Search results for: fraud prevention and detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1752

Search results for: fraud prevention and detection

462 Shot Transition Detection with Minimal Decoding of MPEG Video Streams

Authors: Mona A. Fouad, Fatma M. Bayoumi, Hoda M. Onsi, Mohamed G. Darwish

Abstract:

Digital libraries become more and more necessary in order to support users with powerful and easy-to-use tools for searching, browsing and retrieving media information. The starting point for these tasks is the segmentation of video content into shots. To segment MPEG video streams into shots, a fully automatic procedure to detect both abrupt and gradual transitions (dissolve and fade-groups) with minimal decoding in real time is developed in this study. Each was explored through two phases: macro-block type's analysis in B-frames, and on-demand intensity information analysis. The experimental results show remarkable performance in detecting gradual transitions of some kinds of input data and comparable results of the rest of the examined video streams. Almost all abrupt transitions could be detected with very few false positive alarms.

Keywords: Adaptive threshold, abrupt transitions, gradual transitions, MPEG video streams.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
461 Performance Analysis of Brain Tumor Detection Based On Image Fusion

Authors: S. Anbumozhi, P. S. Manoharan

Abstract:

Medical Image fusion plays a vital role in medical field to diagnose the brain tumors which can be classified as benign or malignant. It is the process of integrating multiple images of the same scene into a single fused image to reduce uncertainty and minimizing redundancy while extracting all the useful information from the source images. Fuzzy logic is used to fuse two brain MRI images with different vision. The fused image will be more informative than the source images. The texture and wavelet features are extracted from the fused image. The multilevel Adaptive Neuro Fuzzy Classifier classifies the brain tumors based on trained and tested features. The proposed method achieved 80.48% sensitivity, 99.9% specificity and 99.69% accuracy. Experimental results obtained from fusion process prove that the use of the proposed image fusion approach shows better performance while compared with conventional fusion methodologies.

Keywords: Image fusion, Fuzzy rules, Neuro-fuzzy classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3058
460 Overview of CARDIOSENSOR Project on the Development of a Nanosensor for Assessing the Risk of Cardiovascular Disease

Authors: A.C. Duarte, C.I.L. Justino, K. Duarte, A.C. Freitas, R. Pereira, P. Chaves, P. Bettencourt, S. Cardoso, T.A.P. Rocha-Santos

Abstract:

This paper aims at overviewing the topics of a research project (CARDIOSENSOR) on the field of health sciences (biomaterials and biomedical engineering). The project has focused on the development of a nanosensor for the assessment of the risk of cardiovascular diseases by the monitoring of C-reactive protein (CRP), which has been currently considered as the best validated inflammatory biomarker associated to cardiovascular diseases. The project involves tasks such as: 1) the development of sensor devices based on field effect transistors (FET): assembly, optimization and validation; 2) application of sensors to the detection of CRP in standard solutions and comparison with enzyme-linked immunosorbent assay (ELISA); and 3) application of sensors to real samples such as blood and saliva and evaluation of their ability to predict the risk of cardiovascular disease.

Keywords: Carbon nanotubes field effect transistors, cardiovascular diseases, C-reactive protein, sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
459 Single-Camera Basketball Tracker through Pose and Semantic Feature Fusion

Authors: Adrià Arbués-Sangüesa, Coloma Ballester, Gloria Haro

Abstract:

Tracking sports players is a widely challenging scenario, specially in single-feed videos recorded in tight courts, where cluttering and occlusions cannot be avoided. This paper presents an analysis of several geometric and semantic visual features to detect and track basketball players. An ablation study is carried out and then used to remark that a robust tracker can be built with Deep Learning features, without the need of extracting contextual ones, such as proximity or color similarity, nor applying camera stabilization techniques. The presented tracker consists of: (1) a detection step, which uses a pretrained deep learning model to estimate the players pose, followed by (2) a tracking step, which leverages pose and semantic information from the output of a convolutional layer in a VGG network. Its performance is analyzed in terms of MOTA over a basketball dataset with more than 10k instances.

