary Differential Equations
Authors: J.S.C. Prentice
Abstract:
The RK1GL2X3 method is a numerical method for solving initial value problems in ordinary differential equations, and is based on the RK1GL2 method which, in turn, is a particular case of the general RKrGLm method. The RK1GL2X3 method is a fourth-order method, even though its underlying Runge-Kutta method RK1 is the first-order Euler method, and hence, RK1GL2X3 is considerably more efficient than RK1. This enhancement is achieved through an implementation involving triple-nested two-point Gauss- Legendre quadrature.
Keywords: RK1GL2X3, RK1GL2, RKrGLm, Runge-Kutta, Gauss-Legendre, initial value problem, local error, global error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13191093 Quantifying Mobility of Urban Inhabitant Based on Social Media Data
Authors: Yuyun, Fritz Akhmad Nuzir, Bart Julien Dewancker
Abstract:
Check-in locations on social media provide information about an individual’s location. The millions of units of data generated from these sites provide knowledge for human activity. In this research, we used a geolocation service and users’ texts posted on Twitter social media to analyze human mobility. Our research will answer the questions; what are the movement patterns of a citizen? And, how far do people travel in the city? We explore the people trajectory of 201,118 check-ins and 22,318 users over a period of one month in Makassar city, Indonesia. To accommodate individual mobility, the authors only analyze the users with check-in activity greater than 30 times. We used sampling method with a systematic sampling approach to assign the research sample. The study found that the individual movement shows a high degree of regularity and intensity in certain places. The other finding found that the average distance an urban inhabitant can travel per day is as far as 9.6 km.
Keywords: Mobility, check-in, distance, Twitter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7991092 Tool Path Generation and Manufacturing Process for Blades of a Compressor Rotor
Abstract:
This paper presents a complete procedure for tool path planning and blade machining in 5-axis manufacturing. The actual cutting contact and cutter locations can be determined by lead and tilt angles. The tool path generation is implemented by piecewise curved approximation and chordal deviation detection. An application about drive surface method promotes flexibility of tool control and stability of machine motion. A real manufacturing process is proposed to separate the operation into three regions with five stages and to modify the local tool orientation with an interactive algorithm.Keywords: 5-axis machining, tool orientation, lead and tilt angles, tool path generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22671091 The Effects of Gender and Socioeconomic Status on Academic Motivation: The Case of Lithuania
Authors: Ausra Turcinskaite-Balciuniene, Jonas Balciunas, Gediminas Merkys
Abstract:
The problematic of gender and socioeconomic status biased differences in academic motivation patterns is discussed. Gender identity is understood according to symbolic interactionism perspective: as a result of reflected appraisals, social comparisons, self-attributions, and identifications, shaped by social environment and family context. The effects of socioeconomic status on academic motivation are conceptualized according to Bourdieu’s habitus concept, reflecting the role of unconscious and internalized cultural signals, proper to low and high socioeconomic status family contexts. Since families differ by various socioeconomic features, the hypothesis about possible impact of parents’ socioeconomic status on their children’s academic motivation interfering with gender socialization effects is held. The survey, aiming to seize gender differences in academic motivation and self-recorded improvementoriented efforts as a result of socialization processes operating in the families of low and high socioeconomic status, was designed. The results of Lithuanian higher education students’ survey are presented and discussed.
Keywords: Academic Motivation, Gender, Socialization, Socioeconomic Status.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28981090 Evolution of Fashion Design in the Era of High-Tech Culture
Authors: Galina Mihaleva, C. Koh
Abstract:
Fashion, like many other design fields, undergoes numerous evolutions throughout the ages. This paper aims to recognize and evaluate the significance of advance technology in fashion design and examine how it changes the role of modern fashion designers by modifying the creation process. It also touches on how modern culture is involved in such developments and how it affects fashion design in terms of conceptualizing and fabrication. The methodology used is through surveying the various examples of technological applications to fashion design and drawing parallels between what was achievable then and what is achievable now. By comparing case studies, existing fashion design examples and crafting method experimentations; we then spot patterns in which to predict the direction of future developments in the field. A breakdown on the elements of technology in fashion design helps us understand the driving force behind such a trend. The results from explorations in the paper have shown that there is an observed pattern of a distinct increase in interest and progress in the field of fashion technology, which leads to the birth of hybrid crafting methods. In conclusion, it is shown that as fashion technology continues to evolve, their role in clothing crafting becomes more prominent and grows far beyond the humble sewing machine.Keywords: Fashion design, functional aesthetics, smart textiles, 3D printing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 40901089 FIR Filter Design via Linear Complementarity Problem, Messy Genetic Algorithm, and Ising Messy Genetic Algorithm
Authors: A.M. Al-Fahed Nuseirat, R. Abu-Zitar
Abstract:
In this paper the design of maximally flat linear phase finite impulse response (FIR) filters is considered. The problem is handled with totally two different approaches. The first one is completely deterministic numerical approach where the problem is formulated as a Linear Complementarity Problem (LCP). The other one is based on a combination of Markov Random Fields (MRF's) approach with messy genetic algorithm (MGA). Markov Random Fields (MRFs) are a class of probabilistic models that have been applied for many years to the analysis of visual patterns or textures. Our objective is to establish MRFs as an interesting approach to modeling messy genetic algorithms. We establish a theoretical result that every genetic algorithm problem can be characterized in terms of a MRF model. This allows us to construct an explicit probabilistic model of the MGA fitness function and introduce the Ising MGA. Experimentations done with Ising MGA are less costly than those done with standard MGA since much less computations are involved. The least computations of all is for the LCP. Results of the LCP, random search, random seeded search, MGA, and Ising MGA are discussed.Keywords: Filter design, FIR digital filters, LCP, Ising model, MGA, Ising MGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20231088 Electromyography Pattern Classification with Laplacian Eigenmaps in Human Running
Authors: Elnaz Lashgari, Emel Demircan
Abstract:
Electromyography (EMG) is one of the most important interfaces between humans and robots for rehabilitation. Decoding this signal helps to recognize muscle activation and converts it into smooth motion for the robots. Detecting each muscle’s pattern during walking and running is vital for improving the quality of a patient’s life. In this study, EMG data from 10 muscles in 10 subjects at 4 different speeds were analyzed. EMG signals are nonlinear with high dimensionality. To deal with this challenge, we extracted some features in time-frequency domain and used manifold learning and Laplacian Eigenmaps algorithm to find the intrinsic features that represent data in low-dimensional space. We then used the Bayesian classifier to identify various patterns of EMG signals for different muscles across a range of running speeds. The best result for vastus medialis muscle corresponds to 97.87±0.69 for sensitivity and 88.37±0.79 for specificity with 97.07±0.29 accuracy using Bayesian classifier. The results of this study provide important insight into human movement and its application for robotics research.