Keywords: Basketball, deep learning, feature extraction, single-camera, tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 698
458 A Survey of Model Comparison Strategies and Techniques in Model Driven Engineering

Authors: Junaid Rashid, Waqar Mehmood, Muhammad Wasif Nisar

Abstract:

This survey paper shows the recent state of model comparison as it’s applies to Model Driven engineering. In Model Driven Engineering to calculate the difference between the models is a very important and challenging task. There are number of tasks involved in model differencing that firstly starts with identifying and matching the elements of the model. In this paper, we discuss how model matching is accomplished, the strategies, techniques and the types of the model. We also discuss the future direction. We found out that many of the latest model comparison strategies are geared near enabling Meta model and similarity based matching. Therefore model versioning is the most dominant application of the model comparison. Recently to work on comparison for versioning has begun to deteriorate, giving way to different applications. Ultimately there is wide change among the tools in the measure of client exertion needed to perform model comparisons, as some require more push to encourage more sweeping statement and expressive force.

Keywords: Model comparison, model clone detection, model versioning, EMF Model, model diff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
457 Automatic Detection and Spatio-temporal Analysis of Commercial Accumulations Using Digital Yellow Page Data

Authors: Yuki. Akiyama, Hiroaki. Sengoku, Ryosuke. Shibasaki

Abstract:

In this study, the locations and areas of commercial accumulations were detected by using digital yellow page data. An original buffering method that can accurately create polygons of commercial accumulations is proposed in this paper.; by using this method, distribution of commercial accumulations can be easily created and monitored over a wide area. The locations, areas, and time-series changes of commercial accumulations in the South Kanto region can be monitored by integrating polygons of commercial accumulations with the time-series data of digital yellow page data. The circumstances of commercial accumulations were shown to vary according to areas, that is, highly- urbanized regions such as the city center of Tokyo and prefectural capitals, suburban areas near large cities, and suburban and rural areas.

Keywords: Commercial accumulations, Spatio-temporal analysis, Urban monitoring, Yellow page data

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1263
456 Fast and Robust Long-term Tracking with Effective Searching Model

Authors: Thang V. Kieu, Long P. Nguyen

Abstract:

Kernelized Correlation Filter (KCF) based trackers have gained a lot of attention recently because of their accuracy and fast calculation speed. However, this algorithm is not robust in cases where the object is lost by a sudden change of direction, being obscured or going out of view. In order to improve KCF performance in long-term tracking, this paper proposes an anomaly detection method for target loss warning by analyzing the response map of each frame, and a classification algorithm for reliable target re-locating mechanism by using Random fern. Being tested with Visual Tracker Benchmark and Visual Object Tracking datasets, the experimental results indicated that the precision and success rate of the proposed algorithm were 2.92 and 2.61 times higher than that of the original KCF algorithm, respectively. Moreover, the proposed tracker handles occlusion better than many state-of-the-art long-term tracking methods while running at 60 frames per second.

Keywords: Correlation filter, long-term tracking, random fern, real-time tracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777
455 Dynamic Fast Tracing and Smoothing Technique for Geiger-Muller Dosimeter

Authors: M. Ebrahimi Shohani, S. M. Taheri, S. M. Golgoun

Abstract:

Environmental radiation dosimeter is a kind of detector that measures the dose of the radiation area. Dosimeter registers the radiation and converts it to the dose according to the calibration parameters. The limit of a dose is different at each radiation area and this limit should be notified and reported to the user and health physics department. The stochastic nature of radiation is the reason for the fluctuation of any gamma detector dosimetry. In this research we investigated Geiger-Muller type of dosimeter and tried to improve the dose measurement. Geiger-Muller dosimeter is a counter that converts registered radiation to the dose. Therefore, for better data analysis, it is necessary to apply an algorithm to smooth statistical variations of registered radiation. We proposed a method to smooth these fluctuations much more and also proposed a dynamic way to trace rapid changes of radiations. Results show that our method is fast and reliable method in comparison the traditional method.

Keywords: Geiger-Muller, radiation detection, smoothing algorithms, dosimeter, dose calculation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 466
454 An Evaluation of Sputum Smear Conversion and Haematological Parameter Alteration in Early Detection Period of New Pulmonary Tuberculosis (PTB) Patients

Authors: Tasnuva Tamanna, Sanjida Halim Topa

Abstract:

Sputum smear conversion after one month of antituberculosis therapy in new smear positive pulmonary tuberculosis patients (PTB+) is a vital indicator towards treatment success. The objective of this study is to determine the rate of sputum smear conversion in new PTB+ patients after one month under treatment of National Institute of Diseases of the Chest and Hospital (NIDCH). Analysis of sputum smear conversion was done by re-clinical examination with sputum smear microscopic test after one month. Socio-demographic and hematological parameters were evaluated to perceive the correlation with the disease status. Among all enrolled patients only 33.33% were available for follow up diagnosis and of them only 42.86% patients turned to smear negative. Probably this consequence is due to non-coherence to the proper disease management. 66.67% and 78.78% patients reported low haemoglobin and packed cell volume level respectively whereas 80% and 93.33% patients accounted accelerated platelet count and erythrocyte sedimentation rate correspondingly.

Keywords: Followed up patients, PTB+ patients, sputum smear conversion, and sputum smear microscopic test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
453 Probabilistic Crash Prediction and Prevention of Vehicle Crash

Authors: Lavanya Annadi, Fahimeh Jafari

Abstract:

Transportation brings immense benefits to society, but it also has its costs. Costs include the cost of infrastructure, personnel, and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion, and various indirect costs in terms of air transport. This research aims to predict the probabilistic crash prediction of vehicles using Machine Learning due to natural and structural reasons by excluding spontaneous reasons, like overspeeding, etc., in the United States. These factors range from meteorological elements such as weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity, to human-made structures, like road structure components such as Bumps, Roundabouts, No Exit, Turning Loops, Give Away, etc. The probabilities are categorized into ten distinct classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes in all states collected by the US government. The probability of the crash was determined by employing Multinomial Expected Value, and a classification label was assigned accordingly. We applied three classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-depth insights through exploratory data analysis.

Keywords: Road safety, crash prediction, exploratory analysis, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 83
452 Mechanism of Alcohol Related Disruption of the Error Monitoring and Processing System

Authors: M. O. Welcome, Y. E. Razvodovsky, E. V. Pereverzeva, V. A. Pereverzev

Abstract:

The error monitoring and processing system, EMPS is the system located in the substantia nigra of the midbrain, basal ganglia and cortex of the forebrain, and plays a leading role in error detection and correction. The main components of EMPS are the dopaminergic system and anterior cingulate cortex. Although, recent studies show that alcohol disrupts the EMPS, the ways in which alcohol affects this system are poorly understood. Based on current literature data, here we suggest a hypothesis of alcohol-related glucose-dependent system of error monitoring and processing, which holds that the disruption of the EMPS is related to the competency of glucose homeostasis regulation, which in turn may determine the dopamine level as a major component of EMPS. Alcohol may indirectly disrupt the EMPS by affecting dopamine level through disorders in blood glucose homeostasis regulation.

Keywords: Alcohol related disruption, Error monitoring andprocessing system, Mechanism.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1354
451 User Pattern Learning Algorithm based MDSS(Medical Decision Support System) Framework under Ubiquitous

Authors: Insung Jung, Gi-Nam Wang

Abstract:

In this paper, we present user pattern learning algorithm based MDSS (Medical Decision support system) under ubiquitous. Most of researches are focus on hardware system, hospital management and whole concept of ubiquitous environment even though it is hard to implement. Our objective of this paper is to design a MDSS framework. It helps to patient for medical treatment and prevention of the high risk patient (COPD, heart disease, Diabetes). This framework consist database, CAD (Computer Aided diagnosis support system) and CAP (computer aided user vital sign prediction system). It can be applied to develop user pattern learning algorithm based MDSS for homecare and silver town service. Especially this CAD has wise decision making competency. It compares current vital sign with user-s normal condition pattern data. In addition, the CAP computes user vital sign prediction using past data of the patient. The novel approach is using neural network method, wireless vital sign acquisition devices and personal computer DB system. An intelligent agent based MDSS will help elder people and high risk patients to prevent sudden death and disease, the physician to get the online access to patients- data, the plan of medication service priority (e.g. emergency case).