Keywords: Electrocardiogram, manifold learning, Laplacian Eigenmaps, running pattern.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11211087 Exploring Employee Experiences of Distributed Leadership in Consultancy SMEs
Authors: Mohamed Haffar, Ramdane Djebarni, Russell Evans
Abstract:
Despite a growth in literature on distributed leadership, the majority of studies are centred on large public organisations particularly within the health and education sectors. The purpose of this study is to fill the gap in the literature by exploring employee experiences of distributed leadership within two commercial consultancy SME businesses in the UK and USA. The aim of the study informed an exploratory method of research to gather qualitative data drawn from semi-structured interviews involving a sample of employees in each organisation. A series of broad, open questions were used to explore the employees’ experiences; evidence of distributed leadership; and extant barriers and practices in each organisation. Whilst some of our findings aligned with patterns and practices in the existing literature, it importantly discovered some emergent themes that have not previously been recognised in the previous studies. Our investigation identified that whilst distributed leadership was in evidence in both organisations, the interviewees’ experience reported that it was sporadic and inconsistent. Moreover, non-client focused projects were reported to be less important and distributed leadership was found to be inconsistent or non-existent.
Keywords: Consultancy, distributed leadership, owner-manager, SME, entrepreneur.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7581086 Lattice Boltzmann Simulation of the Carbonization of Wood Particle
Authors: Ahmed Mahmoudi, Imen Mejri, Mohamed A. Abbassi, Ahmed Omri
Abstract:
A numerical study based on the Lattice Boltzmann Method (LBM) is proposed to solve one, two and three dimensional heat and mass transfer for isothermal carbonization of thick wood particles. To check the validity of the proposed model, computational results have been compared with the published data and a good agreement is obtained. Then, the model is used to study the effect of reactor temperature and thermal boundary conditions, on the evolution of the local temperature and the mass distributions of the wood particle during carbonization
Keywords: Lattice Boltzmann Method, pyrolysis conduction, carbonization, Heat and mass transfer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27071085 A New Evolutionary Algorithm for Cluster Analysis
Authors: B.Bahmani Firouzi, T. Niknam, M. Nayeripour
Abstract:
Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the kmeans algorithm. Solutions obtained from this technique depend on the initialization of cluster centers and the final solution converges to local minima. In order to overcome K-means algorithm shortcomings, this paper proposes a hybrid evolutionary algorithm based on the combination of PSO, SA and K-means algorithms, called PSO-SA-K, which can find better cluster partition. The performance is evaluated through several benchmark data sets. The simulation results show that the proposed algorithm outperforms previous approaches, such as PSO, SA and K-means for partitional clustering problem.
Keywords: Data clustering, Hybrid evolutionary optimization algorithm, K-means algorithm, Simulated Annealing (SA), Particle Swarm Optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22781084 The Investigations of Water-ethanol Mixture by Monte Carlo Method
Authors: Atamas N. A., Atamas A. A.
Abstract:
Energetic and structural results for ethanol-water mixtures as a function of the mole fraction were calculated using Monte Carlo methodology. Energy partitioning results obtained for equimolar water-ethanol mixture and ether organic liquids are compared. It has been shown that at xet=0.22 the RDFs for waterethanol and ethanol-ethanol interactions indicated strong hydrophobic interactions between ethanol molecules and the local structure of solution is less structured at this concentration as at ether ones. Results obtained for ethanol-water mixture as a function of concentration are in good agreement with the experimental data.
Keywords: Ethanol, molecular liquids, Monte Carlo, water, thermodynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22431083 Dynamical Analysis of a Harvesting Model of Phytoplankton-Zooplankton Interaction
Authors: Anuj K. Sharma, Amit Sharma, Kulbhushan Agnihotri
Abstract:
In this work, we propose and analyze a model of Phytoplankton-Zooplankton interaction with harvesting considering that some species are exploited commercially for food. Criteria for local stability, instability and global stability are derived and some threshold harvesting levels are explored to maintain the population at an appropriate equilibrium level even if the species are exploited continuously.Further,biological and bionomic equilibria of the system are obtained and an optimal harvesting policy is also analysed using the Pantryagin’s Maximum Principle.Finally analytical findings are also supported by some numerical simulations.
Keywords: Phytoplankton-Zooplankton, Global stability, Bionomic Equilibrium, Pontrying-Maximum Principal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273