Keywords: Neural network, U-healthcare, MDSS, CAP, DSS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
450 Critical Analysis of Heat Exchanger Cycle for its Maintainability Using Failure Modes and Effect Analysis and Pareto Analysis

Authors: Sayali Vyas, Atharva Desai, Shreyas Badave, Apurv Kulkarni, B. Rajiv

Abstract:

The Failure Modes and Effect Analysis (FMEA) is an efficient evaluation technique to identify potential failures in products, processes, and services. FMEA is designed to identify and prioritize failure modes. It proves to be a useful method for identifying and correcting possible failures at its earliest possible level so that one can avoid consequences of poor performance. In this paper, FMEA tool is used in detection of failures of various components of heat exchanger cycle and to identify critical failures of the components which may hamper the system’s performance. Further, a detailed Pareto analysis is done to find out the most critical components of the cycle, the causes of its failures, and possible recommended actions. This paper can be used as a checklist which will help in maintainability of the system.

Keywords: FMEA, heat exchanger cycle, Ishikawa diagram, Pareto analysis, risk priority number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
449 An Advanced Hybrid P2p Botnet 2.0

Authors: T. T. Lu, H.Y. Liao, M .F. Chen

Abstract:

Recently, malware attacks have become more serious over the Internet by e-mail, denial of service (DoS) or distributed denial of service (DDoS). The Botnets have become a significant part of the Internet malware attacks. The traditional botnets include three parts – botmaster, command and control (C&C) servers and bots. The C&C servers receive commands from botmaster and control the distributions of computers remotely. Bots use DNS to find the positions of C&C server. In this paper, we propose an advanced hybrid peer-to-peer (P2P) botnet 2.0 (AHP2P botnet 2.0) using web 2.0 technology to hide the instructions from botmaster into social sites, which are regarded as C&C servers. Servent bots are regarded as sub-C&C servers to get the instructions from social sites. The AHP2P botnet 2.0 can evaluate the performance of servent bots, reduce DNS traffics from bots to C&C servers, and achieve harder detection bots actions than IRC-based botnets over the Internet.

Keywords: Peer-to-peer, Botnets, Botnet 2.0, Hybridpeer-to-peer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2427
448 Clustering Unstructured Text Documents Using Fading Function

Authors: Pallav Roxy, Durga Toshniwal

Abstract:

Clustering unstructured text documents is an important issue in data mining community and has a number of applications such as document archive filtering, document organization and topic detection and subject tracing. In the real world, some of the already clustered documents may not be of importance while new documents of more significance may evolve. Most of the work done so far in clustering unstructured text documents overlooks this aspect of clustering. This paper, addresses this issue by using the Fading Function. The unstructured text documents are clustered. And for each cluster a statistics structure called Cluster Profile (CP) is implemented. The cluster profile incorporates the Fading Function. This Fading Function keeps an account of the time-dependent importance of the cluster. The work proposes a novel algorithm Clustering n-ary Merge Algorithm (CnMA) for unstructured text documents, that uses Cluster Profile and Fading Function. Experimental results illustrating the effectiveness of the proposed technique are also included.

Keywords: Clustering, Text Mining, Unstructured TextDocuments, Fading Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
447 Hot-Spot Blob Merging for Real-Time Image Segmentation

Authors: K. Kraus, M. Uiberacker, O. Martikainen, R. Reda

Abstract:

One of the major, difficult tasks in automated video surveillance is the segmentation of relevant objects in the scene. Current implementations often yield inconsistent results on average from frame to frame when trying to differentiate partly occluding objects. This paper presents an efficient block-based segmentation algorithm which is capable of separating partly occluding objects and detecting shadows. It has been proven to perform in real time with a maximum duration of 47.48 ms per frame (for 8x8 blocks on a 720x576 image) with a true positive rate of 89.2%. The flexible structure of the algorithm enables adaptations and improvements with little effort. Most of the parameters correspond to relative differences between quantities extracted from the image and should therefore not depend on scene and lighting conditions. Thus presenting a performance oriented segmentation algorithm which is applicable in all critical real time scenarios.

Keywords: Image segmentation, Model-based, Region growing, Blob Analysis, Occlusion, Shadow detection, Intelligent videosurveillance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
446 Performance Analysis of the Time-Based and Periodogram-Based Energy Detector for Spectrum Sensing

Authors: Sadaf Nawaz, Adnan Ahmed Khan, Asad Mahmood, Chaudhary Farrukh Javed

Abstract:

Classically, an energy detector is implemented in time domain (TD). However, frequency domain (FD) based energy detector has demonstrated an improved performance. This paper presents a comparison between the two approaches as to analyze their pros and cons. A detailed performance analysis of the classical TD energy-detector and the periodogram based detector is performed. Exact and approximate mathematical expressions for probability of false alarm (Pf) and probability of detection (Pd) are derived for both approaches. The derived expressions naturally lead to an analytical as well as intuitive reasoning for the improved performance of (Pf) and (Pd) in different scenarios. Our analysis suggests the dependence improvement on buffer sizes. Pf is improved in FD, whereas Pd is enhanced in TD based energy detectors. Finally, Monte Carlo simulations results demonstrate the analysis reached by the derived expressions.

Keywords: Cognitive radio, energy detector, periodogram, spectrum sensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1030
445 Learning Example of a Biomedical Project from a Real Problem of Muscle Fatigue

Authors: M. Rezki, A. Belaidi

Abstract:

This paper deals with a method of learning to solve a real problem in biomedical engineering from a technical study of muscle fatigue. Electromyography (EMG) is a technique for evaluating and recording the electrical activity produced by skeletal muscles (viewpoint: anatomical and physiological). EMG is used as a diagnostics tool for identifying neuromuscular diseases, assessing low-back pain and muscle fatigue in general. In order to study the EMG signal for detecting fatigue in a muscle, we have taken a real problem which touches the tramway conductor the handle bar. For the study, we have used a typical autonomous platform in order to get signals at real time. In our case study, we were confronted with complex problem to do our experiments in a tram. This type of problem is recurring among students. To teach our students the method to solve this kind of problem, we built a similar system. Through this study, we realized a lot of objectives such as making the equipment for simulation, the study of detection of muscle fatigue and especially how to manage a study of biomedical looking.

Keywords: EMG, health platform, conductor’s tram, muscle fatigue.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
444 Tracking Objects in Color Image Sequences: Application to Football Images

Authors: Mourad Moussa, Ali Douik, Hassani Messaoud

Abstract:

In this paper, we present a comparative study between two computer vision systems for objects recognition and tracking, these algorithms describe two different approach based on regions constituted by a set of pixels which parameterized objects in shot sequences. For the image segmentation and objects detection, the FCM technique is used, the overlapping between cluster's distribution is minimized by the use of suitable color space (other that the RGB one). The first technique takes into account a priori probabilities governing the computation of various clusters to track objects. A Parzen kernel method is described and allows identifying the players in each frame, we also show the importance of standard deviation value research of the Gaussian probability density function. Region matching is carried out by an algorithm that operates on the Mahalanobis distance between region descriptors in two subsequent frames and uses singular value decomposition to compute a set of correspondences satisfying both the principle of proximity and the principle of exclusion.

Keywords: Image segmentation, objects tracking, Parzen window, singular value decomposition, target recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
443 Segmentation of Gray Scale Images of Dropwise Condensation on Textured Surfaces

Authors: Helene Martin, Solmaz Boroomandi Barati, Jean-Charles Pinoli, Stephane Valette, Yann Gavet

Abstract:

In the present work we developed an image processing algorithm to measure water droplets characteristics during dropwise condensation on pillared surfaces. The main problem in this process is the similarity between shape and size of water droplets and the pillars. The developed method divides droplets into four main groups based on their size and applies the corresponding algorithm to segment each group. These algorithms generate binary images of droplets based on both their geometrical and intensity properties. The information related to droplets evolution during time including mean radius and drops number per unit area are then extracted from the binary images. The developed image processing algorithm is verified using manual detection and applied to two different sets of images corresponding to two kinds of pillared surfaces.

Keywords: Dropwise condensation, textured surface, image processing, watershed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691
442 Mix Proportioning and Strength Prediction of High Performance Concrete Including Waste Using Artificial Neural Network

Authors: D. G. Badagha, C. D. Modhera, S. A. Vasanwala

Abstract:

There is a great challenge for civil engineering field to contribute in environment prevention by finding out alternatives of cement and natural aggregates. There is a problem of global warming due to cement utilization in concrete, so it is necessary to give sustainable solution to produce concrete containing waste. It is very difficult to produce designated grade of concrete containing different ingredient and water cement ratio including waste to achieve desired fresh and harden properties of concrete as per requirement and specifications. To achieve the desired grade of concrete, a number of trials have to be taken, and then after evaluating the different parameters at long time performance, the concrete can be finalized to use for different purposes. This research work is carried out to solve the problem of time, cost and serviceability in the field of construction. In this research work, artificial neural network introduced to fix proportion of concrete ingredient with 50% waste replacement for M20, M25, M30, M35, M40, M45, M50, M55 and M60 grades of concrete. By using the neural network, mix design of high performance concrete was finalized, and the main basic mechanical properties were predicted at 3 days, 7 days and 28 days. The predicted strength was compared with the actual experimental mix design and concrete cube strength after 3 days, 7 days and 28 days. This experimentally and neural network based mix design can be used practically in field to give cost effective, time saving, feasible and sustainable high performance concrete for different types of structures.

Keywords: Artificial neural network, ANN, high performance concrete, rebound hammer, strength prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1209
441 Artificial Intelligence-Based Detection of Individuals Suffering from Vestibular Disorder

Authors: D. Hişam, S. İkizoğlu

Abstract:

Identifying the problem behind balance disorder is one of the most interesting topics in medical literature. This study has considerably enhanced the development of artificial intelligence (AI) algorithms applying multiple machine learning (ML) models to sensory data on gait collected from humans to classify between normal people and those suffering from Vestibular System (VS) problems. Although AI is widely utilized as a diagnostic tool in medicine, AI models have not been used to perform feature extraction and identify VS disorders through training on raw data. In this study, three ML models, the Random Forest Classifier (RF), Extreme Gradient Boosting (XGB), and K-Nearest Neighbor (KNN), have been trained to detect VS disorder, and the performance comparison of the algorithms has been made using accuracy, recall, precision, and f1-score. With an accuracy of 95.28 %, Random Forest (RF) Classifier was the most accurate model.

Keywords: Vestibular disorder, machine learning, random forest classifier, k-nearest neighbor, extreme gradient boosting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 167
440 Human Pose Estimation using Active Shape Models

Authors: Changhyuk Jang, Keechul Jung

Abstract:

Human pose estimation can be executed using Active Shape Models. The existing techniques for applying to human-body research using Active Shape Models, such as human detection, primarily take the form of silhouette of human body. This technique is not able to estimate accurately for human pose to concern two arms and legs, as the silhouette of human body represents the shape as out of round. To solve this problem, we applied the human body model as stick-figure, “skeleton". The skeleton model of human body can give consideration to various shapes of human pose. To obtain effective estimation result, we applied background subtraction and deformed matching algorithm of primary Active Shape Models in the fitting process. The images which were used to make the model were 600 human bodies, and the model has 17 landmark points which indicate body junction and key features of human pose. The maximum iteration for the fitting process was 30 times and the execution time was less than .03 sec.

Keywords: Active shape models, skeleton, pose estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2416
439 Development of a Computer Vision System for the Blind and Visually Impaired Person

Authors: Roselyn A. Maaño

Abstract:

Eyes are an essential and conspicuous organ of the human body. Human eyes are outward and inward portals of the body that allows to see the outside world and provides glimpses into ones inner thoughts and feelings. Inevitable blindness and visual impairments may results from eye-related disease, trauma, or congenital or degenerative conditions that cannot be corrected by conventional means. The study emphasizes innovative tools that will serve as an aid to the blind and visually impaired (VI) individuals. The researchers fabricated a prototype that utilizes the Microsoft Kinect for Windows and Arduino microcontroller board. The prototype facilitates advanced gesture recognition, voice recognition, obstacle detection and indoor environment navigation. Open Computer Vision (OpenCV) performs image analysis, and gesture tracking to transform Kinect data to the desired output. A computer vision technology device provides greater accessibility for those with vision impairments.

Keywords: Algorithms, Blind, Computer Vision, Embedded Systems, Image Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3610
438 Isolation and Identification Fibrinolytic Protease Endophytic Fungi from Hibiscus Leaves in Shah Alam

Authors: Mohd Sidek Ahmad, Zainon Mohd Noor, Zaidah Zainal Ariffin

Abstract:

Fibrin degradation is an important part in prevention or treatment of intravascular thrombosis and cardiovascular diseases. Plasmin like fibrinolytic enzymes has given new hope to patient with cardiovascular diseases by treating fibrin aggregation related diseases with traditional plasminogen activator which have many side effects. Various researches involving wide range of sources for production of fibrinolytic proteases, from bacteria, fungi, insects and fermented foods. But few have looked into endophytic fungi as a potential source. Sixteen (16) endophytic fungi were isolated from Hibiscus sp. leaves from six different locations in Shah Alam, Selangor. Only two endophytic fungi, FH3 and S13 showed positive fibrinolytic protease activities. FH3 produced 5.78cm and S13 produced 4.48cm on Skim Milk Agar after 4 days of incubation at 27°C. Fibrinolytic activity was observed; 3.87cm and 1.82cm diameter clear zone on fibrin plate of FH3 and S13 respectively. 18srRNA was done for identification of the isolated fungi with positive fibrinolytic protease. S13 had the highest similarity (100%) to that of Penicillium citrinum strain TG2 and FH3 had the highest similarity (99%) to that of Fusarium sp. FW2PhC1, Fusarium sp. 13002, Fusarium sp. 08006, Fusarium equiseti strain Salicorn 8 and Fungal sp. FCASAn-2. Media composition variation showed the effects of carbon nitrogen on protein concentration, where the decrement of 50% of media composition caused drastic decrease in protease of FH3 from 1.081 to 0.056 and also S13 from 2.946 to 0.198.

Keywords: Isolation, identification, fibrinolytic protease, endophytic fungi, Hibiscus leaves.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3208
437 miR-200c as a Biomarker for 5-FU Chemosensitivity in Colorectal Cancer

Authors: Rezvan Najafi, Korosh Heydari, Massoud Saidijam

Abstract:

5-FU is a chemotherapeutic agent that has been used in colorectal cancer (CRC) treatment. However, it is usually associated with the acquired resistance, which decreases the therapeutic effects of 5-FU. miR-200c is involved in chemotherapeutic drug resistance, but its mechanism is not fully understood. In this study, the effect of inhibition of miR-200c in sensitivity of HCT-116 CRC cells to 5-FU was evaluated. HCT-116 cells were transfected with LNA-anti- miR-200c for 48 h. mRNA expression of miR-200c was evaluated using quantitative real- time PCR. The protein expression of phosphatase and tensin homolog (PTEN) and E-cadherin were analyzed by western blotting. Annexin V and propidium iodide staining assay were applied for apoptosis detection. The caspase-3 activation was evaluated by an enzymatic assay. The results showed LNA-anti-miR-200c inhibited the expression of PTEN and E-cadherin protein, apoptosis and activation of caspase 3 compared with control cells. In conclusion, these results suggest that miR-200c as a prognostic marker can overcome to 5-FU chemoresistance in CRC.

Keywords: Colorectal cancer, miR-200c, 5-FU resistance, E-cadherin, PTEN.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 917
436 Detecting and Measuring Fabric Pills Using Digital Image Analysis

Authors: Dariush Semnani, Hossein Ghayoor

Abstract:

In this paper a novel method was presented for evaluating the fabric pills using digital image processing techniques. This work provides a novel technique for detecting pills and also measuring their heights, surfaces and volumes. Surely, measuring the intensity of defects by human vision is an inaccurate method for quality control; as a result, this problem became a motivation for employing digital image processing techniques for detection of defects of fabric surface. In the former works, the systems were just limited to measuring of the surface of defects, but in the presented method the height and the volume of defects were also measured, which leads to a more accurate quality control. An algorithm was developed to first, find pills and then measure their average intensity by using three criteria of height, surface and volume. The results showed a meaningful relation between the number of rotations and the quality of pilled fabrics.

Keywords: 3D analysis, computer vision, fabric, pile, surface evaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2619
435 Microbiological Analysis, Cytotoxic and Genotoxic Effects from Material Captured in PM2.5 and PM10 Filters Used in the Aburrá Valley Air Quality Monitoring Network (Colombia)

Authors: Carmen E. Zapata, Juan Bautista, Olga Montoya, Claudia Moreno, Marisol Suarez, Alejandra Betancur, Duvan Nanclares, Natalia A. Cano

Abstract:

This study aims to evaluate the diversity of microorganisms in filters PM2.5 and PM10; and determine the genotoxic and cytotoxic activity of the complex mixture present in PM2.5 filters used in the Aburrá Valley Air Quality Monitoring Network (Colombia). The research results indicate that particulate matter PM2.5 of different monitoring stations are bacteria; however, this study of detection of bacteria and their phylogenetic relationship is not complete evidence to connect the microorganisms with pathogenic or degrading activities of compounds present in the air. Additionally, it was demonstrated the damage induced by the particulate material in the cell membrane, lysosomal and endosomal membrane and in the mitochondrial metabolism; this damage was independent of the PM2.5 concentrations in almost all the cases.

Keywords: Cytotoxic, genotoxic, microbiological analysis, PM10, PM2.5.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2334
434 Design, Implementation and Testing of Mobile Agent Protection Mechanism for MANETS

Authors: Khaled E. A. Negm

Abstract:

In the current research, we present an operation framework and protection mechanism to facilitate secure environment to protect mobile agents against tampering. The system depends on the presence of an authentication authority. The advantage of the proposed system is that security measures is an integral part of the design, thus common security retrofitting problems do not arise. This is due to the presence of AlGamal encryption mechanism to protect its confidential content and any collected data by the agent from the visited host . So that eavesdropping on information from the agent is no longer possible to reveal any confidential information. Also the inherent security constraints within the framework allow the system to operate as an intrusion detection system for any mobile agent environment. The mechanism is tested for most of the well known severe attacks against agents and networked systems. The scheme proved a promising performance that makes it very much recommended for the types of transactions that needs highly secure environments, e. g., business to business.

Keywords: Mobile agent security, mobile accesses, agent encryption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038
433 Moderation in Temperature Dependence on Counter Frictional Coefficient and Prevention of Wear of C/C Composites by Synthesizing SiC around Surface and Internal Vacancies

Authors: Noboru Wakamoto, Kiyotaka Obunai, Kazuya Okubo, Toru Fujii

Abstract:

The aim of this study is to moderate the dependence of counter frictional coefficient on temperature between counter surfaces and to reduce the wear of C/C composites at low temperature. To modify the C/C composites, Silica (SiO2) powders were added into phenolic resin for carbon precursor. The preform plate of the precursor of C/C composites was prepared by conventional filament winding method. The C/C composites plates were obtained by carbonizing preform plate at 2200 °C under an argon atmosphere. At that time, the silicon carbides (SiC) were synthesized around the surfaces and the internal vacancies of the C/C composites. The frictional coefficient on the counter surfaces and specific wear volumes of the C/C composites were measured by our developed frictional test machine like pin-on disk type. The XRD indicated that SiC was synthesized in the body of C/C composite fabricated by current method. The results of friction test showed that coefficient of friction of unmodified C/C composites have temperature dependence when the test condition was changed. In contrast, frictional coefficient of the C/C composite modified with SiO2 powders was almost constant at about 0.27 when the temperature condition was changed from Room Temperature (RT) to 300 °C. The specific wear rate decreased from 25×10-6 mm2/N to 0.1×10-6 mm2/N. The observations of the surfaces after friction tests showed that the frictional surface of the modified C/C composites was covered with a film produced by the friction. This study found that synthesizing SiC around surface and internal vacancies of C/C composites was effective to moderate the dependence on the frictional coefficient and reduce to the abrasion of C/C composites.

Keywords: C/C composites, frictional coefficient, SiC, wear.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 828